JPS6362665A - Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration - Google Patents

Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration

Info

Publication number
JPS6362665A
JPS6362665A JP20851686A JP20851686A JPS6362665A JP S6362665 A JPS6362665 A JP S6362665A JP 20851686 A JP20851686 A JP 20851686A JP 20851686 A JP20851686 A JP 20851686A JP S6362665 A JPS6362665 A JP S6362665A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
force
vibration
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20851686A
Other languages
Japanese (ja)
Other versions
JPH0626790B2 (en
Inventor
Junichiro Kumabe
隈部 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20851686A priority Critical patent/JPH0626790B2/en
Publication of JPS6362665A publication Critical patent/JPS6362665A/en
Publication of JPH0626790B2 publication Critical patent/JPH0626790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To reduce the grinding force remarkably, by rotating a grinding wheel while vibrating axially and radially with supersonic frequency then rotating or linearly moving a work while advancing/retreating in the cutting direction of the grinding wheel and bringing it into intermittent contact with said grinding wheel. CONSTITUTION:A grinding wheel 15 is vibrated with supersonic frequency (f) and amplitude (as) in the direction of its rotary spindle or an arrow direction 14. Consequently, respective abrasive grain groups move in zigzag at grinding points on a grinding area 17 and abrade each other so as to cut the chips finely. As a result, a pulsating grinding waveform 16 can be produced. Then a table is fed with speed (v)<22piAF and the pulsating grinding force is applied intermittently. Alternatively, a stepping motor is employed and applied with three pulse advance PF, one pulse pause PR, two pulse back PB and one pulse pause PR2, for example, so as to move the table linearly while vibrating thus carrying out grinding work with intermittent grinding force waveform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は従来の研削方法′Cは困何どされているゴムお
よびセラミックス等を容易にオ^1♀; (iJ+削(
さる超音波振動ど低周波振動を千−′−さIJた(J(
渦中による精密什上加1方法に関CJる3゜ (従来技術) 切削・研削工具によって精密加十りるlJめには工作物
に与える力を少し−Cb+¥減りる1j法にJ、−)で
加工づ−る必要がある。1回転円板十に1刀刃Jを右限
数設けた例えばフライスを高速回転31! ’(V)削
りることによって切削力が軽減りる。1回転円&1−に
無数に砥粒を分布させた砥石車を高速回転さく!で研削
することによって、砥粒1刃あたりの切込、7ノ。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention can easily grind rubber, ceramics, etc. that are difficult to grind with conventional grinding methods.
Low frequency vibrations such as ultrasonic vibrations were generated by
CJ 3゜ related to method 1 for precision addition using a whirlpool (prior technology) For precision addition using cutting and grinding tools, the force applied to the workpiece is slightly reduced by −Cb + ¥ 1J method, − ). For example, a milling cutter with the right limit number of blades J for every 10 rotations of a disk rotates at a high speed of 31! '(V) Cutting force is reduced by scraping. A grinding wheel with countless abrasive grains distributed in one rotation circle & 1- is rotated at high speed! By grinding with abrasive grains, the depth of cut per blade is 7 mm.

がさらに小さくなって工作物にイ′1用りる力が激減し
て′Iri密加工でさ−るようになる。、シかし、一方
、約2000…/′旧nに及ぶ高速研削のため多量の研
削易によって1作物おJ、び砥(1申を冷7Jiしな(
Jれげならない程平均IJI削温度が苫しく1−¥?り
ることb既に周知のところである。砥石車の高速回転に
ともなう、この著しい発熱現象があるに乙かか()らず
、1作物に作用号る力の激減効果が絶大(あるため砥石
車にJ、る研削加工が広り;引用され(いるのが現状で
”ある。従来の工作物の(Ar1は、金114か主体で
あっても熱伝達効率がJ、く冷加効果かJ、いので適切
な研削易を多量に使用りるJどに、」、−)(精密fi
11削を可能としていた。。
becomes even smaller, and the force applied to the workpiece is drastically reduced, allowing for dense machining. On the other hand, due to high-speed grinding of about 2000.../' old n, a large amount of grinding is required to reduce the grinding speed of one crop (one grain to seven cold grinders).
J The average IJI cutting temperature is so disgusting that it's 1-¥? This is already well known. Not only is this remarkable heat generation phenomenon caused by the high-speed rotation of the grinding wheel, but the effect of drastically reducing the force acting on a single crop is enormous. The conventional workpiece (Ar1), even if it is mainly made of gold 114, has a heat transfer efficiency of ``,-) (precision fi
It was possible to cut down to 11. .

(発明が解決しようど匁る問題+、’、t )しかし、
今日でCよ精密加工J!I’論、技術の有無にかかわら
ず、新木何が開発されてき−(おり、そのなかには]゛
jいF RP 、セラミックスのように熱伝達効率の悪
い新素材が多く含まれている。そしで、これらにし極め
で高い加工精度が要求されてさている、1 これらに対する精密如上の期待に応えるためには、平均
研削温度上背をより少なくして研削力をさらに激減さけ
ることがてさる研削方法が必要であるLl ”’ !A
のJ、うイーr軟くてbぽい材料、金属、セラミックス
のJ、う/J、硬くてもろい材料に共通な精密6Jl削
方法が<−、いという問題点かあった。
(Problem that would be solved by invention +, ', t) However,
C and precision machining J today! Theory: Regardless of the presence or absence of technology, new wood products have been developed, including many new materials with poor heat transfer efficiency, such as FRP and ceramics. Therefore, extremely high machining accuracy is required for these processes.1 In order to meet the expectations for precision in these areas, it is necessary to further reduce the grinding force by reducing the average grinding temperature. I need a method Ll”’!A
There was a problem that the precision 6Jl cutting method, which is common for hard and brittle materials, is difficult for soft and b-like materials, metals, and ceramics.

(問題点を解決づるための手段) 本発明は平均U[削温度上胃をより少なくして研削力を
J、り軽減していかなる材お1に対しででも同じ加工茶
(’lて精密研削てさることを目的どづるもので・、砥
石車を軸方向及び又は半径方向に和音枝振!FJJ 3
0−で回転し、1作物を砥も車の切込み方向に前進、後
退さエヤら回転或いは直進運動させて該凪11中に断続
的に接触させ断続パルス研削力波形を介/1ざt!(−
切りくずを・微細に・11伍(Jる如くしIこことを特
徴どガるものである3、 (実施例) 第1図は従来の研削法のとさのイσ[削は椙どω[剛力
波形を示づ。研削法[αVて矢印3)の方向にl!l’
4沖回転づる砥石車1を干負′吻2にり・1して切込め
(を与えC研削Jるどさ−のrJI削(幾構にdjいで
砥−(i+中内の1つの砥粒は斜線で示した面積Ar5
Cに切削りる3、砥粒は高速回転しているために、ω(
T+中の切込みはtてあ・っても、砥粒1刀の兇用・+
J、lの切込み2cは極めて小さくなる。このど(\の
tσ[剛力波形は円筒面に間隔をしって分4i−+Jる
111(粒の、i’i、速回転と砥粒の弾・Vl振動に
よって周1υJ的に☆化りる3、これを[デル化して表
づと、図示の、J、うに1−分力1)い背分力Nどもに
、ヒラ1 ピcLh mt  形(人される。1作物の
背分力方向のばね定数を友、角固右振動数をWえとする
ど、u、<<m  の関係η−11JI削17ているの
が一般であるため、加r−ib’+ Iαに関係IJる
工作物の背分力方向の工作物の弾・l!1変位/UXは
カッC−となる。加工精度を向1さlるにはこパ 是 の変位甲Xを中y減させる必要が牛ヂる。そのためには
、凪も中4十作物に押えつげる力を軽減させる心安が〈
1−リ゛る3、すなわち、P7.顔  の1直を少さく
しで切れ味を向」−さげる必要がある3゜さ−で、ブと
町名は、今日までに砥石車を研削方向リーイrわち、第
2図にJ3Cプる、砥石車を5の矢印f。
(Means for Solving the Problems) The present invention aims to reduce the average grinding temperature and reduce the grinding force by J, so that it can be processed with the same precision for any material. The purpose of grinding is to make a chord in the axial and/or radial direction of the grinding wheel! FJJ 3
The crop is rotated at 0-, and the grain is moved forward and backward in the cutting direction of the grinding wheel, and the air is rotated or moved in a straight line, and the crop is brought into contact with the calm 11 intermittently through the intermittent pulsed grinding force waveform. (−
(Example) Figure 1 shows the difference between the conventional grinding method and the grinding process. ω[Shows the stiffness waveform. Grinding method [αV in the direction of arrow 3) l! l'
4 Place the rotary grinding wheel 1 on the rotary shaft 2 and make a cut (Give C grinding J grinding wheel 1) The area of the grain is indicated by diagonal lines Ar5
Cutting to C3. Since the abrasive grains are rotating at high speed, ω(
The depth of cut in T+ is only 1 abrasive.
The cuts 2c of J and l become extremely small. This (\'s tσ [rigid force waveform is 111 (the grain's i'i, the speed rotation of the grain and the abrasive grain's bullet/Vl vibration) changes to ☆ in the circumference 1υJ by knowing the interval on the cylindrical surface. 3. Expressing this as a del, the vertical force N of the sea urchin 1 - component force 1 shown in the figure is expressed as the vertical force of 1 crop. Assuming that the spring constant in the direction is Y and the angular fixed frequency is W, it is common to have the relationship η-11JI for u, <<m, so the relationship IJ for the force r-ib'+Iα is The bullet l!1 displacement/UX of the workpiece in the direction of the back force of the workpiece becomes C-.In order to improve the machining accuracy, it is necessary to reduce the displacement A of the workpiece by the middle y. For that purpose, it is necessary to have peace of mind by reducing the force of pressing down on the 40 crops during the calm season.
1-return 3, that is, P7. It is necessary to lower the cutting edge by 3 degrees by slightly reducing the sharpness of the grinding wheel. Car 5 arrow f.

aの方向に超音波ねじり振動させて研削法度Vくえ7c
ゐゲの研削法]σで振動研削Jる方法を発明した。
Ultrasonic torsional vibration in the direction of a for grinding method V 7c
[Grinding method] Invented a vibration grinding method using σ.

この方法ににつで研削力波形は図示のJζうにパルス?
tll国力波形6となり、パルス研削力の絶対値を[−
)゛ とづると、背分力方向の変位Xは、2ど:埜。
In this method, the grinding force waveform is the Jζ pulse shown in the figure?
The tll national force waveform becomes 6, and the absolute value of the pulse grinding force becomes [-
)゛ Then, the displacement X in the direction of the thrust force is 2.

−コどなる3、ここて、teは砥石車の振動−リイクに ルηの1[味rtll削0,1間、王は振動周期である
。このどさ、諸摩1?1ヒ抵抗が減少りる効果と作用時
間が短くbるの(児11目プ上の切込みが浅くなる効果
によ)て e′<ピ どイする。づ−なわら、研削砥石
接触面(の研削力1)゛ ら減少し、加工精度に関係す
る工1′1物の背分力方向の変位×(51従来の研削方
法におCjる同じ研削法度のどさ−の変位に比べて〒ζ
丁〜π)に減少りる。さらに、第3図のように、矢印7
の 5一 方向にF < fの低い振動を重畳しC′−)え、研削
法度V<2XAF  で研削づると、このIIJl削力
波国力断続パルス切削力波形8とな−)でIi fl物
をPi JrJ −!/る。不感性振動切削機構と零位
瞬間振動1刀削どの重畳振動切削機構との複合効果によ
り、tσ[削砥石i接触面の研削力p r′が減少し、
加工精度に関係りる工作物の背分力方向の変位Xが連続
パルスfυ[国力の場合に比べてさらに減少しイ^密研
削加−I−を・可能とり−る。しかし、このどき研削法
1αVは1(10n+、/min以下の低速どなるの(
′、200(1m  ’ m i nのfiJI削速[
σのどきの、7cに等しくさ1!((1][削しJ、゛
)どりるど、1作物の送り速[αv 9はiイい速1α
ど<’にり、研削能率が約π〜五Bに低減する公魚/)
<りf J”る9゜そこで、11述の特徴が牛かされる
研削f1i: ′II ’i低下させイfいて研削方法
についで考えた。1m1図のように、研削速度\/3で
高速回転リ−るl1JI削砥rj4工作物の速LσV9
と同方向である矢印10の方向に低周波振動数1及び振
幅A<低周波振動さけ−で低周波振動数右11とづる。
-Ko naru 3, here, te is the vibration of the grinding wheel. In this case, the effect of reducing the resistance of the first part and the shortening of the action time (due to the effect of making the cut above the first part shallower) makes e'<pi do. In other words, the grinding wheel contact surface (grinding force 1) decreases, and the displacement in the direction of the back force of the work piece 1'1, which is related to machining accuracy x (51) Compared to the displacement of 〒ζ
decreases to d ~ π). Furthermore, as shown in Figure 3, arrow 7
5 If a low vibration of F < f is superimposed in one direction C'-) and grinding is carried out with a grinding force of V < 2 Pi JrJ-! /Ru. Due to the combined effect of the insensitive vibration cutting mechanism and the superimposed vibration cutting mechanism such as zero-level instantaneous vibration single-cutting, the grinding force p r′ of the contact surface of the grinding wheel i decreases,
The displacement X of the workpiece in the direction of the thrust force, which is related to machining accuracy, is further reduced compared to the case of continuous pulse fυ [national power, making it possible to perform detailed grinding. However, these days the grinding method 1αV is 1(10n+, how low speed is less than /min(
', 200 (fiJI cutting speed of 1 m ' min [
σ throat is equal to 7c and 1! ((1) [shaving J, ゛) feed speed of one crop [αv 9 is i speed 1α
A public fish whose grinding efficiency is reduced to about π~5B/)
Therefore, we considered the grinding method by lowering the grinding f1i: 'II 'i in which the characteristics described in 11 are realized.As shown in the 1m1 diagram, the grinding speed is \/3. High speed rotation reel l1 JI grinding rj4 Workpiece speed LσV9
In the direction of arrow 10, which is the same direction as , the low frequency frequency is 1 and the amplitude A<low frequency vibration -, and the low frequency frequency is written as 11 on the right.

−T−L/ −c 、 v<zフ該チの関係を与えて研
削ザる。モ1(石の回転中心Oは片振幅へを・6つ(O
→01→O→02−→Oを一周期として振動りる3、フ
ーハ3(’r’を譚乙で表される、正弦波振すノ波形に
J3いて、原貞Oから振動を開始したとして、1M&’
l七1の点lにJりいて−L作物に接触しパn−V− の間の研削11.1間右Cで、2丁−−−一 の長さを
研削し、と 振動速度と二り作物の速aVとが等しい時刻右2におC
〕るJj、jr)にd>いて工作物研削点と砥石とが離
れ始め、H:、thにJ3いて4作物研削点と再び接触
してM鳴の間61丁−す  の長さを研削づる3、これ
を繰り返して図示のような断続研削力波形による?di
 r+’l 1FJt描どすることがでさる。点ノでは
砥粒1刃あたりの切込み70は最大値を示し、貞nで゛
は零ど4I−る3、1”、、Inてfcが零どなってb
砥り車11を工作物2に押しイ・1(プて研削力る慣用
高速研削機構どじているために主分力および背分力がな
お発生する。
-T-L/-c, v<z Grinding is performed by giving the following relationship. Mo1 (The center of rotation O of the stone is on one side amplitude. 6 (O
→01→O→02-→O vibrates as one cycle 3, Fuha 3 ('r' is represented by Tan, J3 is in the sine wave waveform, and it starts to vibrate from Harasada O. As, 1M&'
11. Grind the length between 11.1 and the length of 2 blades, and the vibration speed and C at time 2 on the right when the speed aV of the two crops is equal
] At Jj, jr), the workpiece grinding point and the grindstone begin to separate, and at H:, th, the workpiece grinding point and the grinding wheel start to separate, and at J3, they come into contact again with the 4th crop grinding point and grind a length of 61 teeth between M. Question 3: Repeat this to create an intermittent grinding force waveform as shown? di
It is possible to draw r+'l 1FJt. At point No, the depth of cut 70 per abrasive grain shows the maximum value, and at steel n, ゛ is zero, 4I-3,1'', In, fc becomes zero, and b
Because the conventional high-speed grinding mechanism that pushes the grinding wheel 11 onto the workpiece 2 with a grinding force is difficult, a principal force and a thrust force are still generated.

この)Tは放飼のtll(粒で研削する長さとなる。従
−)(,1分力Pc 13 il>よび背分力Pt12
は点lで最大値を示し、ピ士ヒ5b1Lv)1;  の
近似波形でその抵抗鎮が減少ザる傾向を示づ。
This) T is the length of the freeing tll (grinding with grains) (, 1 component force Pc 13 il> and thrust force Pt 12
shows a maximum value at point 1, and the approximate waveform shows a tendency for its resistance to decrease.

この周期1て′断続りる1iJl削力波形を=J断じて
パルス研削力波形と覆れば理想どりる第33図のJ、−
)な研削力波形とJ−ることができる、1ぞれには各(
11(粒によるぞの研削長さぞのものをあるいは切込み
深さを規則的に変化させて切りくす゛長さを寸断して作
用時間の短いパルス研削力波形とりる機構を付加力るこ
と以外にはない。
If this period 1' intermittent 1iJl cutting force waveform is crossed with the pulsed grinding force waveform, the ideal result is obtained.J in Fig. 33, -
) grinding force waveform and J-, each of which has a grinding force waveform of (
11 (In addition to adding force to the grinding length depending on the grain or by regularly changing the cutting depth and cutting the cutting length into pieces and creating a pulsed grinding force waveform with a short action time) do not have.

まずその1つとしでは第5図のように砥り申べその回転
主軸ブj向である矢印14の方向に超音波域の高い振動
数f、振幅csで振動さ−(!る。この軸方向詰合波振
動砥石車15にJ、って研削面積17の研削点にお(プ
る各砥粒群の運動はジグIJ))’運fiノをしてお互
いに交錯し合って切りくずを4断する。
First, as shown in Fig. 5, the main shaft of rotation is vibrated in the direction of the arrow 14 with a high frequency f and amplitude cs in the ultrasonic range. J is applied to the direction-packed wave vibration grinding wheel 15 at the grinding point of the grinding area 17 (the movement of each abrasive grain group is the jig IJ). Cut into 4 pieces.

このようにしてパズル研削波形16を発生さけることが
でさるJ、うになる。j−プル送りをその速+=yを 
v<2πハFとして断続パルスrJ1削力波形を作用さ
せるのみまたは、スj−ツピングし一タを利用して例え
ば、3パルス前進P「、1パルス研削力代、2パルス後
退ピ3.1パルスイ4.にPpzを!りえて制++++
づ−ることによって7−プルを振動さ−ぜイjがら[1
°1進運動させることによって、断続研削力波形にJ、
る411削を(iなうことが(パきる。
In this way, the puzzle grinding waveform 16 can be avoided. j-Pull feed at its speed +=y
As v<2πcF, only the intermittent pulse rJ1 grinding force waveform is applied, or by using the spacing pulse, for example, 3 pulses forward P', 1 pulse grinding force, 2 pulses backward P3.1 Ppz to Pulsui 4.! Return +++++
By doing so, the 7-pull is vibrated [1
°By performing linear motion, the intermittent grinding force waveform is J,
411 to be deleted.

他の一つの切りくず寸断方法どして第6図のように6[
(石車を″矢印18の方向である半径方向に振動数「、
振幅αrて゛超8波振動させた半径方向超音波振!11
I凪石19にJ、る方法にJ、−)て砥粒−刃あたりの
切込みを規則的に変化させて−切りくずを寸断さけるこ
とができ、断続パルス切削力波形20とづることがで′
きる。この切込みを断続させる方法は第5図の研削長ざ
をく」断づ−る方法よりもパルス幅をJ、す9.i7<
 シ、そのパルス研削力を軒減させることがて・さる3
、 第5図のジクザグに研削して研削長さを(]−断づる方
法に」、るしのど、第6図のJ、うに切込みを断続さi
! T /ill削長さを\1断し、切りくfを微細化
する方法とを重畳、複合させた第7図のように、軸方向
、半径方向!F畳複超和音枝振IIJ砥石21によって
、相重効宋が得られ、切りくずは超微細化され、パルス
幅はJ:り短くなり、パルス研削力も激減して理想と−
づる断続パルス研削力波形22を実現さけることができ
る。この場合も第5図で説明したようにテーブル送り速
[αYをv(2χハEどMるか、あるいは、ビFl、ピ
F2.P1−3  の3パルス1)り進、、tt!、次
に、Pド1 の1パルス体1L c t!、”i (D
 i’i ニrur 、 PBZの2パルス後退させ、
1パルス体11−さ口るリイクルを繰り返しで用明丁の
断続tσ[剛力波形どりる。
Another chip shredding method is as shown in Figure 6.
(The stone wheel is oscillated in the radial direction, which is the direction of arrow 18,
Radial ultrasonic vibration with ultra-8 waves of amplitude αr! 11
By regularly changing the abrasive grains and the depth of cut per blade, chips can be avoided and the intermittent pulse cutting force waveform 20 can be obtained. ′
Wear. This method of intermittent cutting requires a pulse width of J, which is better than the method of cutting off the grinding length shown in Fig. 5. i7<
It is possible to reduce the pulse grinding force.3
, The method of grinding in a zigzag pattern as shown in Figure 5 and cutting the grinding length (]-)
! As shown in Fig. 7, which combines the methods of cutting T/ill cutting length by \1 and making the cutting f finer, both the axial and radial directions! With the F tatami double super chord branch IIJ grindstone 21, a similar effect can be obtained, the chips are ultra-fine, the pulse width is shortened, and the pulse grinding force is drastically reduced, making it ideal.
The intermittent pulsed grinding force waveform 22 can be avoided. In this case as well, as explained in FIG. 5, the table feed speed [αY is increased by v(2χ, F2, P1-3, 3 pulses 1), tt! , Next, one pulse body 1L c t! of Pdo1! ,”i (D
i'i ni rur, 2 pulses of PBZ are retreated,
1 pulse body 11 - Repeat the recycle to create an intermittent tσ [rigid force waveform].

本発明に用いる超音波振りJ 41(f+に−)いく第
ε3図〜第10図によって説明り−る、1第8図は、榴
超ン”)枝振動了23を主軸24の圧部に設cノ、先、
)i、HiにU(石車19を設0てなる研削盤主軸J)
J、ひ凪イ1中振動系を示づ図である3、縦詰t)枝振
動了の固イ1振動数を20Kt4zどしたとさ、凪も中
の薗径JjJ、び幅と主軸の直径、長さには一連の関係
かあ〕で、例えば主軸の直径を50 mmと−りるど、
ぞの長さは−2−波長のどきには13(l lN1N、
砥石車の直i¥は165 tnlo、幅は10 mmと
なる3、このような形状ど91法どC)ることによって
砥石車を半径方向のJ)にM費゛′1波111M動させ
半径方向超音波振動砥石車19どりることができる。
The ultrasonic vibration used in the present invention will be explained with reference to Figs. 3 to 10. Set c no, first,
) i, U on Hi (grinding machine main shaft J with stone wheel 19 installed)
J, This is a diagram showing the vibration system in Hinagi 1. 3. Vertical t) When the 1st vibration frequency of the branch vibration is set to 20Kt4z, the width and main axis of the 1st vibration in Nagi There is a series of relationships between diameter and length. For example, if the diameter of the main shaft is 50 mm,
The length of the wave is 13 (l lN1N,
The straightness of the grinding wheel is 165 tnlo, and the width is 10 mm3.By using such a shape, the grinding wheel is moved in the radial direction J) with an M cost of 111M, and the radius is The direction of the ultrasonic vibration grinding wheel 19 can be changed.

この砥石車の1軸への41税は、(lI(lI中あるい
は主軸にもう(プたf−パ穴を利用した一j−パに一1
合、JjJ、びめ4aじとi)3わじどによるねじ結合
あるいはボルト締めによって行うことができ、確実に超
音波振動を伝達覆ることができる。
41 tax on one shaft of this grinding wheel is (lI (lI) or on the main shaft.
In this case, it can be done by screw connection or bolt tightening using JjJ, JjJ, JjJ, JjJ, JjJ, JjJJJJJJIJIJIJJIJJI JJJ JJJ JJ JIJIJIJIJIJIJIJIDO, and the ultrasonic vibration can be transmitted and covered reliably.

第9図1ii軸方向、半径方向Φ畳投合超音波振動U(
石車について説明する図である。図示のように砥石車の
幅を20 mmとし、その他の形状寸法は第8図と同様
にすることによって砥石車を軸方向と1(径方向に′M
3g波振動枝振、振幅α3、振幅kをもって超音波振動
さ−ける軸方向、半径方向重畳複合語合波振動砥石車1
4とでることができる。直径の小さい砥7j車に対して
は、縦振動系によって軸方向超音波振動砥石車どづる3
□ 第10図は軸方向超音波振動砥石φについて説明覆る図
である。図示のように砥石車の幅を101110どじ、
その他の形状寸法は第8図と同様にすることにJ、−)
で砥イj中を軸方向のみに1173音波振動数子=2θ
に〃ス、振幅M5=7.pmで、超音波振動づ−る軸方
向超音波振動砥石車21とすることができる。
Fig. 9 1ii Axial direction, radial direction Φ pitching ultrasonic vibration U (
It is a figure explaining a stone wheel. As shown in the figure, the width of the grinding wheel is 20 mm, and the other dimensions are the same as those shown in Fig. 8.
Axial and radial direction superimposed compound combined wave vibration grinding wheel 1 that produces ultrasonic vibrations with 3g wave vibration branching, amplitude α3, and amplitude k
You can get 4. For grinding wheel 7j with a small diameter, the longitudinal vibration system allows the axial ultrasonic vibration grinding wheel 3
□ Fig. 10 is a diagram explaining the axial ultrasonic vibration grindstone φ. As shown in the diagram, set the width of the grinding wheel to 101110 mm.
The other shapes and dimensions will be the same as in Figure 8J,-)
1173 sound wave number = 2θ only in the axial direction while sharpening
, amplitude M5=7. pm, it can be an axial ultrasonic vibration grinding wheel 21 that generates ultrasonic vibrations.

次に、この砥石車を用いた本発明による各種研削法につ
いで説明ηる。軸方向超音波振動砥石17′IにJ、る
代表的研削法を′第11図にJ、−)で説明づ−る。平
面研削は、砥石車14を研削)士瓜\lて矢印方向に回
転させ、工作物2に送り速1σV < 27コ/’lF
”の条f1あるいはステッピングし一夕にJ、っで工作
物を振動させながら直進運動ざUて送り速度v −(送
り、断続して砥石車に接触さけて得られる断続パルス研
削力波形によって平面(σI削づる。円筒(Jl削は、
工作物25をステッピングし−りに、J、)で振動数F
、振幅へで振動さ1.!ながら周速度VU・回転運動さ
せて、砥石車14をIσ1削速庶VC矢印1ノ向に回転
さ一]iで円筒研削り−る1、内面研削は、)TJ f
ii)研削同様に]−作物26をステッピング−し−−
りにJ、って振動数「、振幅Δで振動ざ已イ、−がら、
周速度Vで回転運動さけて、砥石車14を研削法1σ■
(矢印方向に高速回転させて内面研削づる1、小仔穴用
の砥石は、本文で説明した曲げ振動系砥石ではなく、縦
振動系によっで製竹刀ることがで′さる。1この外に、
この直径の小さい縦振動系軸ブノ向振動砥石による本発
明は、溝の加重に・b適用される。。
Next, various grinding methods according to the present invention using this grinding wheel will be explained. A typical grinding method using the axial ultrasonic vibrating grindstone 17' is illustrated in FIG. For surface grinding, the grinding wheel 14 is rotated in the direction of the arrow, and the workpiece 2 is fed at a feed rate of 1σV <27/'lF.
The workpiece is vibrated in a straight line with f1 or stepping, and the workpiece is moved in a straight line at a feed rate v - (feeding, and the intermittent pulse grinding force waveform obtained by intermittent contact with the grinding wheel is used to produce a flat surface. (σI cutting. Cylindrical (Jl cutting is
While stepping the workpiece 25, the frequency F at J,)
, the amplitude is oscillated to 1. ! The grinding wheel 14 is rotated in the direction of the arrow 1 at the circumferential speed VU and rotational speed at the circumferential speed VU while rotating the grinding wheel 14 in the direction of the arrow 1 at a cutting speed of Iσ1.
ii) Grinding as well] - stepping the crop 26 -
Rini J is the frequency of vibration, and the vibration is with amplitude Δ.
Grinding the grinding wheel 14 at circumferential speed V while avoiding rotational movement 1σ■
(The grindstone for internal grinding is rotated at high speed in the direction of the arrow. 1. The whetstone for small holes can be made using a longitudinal vibration system instead of the bending vibration system described in the main text. 1. To,
The present invention, which uses a longitudinally vibrating axially vibrating grindstone with a small diameter, is applied to the loading of grooves. .

半径方向超音波振動砥石19にJ、る代表的研削法を第
12図によって説明する。平面研削は、砥石車19を0
1削速度vで矢印方向に回転させ、■fI物2に送り速
度y(2〕し八Hの条件あるいはステッピング[−タに
よって工作物を振動させながら直進運動させて送り速度
Vで送り、断続して砥石車19に接触させて得られる断
続パルス研削力波形によつで平面研削lる。円筒研削は
、工作物25をステッピング七−夕によって振動数F1
振幅Aで振動さUながら周速度で回転運動させて砥石車
19を研削法[UVで矢印方向に回転させて円筒研削す
る。内面研削は、円筒研削同様に工作物2(5をスーj
ツピンク七−夕によって振動数F、振幅Aで振動さμな
がら周速度■で回転運動させて凪6車19をIσ[削速
度で矢印方向に回転させて円筒研削Jる。小径大川の直
径の小さい砥石車は、1辰動数を1乱めで製作りること
がで゛ぎる。
A typical grinding method using the radial ultrasonic vibration grindstone 19 will be explained with reference to FIG. For surface grinding, set the grinding wheel 19 to 0.
1 Rotate in the direction of the arrow at a cutting speed of v, feed the workpiece 2 at a feed rate of y (2), and then move the workpiece in a straight line while vibrating under the conditions of 8H or by stepping [-ta] and feed it at a feed rate of V, intermittently. Surface grinding is performed using an intermittent pulsed grinding force waveform obtained by contacting the grinding wheel 19. Cylindrical grinding is performed by stepping the workpiece 25 at a frequency of F1.
The grinding wheel 19 is rotated at a circumferential speed while being vibrated with an amplitude A and is rotated at a circumferential speed. Internal grinding is similar to cylindrical grinding, where workpiece 2 (5 is
While vibrating at the frequency F and amplitude A using the Twin Pink Tanabata, the machine is rotated at a circumferential speed ■, and the calm wheel 19 is rotated in the direction of the arrow at a cutting speed Iσ for cylindrical grinding. A grinding wheel with a small diameter, such as a small-diameter Okawa, cannot be produced with one rotation per rotation.

軸方向、゛L径方向fIFA波振動砥石21による代表
的研削法を第13図によって説明覆る。平面研削は、砥
石車21を約2000 Ill/min 4’1度の研
削速度で矢印jJ向に回転させ、工作物2に送り速度y
 < Z7cAFの条イ1あるいはステッピンク七−夕
によって工作物を振動させながら直進運IIIさせて送
り速度Vで送り、断続して砥石車21に接触81て得ら
れる断続パルス研削力波形によ−> C’lI而1面J
f削する。円筒研削は、工作物25をステッピングモー
夕によって振動数F、振幅へで振動さけ−ながら周速度
Vで回転運動させて砥石車21を研削速度Vで矢印方向
に回転させて円筒研削力る3、内面研削は、円筒研削同
様に工作物26をステッピングモー夕によって振動数F
、振幅へで振#Jさせながら周31i度■で回転運動さ
せて、砥石車21をIσ1削速度Vで矢印方向に回転さ
せて内面研削りる。
A typical grinding method using the axial and radial fIFA wave vibration grinding wheels 21 will be explained with reference to FIG. For surface grinding, the grinding wheel 21 is rotated in the direction of arrow jJ at a grinding speed of approximately 2000 Ill/min 4'1 degree, and the workpiece 2 is fed at a feed rate y.
< Using the intermittent pulsed grinding force waveform obtained by vibrating the workpiece with Z7cAF's row 1 or stepping tanabata, the workpiece is moved straight forward at a feed rate of V, and is intermittently brought into contact with the grinding wheel 21 81. >C'lI and page 1 J
f cut. In cylindrical grinding, the workpiece 25 is rotated at a circumferential speed V while avoiding vibrations at a frequency F and an amplitude using a stepping motor, and the grinding wheel 21 is rotated at a grinding speed V in the direction of the arrow to generate a cylindrical grinding force 3. , internal grinding is performed by rotating the workpiece 26 at a frequency of F using a stepping motor, similar to cylindrical grinding.
, the grinding wheel 21 is rotated in the direction of the arrow at a cutting speed of Iσ1 by rotating the grinding wheel 21 in the direction of the arrow at a cutting speed of Iσ1 while rotating the grinding wheel 21 at a circumference of 31i degrees ■ while shaking the grinding wheel 21 at an amplitude of #J and internal grinding.

小径大川の直径の小さい砥石車【Jl、振動数を高めて
製作することがてきる。
A grinding wheel with a small diameter for small diameter Okawa [Jl] can be manufactured by increasing the vibration frequency.

次に具体的研削盤を示して本光明の実hm例を説明づる
。第14同行および第15図にJ、って振動円PgJ研
削盤について説明する。
Next, a practical example of the present invention will be explained by showing a specific grinding machine. A vibrating circle PgJ grinding machine, denoted by J, will be explained in FIG. 14 and FIG.

2ρI<tb縦縦詰波電わい振動子27を−1−輔24
の尾部に、先端には軸方向、?1′径方向超&波振動U
(石21を取イ4ける。そして、だの1−軸に(1?1
″る2飼の振動節に、1、だがるスリーブ28を・振動
節位置に銀ろう伺cノして固定し、該スリーブを2個の
高精1(〔ころがり軸受29て支持して主軸を摩擦少な
く同転てさ゛るJ、うに引る。ころがり軸受29はハウ
ジンク31内に固定し、研削盤用主軸台32を構成覆る
3、スリーブ28にはプーリ30を取付(ブ、このプー
リ30にはスリップリンク33を取付(プる。スリップ
リング33にフラッジj−35を摩擦少イr <接触さ
j!る。プラッシュ35と超音波光振機36の出力端子
どを接続覆る。主軸台32には−1−軸回転駆動用の三
相誘導電動機37を取付け、ベルl−38で・1軸2’
lに回転動力を伝達する。そしく主軸24を矢印3の方
向に回転させ、砥石車を回転ざじる3、この主軸台を研
削盤往復台38に取イ」〔プる。■作物2を研削盤のヂ
ャツク39に取イ・]【ノ、他端をレンツ40で支持す
る。工作物は、制用1装置NおJ、びパワーコーニット
41によって駆動される電気スlツピンク七−夕によっ
て振動数F・−最大12θHt 、振幅A−最大0.2
ml1lを・しつて振動さ1!ながら回転数最大20O
r、P爪の速度Vを・しつて回転さける。この工作物に
対しく往復台38を送り速度Sて矢印7′I2の方向に
)スることにJ、って振動数f = 20Klh −1
ρKf4z、平径方向振幅cLY 、軸方向振幅α、と
もに5μm−20μm程庶で超呂枝振動服−る重畳、複
合超音波振!FIII砥石による木ブを明が実施され精
密振動円筒研削が行われる。砥石車の砥粒は、A砥粒、
WA砥粒、G C砥粒、[〕凪砥粒CF3 N砥粒など
現在使用されている砥粒リベてか使用できる。工作物材
料には、鉄金属、非鉄金属、ゴムなどの非金属工業+A
石=1’;J、びレジミックスなどのづべての1業材斜
に適用されて画期的効果を発揮する。
2ρI<tb Vertical vertically packed wave electric oscillator 27 -1-輔24
in the tail and axially in the tip, ? 1' radial super & wave vibration U
(Take 21 stones and put 4. Then, put (1? 1 on the 1-axis)
1. Fix the sleeve 28 with silver solder at the vibration node position, and fix the sleeve with two high-precision roller bearings 29. The rolling bearing 29 is fixed in the housing 31 and constitutes the headstock 32 for the grinder.A pulley 30 is attached to the sleeve 28. Attach the slip link 33 (pull it). Place the fludge j-35 on the slip ring 33 so that there is little friction. Connect the plush 35 and the output terminal of the ultrasonic light vibrator 36 and cover it. Headstock 32 A three-phase induction motor 37 for -1-axis rotational drive is attached to the 1-axis 2'
Transmit rotational power to l. Then, rotate the main spindle 24 in the direction of the arrow 3 to rotate the grinding wheel 3, and place this headstock on the grinding machine carriage 38. ■Take the crop 2 to the jack 39 of the grinder.] [No.] Support the other end with the lens 40. The workpiece is oscillated by an electric spinner Tanabata driven by the control unit N and power unit 41 at a frequency of F.-maximum of 12θHt and an amplitude of A-maximum of 0.2.
Use 1 ml and vibrate! Maximum rotational speed is 20O
Set the speed V of r and P claws to avoid rotation. When the carriage 38 is moved relative to this workpiece in the direction of the arrow 7'I2 at the feed rate S, the frequency is f = 20Klh -1.
ρKf4z, radial amplitude cLY, and axial amplitude α are all about 5 μm to 20 μm, superimposed and combined ultrasonic vibration! Precision vibratory cylindrical grinding is performed on the wooden block using a FIII grindstone. The abrasive grains of the grinding wheel are A abrasive grains,
Currently used abrasive grains such as WA abrasive grains, GC abrasive grains, and Nagi abrasive grains CF3N abrasive grains can be used. Work materials include non-metallic industries such as ferrous metals, non-ferrous metals, and rubber.
It is applied to all types of industrial materials such as stone = 1';

次に、振動平面研削盤について第1 Ci図aりよび第
17図によって説明する。平面研削盤ベッド42を往復
運動覆るテーブル/13十に鋼球て支持されて摩擦少な
く、テーブルの往復運動方向に直線運動することがでさ
る振動j−プル/I/l+段しノ、その一端を同じくテ
ーブル43上に固定した電気−油圧振動駆動装置45に
連結棒庖″介して固定りる。この電気−油圧振動駆動装
置を油圧ポンプ:Lニラl−lI6おJ、ひ制■1装置
47を・しって振動駆動りる3、そして例えば、振動数
F=lHHx  、振幅A−・・ 0.2 mmで振動
させることができる。
Next, the vibratory surface grinder will be explained with reference to Fig. 1 Ci and Fig. 17. A table that covers the surface grinder bed 42 for reciprocating motion / A vibrating j-pull / I / l + step no, one end of which is supported by steel balls to reduce friction and can move linearly in the direction of the table's reciprocating motion. is fixed to the electric-hydraulic vibration drive device 45 which is also fixed on the table 43 via a connecting rod. 47, and can be vibrated at a frequency F=lHHx and an amplitude A-...0.2 mm, for example.

研削盤]うl\51上には、振動円筒研削盤の場合と同
様に2ρKHz  縦詰η波振動子27と主軸2/Iお
よび振動数rて矢印14の軸方向に振幅η9、矢印18
の方向の半径方向に振幅(Lr  で超音波振動りる征
(右21にりなる振動平面研削盤用主軸台50を固定り
る1、そしてベルト4って主軸を三相誘導′電動はを利
用して矢印3の方向に回転し、研削速度を約2000 
+n/minとする。
Grinding machine] On the back 51, as in the case of the vibrating cylindrical grinding machine, there is a 2ρKHz vertically packed η wave oscillator 27, a main shaft 2/I, a frequency r, an amplitude η9 in the axial direction of the arrow 14, and a
Ultrasonic vibration is carried out in the radial direction with amplitude (Lr). Rotate in the direction of arrow 3 and increase the grinding speed to about 2000.
+n/min.

二に軸にはスリップリング33を取付(ブ、プラッシュ
355を介して超音波光振機36からの励振電圧を回転
づる振動子に与える。回転覆る振動子27および砥石車
にはそれぞれカバー48および52を取付けて安全をa
する3゜ このにうにして、第10図に示した形状寸法の砥石車2
1を同一振動数「−・λθKH2、半径方向に振幅久1
..:j−p、、軸方向の振幅九牟/ρ戸量 をもって
超音波振動さけると同時に円滑に高速回転させ、工作物
にはV<1xAF  の条(’lをむjえて送り平面研
削づることによって本発明にJ、る精密平面研削が実施
される。
Second, a slip ring 33 is attached to the shaft (the excitation voltage from the ultrasonic light oscillator 36 is applied to the rotating vibrator through a plush 355. A cover 48 and a cover 48 are attached to the rotating vibrator 27 and the grinding wheel, respectively. Install 52 for safety a
3゜In this way, grinding wheel 2 having the shape and dimensions shown in FIG.
1 with the same frequency "-・λθKH2, amplitude 1 in the radial direction
.. .. :j-p,, axial amplitude 9m/rho is used to avoid ultrasonic vibrations and at the same time smoothly rotate at high speed. According to the present invention, precision surface grinding is performed.

この平面研削の場合も円筒研削同様に本発明は、あらゆ
る砥粒、工作物に適用され、特に、ゴムやセラミックス
のようにただ高速回転さUるだcノでは研削性を向上さ
けることがでさ−なかった]−作物に対して画期的な精
密平面研削効果を光揮−づる。
In the case of surface grinding as well as cylindrical grinding, the present invention can be applied to all types of abrasive grains and workpieces, and in particular, it is possible to improve the grindability of materials such as rubber and ceramics that are simply rotated at high speed. - Demonstrates revolutionary precision surface grinding effects on crops with light.

なお小径砥石を軸方向にのみ超音波振動させて溝を研削
してもよい。
Note that the groove may be ground by ultrasonically vibrating the small-diameter grindstone only in the axial direction.

(効果) 本発明の貝イホ的実施効果について説明りる。1第14
図による円筒研削について説明りる。
(Effects) The practical effects of the present invention will be explained. 1st 14th
Cylindrical grinding will be explained using diagrams.

第10図に示した形状■法にJ、るグイj7−シンド砥
石#200を20<Hz  縦超音波型わい振動子を用
いて す二201<′Hλ 、久y、、−Fj−P杭 
 、^s牟/ρ)b)□て超音波振動させ、研削速度■
=A″の鼻/アh5として、直径10m1111長さ1
0011111のシリーIンノイ1〜少イド丸棒を1)
F11パルス、PR6パルス、ヒ、1パルス、PK 5
パルスで制611 Lで7’ = fo)lx   を
しって振動させながらy = /、f 7?L /沙汰
で回転させ、工作物の振動1→ノイクルあたりの切削長
さを0.25111mどして切込み10μmnを!jえ
て本発明にJ、る振動円筒研削を実施することによ−)
で異常な研削音を発生することなく、研削r、’ti 
(J近に火花を発生させるような瞬間異常光熱をさける
ことなく工具寿命を永くして工作物を1liJEiづる
ことなく、極めてわずかな研削抵抗で゛表面粗さθ、、
?7メ潮R2ル屹、真円度ρ、t、pに、円筒度+00
 tnmあたり1μmの精密円筒加工に成功し )こ 
、。
Using a 20<Hz vertical ultrasonic type flexural transducer, a J7-Shind grinding wheel #200 was applied to the shape shown in Fig. 10.
,^s剟/ρ)b) □Using ultrasonic vibration, the grinding speed■
= Nose of A''/Ah5, diameter 10m1111 length 1
0011111 series innoi 1 ~ small id round bar 1)
F11 pulse, PR6 pulse, Hi, 1 pulse, PK 5
Control with pulse 611 L to know 7' = fo) lx and vibrate y = /, f 7? Rotate at L/Sata and reduce the vibration of the workpiece from 1 to 0.25111 m in the cutting length per Noicle to obtain a depth of cut of 10 μm! In addition, by carrying out vibratory cylindrical grinding according to the present invention,
Grinding r, 'ti without producing abnormal grinding noise.
(Extend tool life without avoiding instantaneous abnormal light heat that generates sparks near the JEi, without lifting the workpiece, and with extremely small grinding resistance, ゛Surface roughness θ,
? 7 meter tide R2 le 屹, circularity ρ, t, p, cylindricity +00
Succeeded in precision cylindrical processing of 1 μm per tnm)
,.

第16図に示した平面研削においては、第10図に示し
た形状寸法によるダイWモンド砥石せ200をZρに/
h縦縦詰波電わい振動子を用いてナースρに/4.、(
1,つj)夙 ・灼中/ρ〃湾 で和音枝振φυさU、
ω1削115 v = 8oo rn /minとして
、直径4nvの盲IX製品端面を振@数「−/ρρ/i
x、振幅A −0,2ロ11nで振動さぼ、切込み0.
llImを与え、送り速度V=2 庄pん−で送って本
発明を実施することにJ、っで従来の研削では10〜1
5μmも中凹みになって甲ノlにならなかったものが平
面度−〇どづることに成功した。
In the surface grinding shown in FIG. 16, the diamond grinding wheel 200 with the shape and dimensions shown in FIG.
h to the nurse ρ using a vertically packed wave electric oscillator /4. ,(
1, tsuj) Chord branch swing φυsa U in 夙・灼中/ρ〃wan,
With ω1 cutting 115 v = 8oo rn /min, the end face of a blind IX product with a diameter of 4nv was shaken at a number of “-/ρρ/i
x, amplitude A -0.2 ro 11n, vibrating groove, depth of cut 0.
In order to carry out the present invention by giving llIm and feeding at a feed rate of V=2, the conventional grinding speed is 10 to 1.
We succeeded in reducing the flatness of a piece that was not flat due to a 5 μm indentation.

以」−は十イ′]物に低周波振動をjλたft1l削蕎
(′説明したが主軸台(こ低周波振動を4Jえ−Cb同
)ヱな結果が得られることはいうよでもイ1い。。
It goes without saying that the same result can be obtained by applying low-frequency vibrations to the object as described above. 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の研削機構とIσ1削力波力波形明りるモ
デル図、第2図は振動研削群4(■とU[剛力波形を説
明−づる[j゛ル図第3図(J1車畳振動Iσ1削は椙
と研削力波形を説明づるモf゛ル図、第4図(jI f
l物の速度方向に低周波振動数F J3J、び振幅Aで
゛低周波振動させたどきの研削群構図と断続jJI削力
波力波形明リ−る一シブ゛ル図、第3)図は軸1ノ自給
t3波振動凪石て断続パルス研削力波形どりる説明図、
第6図は半径方向超音波振動砥石てさらに細かい断続パ
ルス研削力波形と覆る説明図、第7図は軸プj向、半径
lj向超超音波振動砥石・切り< ’!J’ 45’ 
44(微II化してパルス研削力を軽減しパルス幅b 
’J、Ciい断続パルス研削力波形どづ−る説明図、第
E〕図は″1′径lJ向超音波振!IJ TJ(石の形
状−く1法の一実施例正面図、第9図は軸方向和音枝振
l1lJ砥看iの形状−く1法の 実施例正面図、第1
0図は軸方向、半径方向超音波振動砥石の形1)い]法
の一実施例正面図、第11図は軸方向Jf37′I波振
動峨石枝振、って本発明を実施するとさの平面研削法、
円筒研削法、内面研削法の説明図、第12図は半径方向
超音波振動砥石によ 1って本ブを明を実施するときの
平面研削法、円筒研削法、内面研削法の説明図、第13
図は軸方向、半径方向超音波振動砥石によって本発明を
実施するどぎの平面研削法、円筒研削法、内面研削法の
説明図、第14図は本発明を実施する円筒研削盤の一実
施例平面図、第15図は同側面図、第16図は木光明を
実施する平面研削盤の一実施例正面図、第17図【よ同
側面図である。 6・・・パルス研削力波形、8.16,20.22・・
・断続パルス研削力波形、15・・・軸方向超音波振動
研削砥石車、19・・パ1(径方向語呂波振動研削砥石
車、21・・・軸方向、半径力面和音枝振IJJ研削砥
石車、27・・・縦超音波振動子、3G・・・超音波発
振は、40・・・パルスモーク、4G、i・・・電気油
几振動駆動装置。 ρ  第10区
Figure 1 is a model diagram showing the conventional grinding mechanism and the Iσ1 cutting force waveform, Figure 2 is a model diagram of the vibration grinding group 4 (■ and U Fig. 4 is a model diagram explaining the tatami vibration Iσ1 grinding force waveform and grinding force waveform.
Fig. 3) Grinding group composition and intermittent grinding force waveform when low-frequency vibration is caused by low-frequency vibration in the speed direction of the object with low frequency FJ3J and amplitude A, Figure 3) This is an explanatory diagram of the intermittent pulsed grinding force waveform generated by the self-sufficient T3 wave vibration of axis 1,
Fig. 6 is an explanatory diagram of the ultrasonic vibration grinding wheel in the radial direction and a finer intermittent pulsed grinding force waveform, and Fig. 7 is an illustration of the ultrasonic vibration grinding wheel cutting in the axis direction and radius lj direction. J'45'
44 (Fine II to reduce pulse grinding force and pulse width b
'J、Ci Intermittent pulse grinding force waveform explanation diagram, Figure E] '1' Diameter 1 Figure 9 is a front view of the first embodiment of the shape of the axial chord branching l1lJ honing method.
Figure 0 is a front view of an example of the shape of an axial and radial ultrasonic vibration grindstone (1) method, and Figure 11 is an axial direction Jf37'I-wave vibration grindstone for carrying out the present invention. surface grinding method,
Figure 12 is an explanatory diagram of the cylindrical grinding method and internal grinding method. 13th
The figure is an explanatory diagram of the tooth surface grinding method, cylindrical grinding method, and internal grinding method in which the present invention is carried out using axial and radial ultrasonic vibration grindstones. Figure 14 is an example of a cylindrical grinder carrying out the present invention. FIG. 15 is a plan view, FIG. 15 is a side view of the same, FIG. 16 is a front view of an embodiment of a surface grinding machine that performs wood cutting, and FIG. 17 is a side view of the same. 6... Pulse grinding force waveform, 8.16, 20.22...
・Intermittent pulse grinding force waveform, 15... Axial direction ultrasonic vibration grinding wheel, 19... Pa 1 (radial wave vibration grinding wheel, 21... Axial direction, radial force surface chord branch vibration IJJ grinding Grinding wheel, 27... Vertical ultrasonic vibrator, 3G... Ultrasonic oscillation, 40... Pulse smoke, 4G, i... Electric oil pot vibration drive device. ρ 10th section

Claims (1)

【特許請求の範囲】[Claims] 砥石車を軸方向及び又は半径方向に超音波振動させて回
転し、工作物を砥石車の切込み方向に前進、後退させ乍
ら回転或いは直進運動させて該砥石車に断続的に接触さ
せ断続パルス研削力波形を発生させて切りくずを微細に
寸断する如くなした超音波振動と低周波振動を重畳させ
た砥石車による精密仕上加工方法。
The grinding wheel is rotated by ultrasonic vibration in the axial direction and/or radial direction, and the workpiece is moved forward and backward in the cutting direction of the grinding wheel while being rotated or linearly moved to intermittently contact the grinding wheel to generate intermittent pulses. A precision finishing method using a grinding wheel that combines ultrasonic vibrations and low-frequency vibrations that generate a grinding force waveform to finely shred chips.
JP20851686A 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel Expired - Lifetime JPH0626790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851686A JPH0626790B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851686A JPH0626790B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Publications (2)

Publication Number Publication Date
JPS6362665A true JPS6362665A (en) 1988-03-18
JPH0626790B2 JPH0626790B2 (en) 1994-04-13

Family

ID=16557461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851686A Expired - Lifetime JPH0626790B2 (en) 1986-09-04 1986-09-04 Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Country Status (1)

Country Link
JP (1) JPH0626790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211310A (en) * 2011-05-31 2011-10-12 苏州利达铸造有限公司 Surface treatment method of cleaning air inlet
CN112658819A (en) * 2020-12-19 2021-04-16 西北工业大学 Drilling processing method of SiC fiber reinforced SiC ceramic matrix composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211310A (en) * 2011-05-31 2011-10-12 苏州利达铸造有限公司 Surface treatment method of cleaning air inlet
CN112658819A (en) * 2020-12-19 2021-04-16 西北工业大学 Drilling processing method of SiC fiber reinforced SiC ceramic matrix composite

Also Published As

Publication number Publication date
JPH0626790B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
WO2007077964A1 (en) Truing device and truing method for grinding wheel
US2436466A (en) Method and apparatus for grinding and lapping
JPS6362665A (en) Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration
JP2539801B2 (en) Wheel grinding machine
JPS62292306A (en) Precision vibration boring method
JP6270921B2 (en) Cutting device with blade dressing mechanism
JP2007050471A (en) Dressing method and rotary dressing device
JPS5818187B2 (en) Toishi Gourmano Dressing Hohou
JPH0632899B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPS62140702A (en) Precise superposed vibration hole processing method
US2875559A (en) Method of grinding and grinding wheel therefor
JP3081293B2 (en) Wheel oscillating device in rolling surface super finishing machine
JPS6362661A (en) Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration
JP2625768B2 (en) Ultrasonic vibration polishing or grinding machine
JPH1076448A (en) Elid grinding method
JPH0451300B2 (en)
JPH0624691B2 (en) Precision Surface Polishing Method for Work Surface by Complex Vibration of Grinding Wheel
JP2023050722A (en) Dressing method of superabrasive grinding wheel and device
JPH0639056B2 (en) Method and device for grinding stone of NC tool grinder
JP4310153B2 (en) Grinding wheel dressing equipment
JPS63283865A (en) Casterd-iron bond diamond or cbn grindstone
JPH023426Y2 (en)
JPS5834752A (en) Method of grinding or polishing with use of blade and device thereof
JP2724092B2 (en) Wheel dressing equipment
SU618273A1 (en) Diamond abrasive tool truing method