JP3071640B2 - Deep hole inner surface grinding method for workpieces - Google Patents

Deep hole inner surface grinding method for workpieces

Info

Publication number
JP3071640B2
JP3071640B2 JP6191937A JP19193794A JP3071640B2 JP 3071640 B2 JP3071640 B2 JP 3071640B2 JP 6191937 A JP6191937 A JP 6191937A JP 19193794 A JP19193794 A JP 19193794A JP 3071640 B2 JP3071640 B2 JP 3071640B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
deep hole
work
plunge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6191937A
Other languages
Japanese (ja)
Other versions
JPH0839404A (en
Inventor
閑樹 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Machine Industries Co Ltd
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP6191937A priority Critical patent/JP3071640B2/en
Publication of JPH0839404A publication Critical patent/JPH0839404A/en
Application granted granted Critical
Publication of JP3071640B2 publication Critical patent/JP3071640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は工作物の深穴内面研削方
法に関し、さらに詳細には、工作物の深穴の内径面を研
削する内面研削盤において、工作物の研削負荷による撓
みを考慮した内面研削技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for grinding the inner surface of a deep hole in a workpiece, and more particularly, to a method for grinding an inner surface of a deep hole in a workpiece by grinding load of the workpiece. Related to internal grinding technology.

【0002】[0002]

【従来の技術】ベアリングの内径面等、工作物(以下、
ワークと称する)の穴内径面を研削する内面研削盤にお
いては、一般に、ワーク主軸台によりワークを支持回転
するとともに、このワークの加工穴内に砥石を開放側か
ら挿入して、その内径面を研削加工する。
2. Description of the Related Art Workpieces (hereinafter referred to as inner diameter surfaces of bearings, etc.)
Generally, in an internal grinding machine that grinds the inner diameter surface of a hole of a work, the work is supported and rotated by a work headstock, and a grindstone is inserted into a machining hole of the work from an open side to grind the inner diameter surface. Process.

【0003】ところで、上記加工穴が軸方向に長いいわ
ゆる深穴の場合は、その加工長さが砥石に比較して長い
ことから、従来は、この砥石を加工穴軸方向へ往復運動
(オシレート)させながら切り込んで加工するオシレー
ト研削が一般に行われており、このオシレート研削は、
荒仕上げ加工である粗研削から仕上げ加工である精研削
に至るまで研削全工程を通じて行われていた。
By the way, in the case of a so-called deep hole in which the processing hole is long in the axial direction, since the processing length is longer than that of a grinding wheel, conventionally, the grinding wheel is reciprocated (oscillated) in the axial direction of the processing hole. Oscillate grinding, in which cutting is performed while cutting, is generally performed.
It was performed throughout the entire grinding process, from rough grinding, which is rough finishing, to fine grinding, which is finishing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の深穴内面研削方法では、加工穴の深さが長け
れば長いほど、切込み速度や砥石の切れ味の影響を受け
てしまう結果、ワークが撓んで、加工穴のテーパ量が増
大し(粗研削時)、そのテーパ量を修正するのに時間が
かかっていた(精研削時)。
However, in such a conventional deep hole inner surface grinding method, as the depth of the machined hole becomes longer, the effect of the cutting speed and the sharpness of the grindstone results in the influence of the work. Due to bending, the taper amount of the machined hole increased (at the time of rough grinding), and it took time to correct the taper amount (at the time of fine grinding).

【0005】この点について、図5〜図7を参照して説
明すると以下のようになる。なお、これらの図において
は、理解を容易にするため、変形量が実際の場合よりも
大幅に拡大して示されている。
[0005] This point will be described below with reference to FIGS. 5 to 7. In these figures, the amount of deformation is shown to be greatly enlarged as compared with the actual case in order to facilitate understanding.

【0006】砥石のオシレート運動方向とワークの軸
心が平行な場合:(図5、図6参照) ワークWの鍔部Waが、ワーク主軸台の主軸先端のチャ
ック爪a,a,…によりチャッキング支持された状態で
回転させられるとともに、砥石台の砥石軸bに取り付け
られた砥石Gが、上記ワークWの加工穴Wb内に挿入さ
れて、その内径面Iを研削加工する。cはワークWのチ
ャック時の軸方向位置を決めるストッパを示している。
[0006] The direction of oscillation of the grinding wheel and the axis of the workpiece
When the centers are parallel: (See FIGS. 5 and 6) The flange Wa of the work W is rotated while being chucked and supported by chuck jaws a, a,. The grindstone G attached to the grindstone shaft b of the table is inserted into the machining hole Wb of the work W to grind the inner diameter surface I thereof. c denotes a stopper that determines the axial position of the workpiece W during chucking.

【0007】この場合、砥石Gは、ワークWの軸心Xと
平行な方向へオシレート運動しながら、加工穴Wbの径
方向へ切り込んでいくことから、ワークWには、砥石G
の研削負荷P(切込み方向)が常時作用しているとこ
ろ、ワークWが片持ち状に支持されているため、ワーク
Wの加工状態は、支持側加工時(図5(b) および図6
(a) 参照)と反支持側加工時(図5(a) および図6(b)
参照)では異なり、反支持側加工時において、図示のご
とくワークWが切込み方向へ撓んでしまう(撓み量δ=
PL3 /3EI、L:ワーク長さ、E:縦弾性係数、
I:断面二次モーメント)。
In this case, the grindstone G cuts in the radial direction of the machining hole Wb while oscillating in a direction parallel to the axis X of the work W.
Since the workpiece W is supported in a cantilever manner while the grinding load P (cutting direction) is constantly acting on the workpiece W, the workpiece W is processed at the time of supporting side processing (FIG. 5B and FIG. 6).
(See (a)) and during processing on the non-support side (Fig. 5 (a) and Fig. 6 (b)
The work W is bent in the cutting direction as shown in the drawing at the time of processing on the non-support side (the amount of bending δ =
PL 3 / 3EI, L: work length, E: longitudinal elastic modulus,
I: second moment of area).

【0008】この結果、粗研削完了時において、ワーク
Wの加工面Iには設定切込み量に対して上記撓み量δに
相当する取り残しが発生して、その研削軌跡断面は軸心
Xに対して勾配をもったテーパ形状となる。
As a result, when the rough grinding is completed, a residue corresponding to the above-mentioned bending amount δ with respect to the set depth of cut is generated on the processing surface I of the work W, and the cross section of the grinding locus with respect to the axis X is generated. It has a tapered shape with a gradient.

【0009】したがって、設定された精研仕上げ寸法
(直径)をD0 、設定された粗研加工寸法(直径)をD
1 および上記テーパ状の粗研取残し寸法(直径)をD2
(支持側ではD2 =D1 、反支持側ではD2 <D1 )と
すると、精研削時における実際の取代Dは下式で表され
る。 D=(D0 −D1 +D2 )/2
Therefore, the set fine polishing finish dimension (diameter) is D 0 , and the set rough polishing processing dimension (diameter) is D 0.
1 and the remaining tapered rough grinding dimension (diameter) is D 2
(D 2 = D 1 in the support side, the counter support side D 2 <D 1) When the actual machining allowance D during fine grinding is expressed by the following equation. D = (D 0 −D 1 + D 2 ) / 2

【0010】そして、上記テーパ状の粗研取残し量は、
加工長さが長くなればなるほど多くなり、精研削時にお
ける実際の取代Dは、予め設定された精研取代(設定精
研取代)にこの粗研取残し量が加わって増加し、これが
ため精研削時ひいては研削工程全体の研削時間が大幅に
長くなってしまう。
[0010] The remaining amount of the tapered rough polishing is
The longer the processing length, the greater the amount. The actual machining allowance D at the time of fine grinding increases due to the amount of unfinished polishing remaining added to the preset fine machining allowance (set fine machining allowance). During the grinding, the grinding time of the entire grinding process is greatly lengthened.

【0011】ちなみに、この場合は、砥石Gによる研削
負荷値を下げてワークWの撓みに影響しない値で研削す
ることにより、ワークWの加工穴Wbの円筒度は、オシ
レート運動方向とワーク軸心Xが平行なため良好とな
る。
By the way, in this case, the grinding load value by the grindstone G is reduced to perform grinding with a value that does not affect the deflection of the work W, so that the cylindricity of the machined hole Wb of the work W is determined by the oscillation motion direction and the work axis. It is good because X is parallel.

【0012】砥石のオシレート運動方向とワークの軸
心が傾斜している場合:(図7参照) 上記で述べたように、研削負荷Pにより反支持側加工
時にワークWが撓む。したがって、この撓み量δを考慮
して、図7(a) および図7(b) に示すように、ワークW
の軸心Xを砥石Gのオシレート運動方向に対しθだけ傾
けて研削すると、砥石Gの研削負荷Pは、切込み速度、
砥石Gの切れ味が一定なときで、砥石単位長さ、単位時
間当たりの除去体積が一定のときは変化しないため、粗
研削時あるいは精研削時のそれぞれにおいては、ワーク
Wの加工面Iには設定切込み量に対する取り残しはな
く、その研削軌跡断面は軸心Xに対して平行な円筒形状
となる。
[0012] The direction of oscillation of the grinding wheel and the axis of the workpiece
When the center is inclined : (see FIG. 7) As described above, the work W is bent by the grinding load P during the non-support side processing. Therefore, in consideration of the amount of deflection δ, as shown in FIG. 7A and FIG.
When the axis X of the grinding wheel G is inclined by θ with respect to the direction of the oscillating motion of the grinding wheel G, the grinding load P of the grinding wheel G becomes the cutting speed,
When the sharpness of the grindstone G is constant, and when the unit length of the grindstone and the removal volume per unit time are constant, it does not change. There is no leftover for the set depth of cut, and the cross section of the grinding trajectory has a cylindrical shape parallel to the axis X.

【0013】ところが、粗研削と精研削の変わり目で
は、研削負荷Pが変化するため(一般的に、研削負荷P
は粗研削時>精研削時)、図7(c) に示すように、ワー
クWの軸心Xの傾き角θを、精研削時の研削負荷Pによ
るワークWの撓み量に対応して設定すると、粗研削時に
は、実線で示されるように、ワークWが撓んでしまうこ
とになる。この結果、やはりワークWの加工面Iには設
定切込み量に対して取り残しが発生して、その研削軌跡
断面は軸心Xに対して勾配をもったテーパ形状となる。
However, at the transition between the rough grinding and the fine grinding, the grinding load P changes (generally, the grinding load P
Is the time of coarse grinding> the time of fine grinding), and as shown in FIG. 7 (c), the inclination angle θ of the axis X of the work W is set in accordance with the amount of deflection of the work W due to the grinding load P during fine grinding. Then, at the time of rough grinding, the work W is bent as shown by the solid line. As a result, the machining surface I of the work W is left behind with respect to the set depth of cut, and the grinding locus cross section has a tapered shape having a gradient with respect to the axis X.

【0014】そして、このテーパ状の粗研取残し量(粗
研削、精研削時の研削負荷の差による取り残しテーパ分
/2)δ´により、精研削時における実際の取代Dは、
加工長さが長くなればなるほど多くなり、やはり精研削
時ひいては研削工程全体の研削時間が大幅に長くなって
しまう。
[0014] By the taper-shaped rough polishing unremoved amount (remaining taper amount / 2 due to the difference in grinding load between rough grinding and fine grinding) δ ', the actual allowance D during fine grinding is:
The longer the processing length, the greater the number of times, and also the time required for precision grinding and, consequently, the entire grinding process is greatly increased.

【0015】さらに、精研削完了後のスパークアウト時
においては、ワークWの撓み反力と研削負荷Pの釣り合
いで加工穴Wbの円筒度が決まるところ、スパークアウ
トに入った直後とスパークアウト終了直前では研削負荷
Pが変化しており、また、ドレス直前・直後当砥石の切
れ味が変われば、研削負荷Pも多少変化し、これがた
め、円筒度の管理は困難である。
Further, at the time of spark-out after the completion of fine grinding, the cylindricity of the processing hole Wb is determined by the balance between the deflection reaction force of the work W and the grinding load P, and immediately after entering the spark-out and immediately before the end of the spark-out. In this case, the grinding load P changes, and if the sharpness of the whetstone changes immediately before and after the dressing, the grinding load P also changes slightly, which makes it difficult to control the cylindricity.

【0016】この発明はかかる従来の問題点に鑑みてな
されたものであって、その目的とするところは、深穴内
径面を研削する内面研削盤において、ワークの研削負荷
による撓みを考慮した粗研削により、粗研取り残し量を
軽減して、研削時間を短縮できる工作物の深穴内面研削
方法の提供にある。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide an internal grinding machine for grinding an inner surface of a deep hole, which takes into account the bending caused by the grinding load of a work. An object of the present invention is to provide a method of grinding a deep hole inner surface of a workpiece, which can reduce a residual amount of rough grinding and reduce a grinding time by grinding.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するた
め、本発明の工作物の深穴内面研削方法は、ワークを片
持ち状に回転支持しながら、砥石によりこのワークの深
穴内径面を研削する内面研削において、粗研削工程で、
深穴内径面にワークの軸方向に所定間隔をもって複数回
のプランジ研削を行い、精研削工程で、このプランジ研
削が行われた深穴内径面の全長にわたりオシレート研削
を行うようにしたことを特徴とする。
In order to achieve the above-mentioned object, a method of grinding the inner surface of a deep hole of a work according to the present invention comprises rotating a work in a cantilever manner while rotating the inner surface of the deep hole of the work with a grindstone. In the internal grinding to grind, in the rough grinding process,
Plunge grinding is performed several times on the inner surface of the deep hole at predetermined intervals in the axial direction of the work, and in the fine grinding process, oscillating grinding is performed over the entire length of the inner surface of the deep hole where the plunge grinding was performed. And

【0018】この場合、粗研削時のプランジ研削は、ワ
ークの深穴の加工長さに比較して短い砥石により、ワー
クの軸方向に所定間隔をもって複数回のプランジ加工を
行うとともに、これら各プランジ加工における切込み量
を、研削負荷によるワークの撓み量に比例して順次変化
させるのが好ましい。
In this case, in the plunge grinding at the time of rough grinding, a plurality of plunge workings are performed at predetermined intervals in the axial direction of the work with a grindstone shorter than the working length of the deep hole of the work. It is preferable that the depth of cut in the processing is sequentially changed in proportion to the amount of deflection of the workpiece due to the grinding load.

【0019】さらには、上記各プランジ加工における切
込み量は、粗研削完了時の深穴内径面の研削軌跡断面が
軸方向へほぼ均一なのこぎり歯状になるように設定さ
れ、こののこぎり歯状の研削軌跡断面における山部と谷
部との内径寸法差が、所定の範囲内に収まるように、プ
ランジ加工数と切込み量が設定されるのが好ましい。
Further, the depth of cut in each plunge processing is set so that the cross section of the grinding trajectory of the inner surface of the deep hole at the time of completion of the rough grinding has a substantially uniform sawtooth shape in the axial direction. It is preferable to set the number of plunge processing and the depth of cut so that the inner diameter difference between the peak and the valley in the cross section of the grinding locus falls within a predetermined range.

【0020】[0020]

【作用】本発明によりワークの深穴内面を研削するに際
しては、粗研削時は、深穴内径面に複数回のプランジ研
削を行い、これに続く精研削時は、このプランジ研削が
行われた深穴内径面の全長にわたりオシレート研削を行
う。
When grinding the inner surface of a deep hole according to the present invention, plunge grinding is performed a plurality of times on the inner surface of the deep hole during rough grinding, and this plunge grinding is performed during subsequent fine grinding. Oscillate grinding is performed over the entire length of the inner surface of the deep hole.

【0021】すなわち、砥石の研削負荷が大きく作用す
る粗研削時においては、片持ち状に支持回転されるワー
クに当然撓みが発生するところ、軸方向に順次加工位置
を変えて複数回のプランジ研削を行うとともに、好まし
くは、これら各軸方向位置でのプランジ研削における切
込み量を、研削負荷によるワークの撓み量に比例して順
次変化させることにより、粗研削後のワーク加工径を軸
方向のどの位置においても所定の寸法範囲内に収める。
That is, in the rough grinding in which the grinding load of the grindstone is large, the work supported and rotated in a cantilever form naturally bends. Preferably, the cutting amount in plunge grinding at each of these axial positions is sequentially changed in proportion to the amount of deflection of the work due to the grinding load, so that the workpiece machining diameter after the coarse grinding can be changed in the axial direction. The position is also kept within a predetermined size range.

【0022】これにより、精研削時の実際の取代を必要
最小限度に設定して、精研削時のオシレート研削時間の
可及的短縮を図る。
Thus, the actual machining allowance at the time of the fine grinding is set to a necessary minimum, and the oscillating grinding time at the time of the fine grinding is shortened as much as possible.

【0023】[0023]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0024】本発明に係る深穴内面研削盤を図1に示
し、ワークWを支持回転するワーク主軸台1と砥石Gを
備える砥石台2を主要部として備え、これらがベッド3
上に装置されるとともに、これらを駆動制御する制御装
置4を備えてなる。
FIG. 1 shows a deep hole inner surface grinding machine according to the present invention, which comprises a work headstock 1 for supporting and rotating a work W and a grindstone head 2 provided with a grindstone G as main parts.
It is provided with a control device 4 mounted thereon and for controlling the driving thereof.

【0025】ワーク主軸台1はベッド3の上面に配設さ
れており、そのワーク主軸5が図示しない駆動源に連係
されて回転可能に支持されるとともに、その先端にワー
クWをチャッキング支持するチャック6が装着されてい
る。また、ワーク主軸5の先端には、このチャック6と
の関連で、ワークWの軸方向位置を規定するストッパ7
が設けられている(図2〜図4参照)。
The work headstock 1 is disposed on the upper surface of the bed 3. The work spindle 5 is rotatably supported by a drive source (not shown), and chucks and supports the work W at its tip. A chuck 6 is mounted. Further, a stopper 7 for defining the axial position of the workpiece W in relation to the chuck 6 is provided at the tip of the workpiece spindle 5.
(See FIGS. 2 to 4).

【0026】そして、上記チャック6のチャック爪6
a,6a,…にチャッキングされたワークW(図示の実
施例においては、鍔部Waがチャッキングされる)は、
上記ワーク主軸5により所定の回転数をもって回転支持
される。
Then, the chuck claw 6 of the chuck 6
The workpiece W chucked at a, 6a,... (in the illustrated embodiment, the collar Wa is chucked)
The work main shaft 5 is rotatably supported at a predetermined rotation speed.

【0027】砥石台2は、ベッド3の上面に配設される
第1および第2テーブル10,11上に設けられてい
る。第1テーブル10は、上記砥石台2のワーク主軸5
の軸線方向へ摺動可能に設けられるとともに、図示しな
い例えば油圧シリンダ等の往復駆動源に連係されてい
る。第2テーブル11は、上記ワーク主軸5の軸線方向
に垂直な方向へ摺動可能に設けられるとともに、図示し
ない例えば油圧シリンダ等の往復駆動源に連係されてい
る。
The grindstone table 2 is provided on first and second tables 10 and 11 arranged on the upper surface of the bed 3. The first table 10 is provided with a work spindle 5 of the grinding wheel head 2.
And is linked to a reciprocating drive source such as a hydraulic cylinder (not shown). The second table 11 is provided so as to be slidable in a direction perpendicular to the axial direction of the work spindle 5, and is linked to a reciprocating drive source (not shown) such as a hydraulic cylinder.

【0028】この第2テーブル11の上面に固定される
砥石台2は、その砥石軸(クイル)12が図示しない駆
動源に連係されて回転可能に支持されるとともに、砥石
台2のワーク主軸5の軸線方向つまりワークWの軸線方
向へ突出して設けられており、その先端に砥石Gが装着
されている。この砥石Gとしては、ワークWの加工穴W
bの加工長さ(軸方向長さ)よりも短いものが使用され
る。
The grindstone head 2 fixed to the upper surface of the second table 11 has its grindstone shaft (quill) 12 rotatably supported in association with a drive source (not shown), and has a work spindle 5 of the grindstone head 2. In the axial direction of the workpiece W, that is, in the axial direction of the workpiece W, and a grindstone G is attached to the tip thereof. As the grindstone G, a processing hole W of the work W is used.
A length shorter than the processing length (length in the axial direction) of b is used.

【0029】そして、上記砥石Gは、砥石台2により所
定の回転数をもって回転駆動されるとともに、テーブル
10,11の移動により、ワークWに対してその軸方向
へ移動しながら、その半径方向へ切り込まれる。
The grindstone G is driven to rotate at a predetermined number of revolutions by the grindstone table 2, and is moved in the axial direction with respect to the workpiece W by the movement of the tables 10 and 11, while moving in the radial direction. Be cut.

【0030】制御装置4は、上記ワーク主軸台1と砥石
台2、具体的には、ワーク主軸5、チャック6、テーブ
ル10,11および砥石軸12の各駆動源を相互に同期
させて制御する。制御装置4は、CPU,ROM,RA
MおよびI/Oポート等を備えてなるCNC制御装置で
あって、まず、粗研削により、ワークWの加工穴Wbを
図2(a) に示すような研削軌跡断面(軸方向へほぼ均一
なのこぎり歯状)となるように研削した後、精研削によ
り、図2(b)に示すような円筒面に仕上げる上記各構
成部を制御する構成とされ、具体的には、以下の研削方
法を実行するように構成されている。
The control device 4 controls the work headstock 1 and the grindstone head 2, specifically, the drive sources of the work spindle 5, the chuck 6, the tables 10 and 11 and the grindstone shaft 12 in synchronization with each other. . The control device 4 includes a CPU, ROM, RA
A CNC control device provided with an M and I / O ports and the like. First, a processing hole Wb of a work W is roughly ground to form a grinding trajectory cross section as shown in FIG. After grinding so as to have a saw-tooth shape, the above-described components for finishing the cylindrical surface as shown in FIG. 2B by fine grinding are controlled. Specifically, the following grinding method is used. Configured to run.

【0031】A.粗研削:(図3参照) 砥石Gにより、ワークWの軸方向に所定間隔をもって複
数回のプランジ加工を行う。
A. Rough grinding: (see FIG. 3) Plunge processing is performed a plurality of times at predetermined intervals in the axial direction of the work W by the grindstone G.

【0032】すなわち、図3(a) 〜(b) に示すように、
砥石GをワークWの軸線X方向へ移動させることによ
り、その加工位置を順次変えてプランジ加工を行う。こ
の場合のプランジ加工数nは、一例として、砥石Gの長
さをBとし、ワークの長さをLとすると、B/Lで計算
されて、その計算値を小数点以下を切り上げて得られる
整数値が採用され、図示の実施例においては、3回のプ
ランジ加工を行っている。
That is, as shown in FIGS. 3 (a) and 3 (b),
By moving the grindstone G in the direction of the axis X of the workpiece W, the plunge processing is performed by sequentially changing the processing position. As an example, the plunge machining number n in this case is calculated by B / L, where B is the length of the grindstone G and L is the length of the work, and the calculated value is obtained by rounding up the decimal point. Numerical values are employed, and in the illustrated embodiment, plunge processing is performed three times.

【0033】また、これら各プランジ加工における切込
み量λは、研削負荷PによるワークWの撓み量δに比例
して順次変化させる。
The cutting amount λ in each of these plunge processes is sequentially changed in proportion to the bending amount δ of the work W due to the grinding load P.

【0034】図示の実施例においては、砥石Gの切込み
量(径方向の切込み前進端位置)λは、ワークWの支持
側(鍔部Wa側)から反支持側へいくに従って、加工穴
Wbの内径が大きくなる方向へ徐々にワークWが撓む量
だけ増大を行っている。
In the illustrated embodiment, the cutting amount (radial cutting forward end position) λ of the grindstone G is changed from the support side (the flange Wa side) of the work W to the opposite support side of the work hole Wb. The increase is performed by the amount by which the work W is gradually bent in the direction in which the inner diameter increases.

【0035】具体的には、制御装置4により、砥石Gの
切込みの指令値を逆算して与えている。つまり、各砥石
Gによるプランジ加工位置I,II,IIIにおいて、ワーク
Wのそれぞれの撓み量δ1 (=0)、δ2 、δ3 を予め
把握し、この撓み量に応じた補正値Δ1 (=0)、Δ2
(=δ2 −δ1 )、Δ3 (=δ3 −δ2 )を、所定の切
込み量λ0 に加えた切込みの指令値λ1 (=λ0 )、λ
2 (=λ0 +Δ2 )、λ3 (=λ0 +Δ3 )を与える。
More specifically, the controller 4 gives the command value for the cutting of the grindstone G by back calculation. That is, at the plunge processing positions I, II, and III by the respective grindstones G, the respective bending amounts δ 1 (= 0), δ 2 , and δ 3 of the work W are grasped in advance, and the correction value Δ 1 according to the bending amount is obtained. (= 0), Δ 2
(= Δ 2 −δ 1 ), Δ 3 (= δ 3 −δ 2 ) is added to a predetermined depth of cut λ 0, and a cut command value λ 1 (= λ 0 ), λ
2 (= λ 0 + Δ 2 ) and λ 3 (= λ 0 + Δ 3 ).

【0036】また、本実施例においては、上記各プラン
ジ加工における切込み量λは、粗研削完了時において、
つまり、研削負荷PからワークWが開放されて撓みがな
くなった状態において、加工穴内径面Iの研削軌跡断面
が図2(a) に示すように、軸方向へほぼ均一なのこぎり
歯状になるように設定される。なお、図2〜図4におけ
るワークWの変形量やのこぎり歯状断面は、理解を容易
にするため、実際の場合よりも大幅に拡大して示されて
いる。
In this embodiment, the depth of cut λ in each plunge process is determined by
In other words, in a state where the workpiece W is released from the grinding load P and is no longer bent, the cross section of the grinding trajectory of the inner diameter surface I of the machined hole becomes substantially uniform in the axial direction as shown in FIG. It is set as follows. In addition, the deformation | transformation amount of the workpiece | work W and the sawtooth-shaped cross section in FIGS. 2-4 are greatly expanded compared with the actual case for easy understanding.

【0037】さらに、プランジ加工数nと切込み量も、
上記こぎり歯状の研削軌跡断面における山部(粗研設定
最小寸法部)20と谷部(粗研設定最大寸法部)21と
の内径寸法差が所定の範囲内に収まるように設定されて
いる。一例として、上記谷部21の内径寸法が、精研削
開始時の精研取代の基準内径寸法近傍となるように設定
されている。
Further, the plunge machining number n and the cutting depth are also:
The inner diameter difference between the peak portion (the minimum dimension portion set in the rough grinding) 20 and the valley (maximum dimension portion set in the rough grinding) 21 in the sawtooth-shaped grinding locus cross section is set so as to fall within a predetermined range. . As an example, the inner diameter of the valley 21 is set to be near the reference inner diameter of the allowance for fine polishing at the start of fine grinding.

【0038】B.精研削:(図4参照) 粗研削完了により、図2(a) に示すような研削軌跡断面
となった加工穴内径面Iに対して、砥石Gを、図4に示
すように、ワークWの軸線X方向へ往復移動(オシレー
ト運動)させながら、加工穴Wbの径方向へ所定量だけ
切り込んで精研削を行い、さらに一定時間のスパークア
ウトを経て、図2(b) に示すような円筒面を得る。
B. Fine grinding: (Refer to FIG. 4) After the rough grinding is completed, the grindstone G is applied to the workpiece W as shown in FIG. While reciprocating (oscillating motion) in the direction of the axis X, a predetermined amount of cuts are made in the radial direction of the processing hole Wb to perform fine grinding, and after a predetermined time of spark-out, a cylinder as shown in FIG. Get a face.

【0039】この精研削時の切込み量は、上記のこぎり
歯状の粗研取残し量γ1 と設定精研取代γ2 を研削する
ように設定されている。なお、精研削における研削負荷
Pは粗研削におけるそれよりも小さく、ワークWの撓み
量は無視してよいほど少ない。
The depth of cut at the time of this fine grinding is set so as to grind the above-mentioned saw-tooth-like ungrinding remaining amount γ 1 and the set fine grinding allowance γ 2 . The grinding load P in the fine grinding is smaller than that in the rough grinding, and the amount of deflection of the work W is so small that it can be ignored.

【0040】しかして、以上のような本発明の研削方法
によれば、砥石Gの研削負荷Pが大きく作用する粗研削
時においては、片持ち状に支持回転されるワークWに当
然撓みが発生するところ、軸方向へ順次加工位置を変え
て3回のプランジ研削を行い、しかも、これら各軸方向
位置でのプランジ研削における切込み量を、研削負荷P
によるワークWの撓み量に比例して順次変化させること
により、粗研削後のワーク加工径を軸方向のどの位置に
おいても所定の寸法範囲内に収めることができ、精研削
時の実際の取代を必要最小限度に設定して、精研削時の
オシレート研削時間の可及的短縮を図ることができる。
However, according to the above-described grinding method of the present invention, in the rough grinding in which the grinding load P of the grindstone G acts greatly, the work W supported and rotated in a cantilevered manner naturally generates bending. However, the plunge grinding is performed three times while sequentially changing the processing position in the axial direction, and the cutting amount in the plunge grinding at each axial position is determined by the grinding load P.
The workpiece diameter after rough grinding can be kept within a predetermined dimensional range at any position in the axial direction by sequentially changing in proportion to the amount of bending of the workpiece W due to the actual machining allowance during fine grinding. By setting it to the minimum necessary, it is possible to shorten the oscillating grinding time during precision grinding as much as possible.

【0041】つまり、従来の研削方法における粗研削時
のオシレート研削で発生していたワークの撓みによる取
り残しテーパ量(粗研取残し量)に比べると、本実施例
では、ワークWの長さに関係なく、実際の精研取代を必
要最小限度に設定できるため、精研削時のオシレート研
削に要する時間が、従来に比較して大幅に短縮すること
ができる。。
That is, in the present embodiment, the length of the work W is smaller than the remaining taper amount (rough unremoved amount) due to deflection of the work caused by oscillating grinding at the time of rough grinding in the conventional grinding method. Regardless, the actual allowance for fine grinding can be set to the minimum necessary, so that the time required for oscillating grinding at the time of fine grinding can be significantly reduced as compared with the conventional method. .

【0042】なお、上述した実施例はあくまでも本発明
の好適な実施態様を示すものであって、本発明はこれに
限定されることなく、その範囲内において種々設計変更
可能である。
The above-described embodiment merely shows a preferred embodiment of the present invention, and the present invention is not limited to this, and various design changes can be made within the scope.

【0043】例えば、図示の実施例においては、3回の
プランジ加工を行っているが、ワークWの加工穴Wbの
長さ等に応じて適宜増減可能である。つまり、一般的に
は図示の実施例におけるような計算式により、プランジ
加工数nを算出するが、必ずしもこれに限定されず、要
するに、切込み量との関係で粗研削後の精研削時間が最
小となるように適宜設定可能である。
For example, in the illustrated embodiment, the plunge processing is performed three times. However, the plunge processing can be appropriately increased or decreased according to the length of the processing hole Wb of the work W or the like. That is, in general, the number of plunge processings n is calculated by a calculation formula as in the illustrated embodiment, but is not necessarily limited to this. In short, the fine grinding time after the coarse grinding is minimized in relation to the depth of cut. Can be set appropriately so that

【0044】したがって、粗研削後の加工穴Wbの内径
面Iにおける研削軌跡断面の形状寸法も図示の実施例に
限定されることなく、種々設計変更可能である。要する
に、粗研削完了時におけるこぎり歯状の粗研取残し量γ
1 の減小による精研削時間の短縮と、粗研削時間の研削
時間全体への影響とを考慮して、最適な研削軌跡断面の
形状寸法を得るようにする。
Therefore, the shape and dimensions of the cross section of the grinding trajectory on the inner diameter surface I of the processed hole Wb after the rough grinding are not limited to the illustrated embodiment, but can be variously changed. In short, the unsawed amount of sawtooth-like rough grinding after the completion of rough grinding γ
An optimum grinding locus cross-sectional shape and size are obtained in consideration of the reduction of the precision grinding time due to the reduction of 1 and the effect of the rough grinding time on the overall grinding time.

【0045】また、図示の実施例においては、支持側で
ある鍔部Waが砥石Gに対して奥側に位置するため、砥
石Gの切込み量が図面右側へいくに従って増大されてい
るが、図6のように、鍔部Waが砥石G側にくる状態で
支持される場合には、砥石Gの切込み量が図面右側へい
くに従って減小されることとなる。
In the illustrated embodiment, since the flange Wa, which is the support side, is located on the back side with respect to the grindstone G, the cut amount of the grindstone G is increased toward the right side of the drawing. As shown in FIG. 6, when the flange Wa is supported in the state of coming to the grindstone G side, the cut amount of the grindstone G is reduced as going to the right side in the drawing.

【0046】さらに、ワークWは図示のような鍔付きワ
ークに限られず、他の同様な深穴を有する円筒状ワーク
も研削可能である。
Further, the work W is not limited to a work with a flange as shown in the figure, and other similar cylindrical work having a deep hole can be ground.

【0047】また、図示の実施例においては、粗研削工
程と精研削工程を1台の内面研削盤により行っている
が、例えば多量生産ライン等において、粗研削工程と精
研削工程の各工程を、それぞれ別個の内面研削盤により
行うようにすることも可能である。
Further, in the illustrated embodiment, the rough grinding step and the fine grinding step are performed by one internal grinding machine. For example, in a mass production line or the like, each step of the rough grinding step and the fine grinding step is performed. It is also possible to use separate internal grinding machines.

【0048】[0048]

【発明の効果】以上詳述したように、本発明によれば、
ワークの深穴内面を研削するに際して、砥石の研削負荷
が大きく作用する粗研削工程では、深穴内径面にワーク
の軸方向に所定間隔をもって複数回のプランジ研削を行
い、精研削工程では、このプランジ研削が行われた深穴
内径面の全長にわたりオシレート研削を行うように構成
したから、粗研取り残し量が従来に比較して大幅に軽減
されて、精研削時の実際の取代が必要最小限度に設定で
き、精研削時のオシレート研削時間の可及的短縮さらに
は、研削時間全体の短縮が可能となる。
As described in detail above, according to the present invention,
When grinding the inner surface of the deep hole of the work, in the rough grinding process in which the grinding load of the grindstone acts greatly, plunge grinding is performed multiple times at predetermined intervals in the axial direction of the work on the inner surface of the deep hole. Oscillate grinding is performed over the entire length of the inner surface of the deep hole where plunge grinding has been performed, so the amount of unremoved roughing is significantly reduced compared to the conventional method, and the actual machining allowance during fine grinding is minimized. , And the oscillating grinding time at the time of precision grinding can be reduced as much as possible, and further, the entire grinding time can be reduced.

【0049】特に、片持ち状に支持回転されるワークに
は当然撓みが発生するところ、各軸方向位置でのプラン
ジ研削における切込み量を、研削負荷によるワークの撓
み量に比例して順次変化させることにより、粗研削後の
ワーク加工径を軸方向のどの位置においても所定の寸法
範囲内に収めることができ、より効率的な精研削が行え
る。
In particular, although a work that is supported and rotated in a cantilever shape naturally undergoes bending, the cutting amount in plunge grinding at each axial position is sequentially changed in proportion to the amount of bending of the work due to the grinding load. Thus, the workpiece diameter after rough grinding can be kept within a predetermined dimension range at any position in the axial direction, and more efficient fine grinding can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る深穴内面研削盤を示す
概略正面図である。
FIG. 1 is a schematic front view showing a deep hole inner surface grinding machine according to one embodiment of the present invention.

【図2】同深穴内面研削盤による本発明の深穴内面研削
方法を説明するための平面断面図で、図2(a) はプラン
ジ研削による粗研削完了時のワークの加工内径面の状態
を示し、図2(b) はオシレート研削による精研削完了時
のワークの加工内径面の状態を示す。
FIG. 2 is a plan sectional view for explaining a deep hole inner surface grinding method of the present invention using the same deep hole inner surface grinding machine, and FIG. 2 (a) shows a state of a processing inner diameter surface of a workpiece when rough grinding by plunge grinding is completed. FIG. 2B shows a state of the inner diameter surface of the workpiece when the precision grinding by the oscillating grinding is completed.

【図3】同深穴内面研削方法における粗研削時のプラン
ジ研削の手順を説明するための図2に対応する平面断面
図である。
FIG. 3 is a plan sectional view corresponding to FIG. 2 for illustrating a procedure of plunge grinding during rough grinding in the deep hole inner surface grinding method.

【図4】同深穴内面研削方法における精研削時のオシレ
ート研削を説明するための図2に対応する平面断面図で
ある。
FIG. 4 is a plan sectional view corresponding to FIG. 2 for illustrating oscillating grinding at the time of precision grinding in the deep hole inner surface grinding method.

【図5】従来の深穴内面研削方法における粗研削時のオ
シレート研削の状態を説明するための平面断面図で、図
5(a) はワークの反支持側を研削するときの状態を示
し、図5(b) はワークの支持側を研削するときの状態を
示す。
FIG. 5 is a plan sectional view for explaining a state of oscillating grinding at the time of rough grinding in a conventional deep hole inner surface grinding method, and FIG. 5 (a) shows a state of grinding a non-support side of a work; FIG. 5B shows a state in which the supporting side of the workpiece is ground.

【図6】同じく、従来の他の深穴内面研削方法における
粗研削時のオシレート研削の状態を説明するための平面
断面図で、図6(a) はワークの支持側を研削するときの
状態を示し、図6(b) はワークの反支持側を研削すると
きの状態を示す。
6 is a plan sectional view for explaining a state of oscillating grinding at the time of rough grinding in another conventional deep hole inner surface grinding method, and FIG. 6 (a) is a state when grinding the support side of a work; FIG. 6B shows a state in which the opposite side of the work is ground.

【図7】同じく、従来の他のもう一つ深穴内面研削方法
における粗研削時のオシレート研削の状態を説明するた
めの平面断面図で、図7(a) はワークの支持側を研削す
るときの状態を示し、図7(b) はワークの反支持側を研
削するときの状態を示し、図7(c) はワークの支持角度
を精研削時の研削負荷によるワークの撓み量に対応して
設定した場合の、ワークの研削状態を示す。
FIG. 7 is a plan sectional view for explaining a state of oscillating grinding at the time of rough grinding in another conventional deep hole inner surface grinding method. FIG. FIG. 7 (b) shows a state in which the opposite side of the work is ground, and FIG. 7 (c) shows a state in which the support angle of the work corresponds to the amount of bending of the work due to the grinding load during fine grinding. This shows the grinding state of the work when set as follows.

【符号の説明】[Explanation of symbols]

W ワーク G 砥石 Wb ワークの加工穴(深穴) I 加工穴の内径面 1 ワーク主軸台 2 砥石台 4 制御装置 5 ワーク主軸 6 チャック 10,11 テーブル 12 砥石軸 20 加工穴内径面の山部(粗研設定最小
寸法部) 21 加工穴内径面の谷部(粗研設定最大
寸法部) γ1 粗研取残し量 γ2 設定精研取代 λ プランジ加工における切込み量
W Work G Whetstone Wb Work hole (deep hole) of work I Inner diameter surface of work hole 1 Work headstock 2 Grindstone 4 Control device 5 Work spindle 6 Chuck 10, 11 Table 12 Grinding wheel shaft 20 Crest of inner diameter surface of work hole crude Labs setting minimum dimension part) valleys 21 machined hole inner surface (rough Labs setting maximum dimension unit) depth of cut in the gamma 1 crude Labs removal failure amount gamma 2 set fine Labs allowance λ plunging

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 工作物を片持ち状に回転支持しながら、
砥石によりこの工作物の深穴内径面を研削する内面研削
において、 粗研削工程で、深穴内径面に工作物の軸方向に所定間隔
をもって複数回のプランジ研削を行い、精研削工程で、
このプランジ研削が行われた深穴内径面の全長にわたり
オシレート研削を行うようにし、 前記粗研削時のプランジ研削は、工作物の深穴の加工長
さに比較して短い砥石により、工作物の軸方向に所定間
隔をもって複数回のプランジ加工を行うとともに、これ
ら各プランジ加工における切込み量を、研削負荷による
工作物の撓み量に比例して順次変化させる ことを特徴と
する工作物の深穴内面研削方法。
1. While rotating a workpiece in a cantilever manner,
In the internal grinding to grind the inner diameter surface of the deep hole of this work with a grindstone, in the rough grinding process, plunge grinding is performed multiple times at predetermined intervals in the axial direction of the work on the inner diameter surface of the deep hole, and in the fine grinding process,
The plunging grinding over the entire length of the deep hole inner surface made to perform oscillating grinding, the plunge grinding at rough grinding, machining length of deep holes in the workpiece
A relatively short whetstone allows a predetermined distance in the axial direction of the workpiece.
Perform plunge machining multiple times with a gap
The depth of cut in each plunge process depends on the grinding load.
A deep hole inner surface grinding method for a workpiece, wherein the depth of the workpiece is sequentially changed in proportion to the amount of deflection of the workpiece.
【請求項2】 上記各プランジ加工における切込み量
は、粗研削完了時の深穴内径面の研削軌跡断面が軸方向
へほぼ均一なのこぎり歯状になるように設定され、 こののこぎり歯状の研削軌跡断面における山部と谷部と
の内径寸法差が、所定の範囲内に収まるように、プラン
ジ加工数と切込み量が設定されることを特徴とする請求
項1記載の工作物の深穴内面研削方法。
2. The depth of cut in each plunge process is set so that the grinding trajectory cross-section of the inner surface of the deep hole at the time of completion of rough grinding has a substantially uniform saw-tooth shape in the axial direction. claims inner diameter difference between the crests and valleys in the trajectory cross section so as to fall within a predetermined range, wherein the plunging speed and depth of cut is set
Item 6. The method for grinding a deep hole inner surface of a workpiece according to Item 1 .
【請求項3】 精研削時のオシレート研削は、工作物の
深穴の加工長さに比較して短い砥石を、深穴の軸方向へ
オシレート運動させながら、深穴の径方向へ所定量だけ
切り込んで行い、このときの切込み量は、上記のこぎり
歯状の粗研取残し量と設定精研取代を研削するように設
定されていることを特徴とする請求項2に記載の工作物
の深穴内面研削方法。
3. The oscillating grinding at the time of fine grinding is performed by oscillating a grinding wheel, which is shorter than the machining length of the deep hole of the workpiece, in the axial direction of the deep hole, and moving the grinding stone by a predetermined amount in the radial direction of the deep hole. 3. The depth of the workpiece according to claim 2 , wherein the cutting amount is set so as to grind the uncut amount of the saw-toothed rough grinding and the set fine grinding allowance. Hole inner surface grinding method.
JP6191937A 1994-07-22 1994-07-22 Deep hole inner surface grinding method for workpieces Expired - Fee Related JP3071640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6191937A JP3071640B2 (en) 1994-07-22 1994-07-22 Deep hole inner surface grinding method for workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6191937A JP3071640B2 (en) 1994-07-22 1994-07-22 Deep hole inner surface grinding method for workpieces

Publications (2)

Publication Number Publication Date
JPH0839404A JPH0839404A (en) 1996-02-13
JP3071640B2 true JP3071640B2 (en) 2000-07-31

Family

ID=16282941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6191937A Expired - Fee Related JP3071640B2 (en) 1994-07-22 1994-07-22 Deep hole inner surface grinding method for workpieces

Country Status (1)

Country Link
JP (1) JP3071640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554626A (en) * 2011-11-16 2012-07-11 昆山上达精密配件有限公司 Lathe for workpiece with inner bore
CN103042447A (en) * 2011-10-17 2013-04-17 东港威远油泵油嘴有限公司 Numerical control face grinding machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275099B (en) * 2011-04-20 2013-05-08 上海机床厂有限公司 Full-automatic grinding method of vertical internal and external grinding machine
CN102229103B (en) * 2011-05-18 2013-01-23 昆山长鹰硬质合金有限公司 Inner circle small-hole grinding machine
JP5985905B2 (en) * 2012-07-02 2016-09-06 株式会社ミツトヨ Wire polishing processing apparatus and wire polishing processing method
CN107962490B (en) * 2017-11-30 2020-03-20 大连理工大学 Polishing device and method for composite material large-length-diameter-ratio cylindrical discontinuous inner wall coating
CN108581778B (en) * 2018-04-03 2021-11-30 山东中正钢管制造有限公司 Take steel pipe grinding device of waste recovery
CN110815040A (en) * 2019-11-18 2020-02-21 中国航发哈尔滨轴承有限公司 High-precision internal grinding machine electric spindle grinding wheel connecting rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042447A (en) * 2011-10-17 2013-04-17 东港威远油泵油嘴有限公司 Numerical control face grinding machine
CN102554626A (en) * 2011-11-16 2012-07-11 昆山上达精密配件有限公司 Lathe for workpiece with inner bore

Also Published As

Publication number Publication date
JPH0839404A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
US6319097B1 (en) Grinding methods and apparatus
JP4940729B2 (en) Workpiece grinding method and grinding apparatus
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
JP3878519B2 (en) Grinding method
US20060240746A1 (en) System and method for precision machining of high hardness gear teeth and splines
JP2008073838A (en) Traverse grinding device and grinding method
JPH07121502B2 (en) How to cylindrically grind a workpiece
JP3848779B2 (en) Internal grinding machine
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP5300939B2 (en) Machining method using finishing tools
JPH09254011A (en) Hole forming device
JP2008137094A (en) Grinding method for workpiece such as material for long drill
JP3643604B2 (en) Grinding method in internal grinding machine
JPS62282852A (en) Grinding method
US20210078090A1 (en) Method for grinding a bevel gear
JP4482632B2 (en) Multistage feed grinding method for end face thrust grinding
JPH0773824B2 (en) Method for correcting the grinding surface of the grinding wheel
JP2001225249A (en) Grinding method
JP2002059335A (en) Working fluid feeder, and working device
JP2542084B2 (en) Method for correcting the grinding surface of the grinding wheel
JP2010099805A (en) Grinding method and grinder
JPH04240061A (en) Method and device for machining small hole internal surface
JP3322127B2 (en) Vertical NC grinder
JP4699022B2 (en) Honing method
JPS6161754A (en) Grinding method using angular grinding wheel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000418

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees