JP4482632B2 - Multistage feed grinding method for end face thrust grinding - Google Patents

Multistage feed grinding method for end face thrust grinding Download PDF

Info

Publication number
JP4482632B2
JP4482632B2 JP2000059365A JP2000059365A JP4482632B2 JP 4482632 B2 JP4482632 B2 JP 4482632B2 JP 2000059365 A JP2000059365 A JP 2000059365A JP 2000059365 A JP2000059365 A JP 2000059365A JP 4482632 B2 JP4482632 B2 JP 4482632B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
grinding wheel
cut
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000059365A
Other languages
Japanese (ja)
Other versions
JP2001246535A (en
Inventor
浩 森田
良平 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2000059365A priority Critical patent/JP4482632B2/en
Publication of JP2001246535A publication Critical patent/JP2001246535A/en
Application granted granted Critical
Publication of JP4482632B2 publication Critical patent/JP4482632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、段部端面を有する円筒形状の工作物の端面を、工作物の加工幅より小さい幅の砥石車により研削加工する端面スラスト研削の多段送り研削加工方法に関する。
【0002】
【従来の技術】
段部端面を有する円筒形状の工作物の外周面と端面を研削加工する場合、従来は、アンギユラ砥石を工作物軸線と斜交する行路沿いに進退させるようにしたアンギユラ研削盤により加工していた。
その研削加工方法は、図5に示されるように、工作物Wの軸線Owに斜交する砥石車Gの行路50は工作物軸線0wと鋭角度θをなしており、砥石車Gの外周面には、工作物軸線Owと平行で工作物Wの円筒部Waの研削用の第1研削面Gaと、これと直交し工作物Wの段部端面Wbの研削用の第2研削面Gbとが形成されており、第1研削面Gaによって工作物Wの円筒部Waを、第2研削面Gbにより段部の端面Wbを研削するように構成されている。
このアンギユラ研削盤において砥石車Gの第2研削面Gbよりも広幅の段部端面Wbを工作物軸線Owと直角に研削する場合、砥石車Gを矢印のように工作物軸線Owと斜交する行路50に沿つて切込む切込動作と、砥石車Gの端面側の第2研削面Gbを端面Wbから遠ざける方向へ移動させる工作物Wの位置補正動作とを繰返して段部端面Wbを外側から段階的に研削するようにしている。すなわち、アンギュラ砥石Gの角点Pが矢印に沿って移動するように砥石車G及び工作物Wを制御することにより端面部の研削加工を行うものである。
【0003】
また、図6に示すように、前記アンギユラ研削盤において、工作物Wを軸方向に移動し、前記砥石車Gの第2研削面Gbに前記工作物Wの段部端面Wbを所定量切込む動作と、前記砥石車Gを前記行路50に沿いに後退させ前記第2研削面Gbを前記段部端面Wbから遠ざけるとともに前記第2研削面Gbの工作物半径方向位置を前記研削面の幅内で外側へずらす動作とを繰返し、前記段部端面Wbを内周部より外周に向かって段階的に研削することも行われている。すなわち、アンギュラ砥石Gの角点Pが内方から外方へ矢印に沿って移動するように砥石車G及び工作物Wを制御することにより端面部の研削加工を行うものである。
【0004】
【発明が解決しようとする課題】
しかしながら、前記アンギユラ研削盤における端面研削加工方法では、砥石車と工作物とが階段状に移動するので、加工面が階段状になりやすく、平面に仕上げるには、別途仕上げ研削が必要となり加工時間が長くなる欠点がある。
また、端面加工の軸方向の取り代が多い場合には、前記研削加工方法においては、砥石車の研削面の摩耗を防ぐため、1回の研削量は多くできず、図5、図6に点線で示されるように、軸方向に分割して加工しなければならず、加工時間が長くなる等の欠点があった。
【0005】
そこで、本発明の目的は、上記問題点を解消し、軸方向の切込みを多段送りとすることにより、研削抵抗を低く抑え、研削面の研削焼けが生じず、トータルの研削加工時間を短縮できる端面スラスト研削の多段送り研削加工方法を提供することである。
【0006】
【課題を解決するための手段】
前記課題を解決するために、本発明の端面スラスト研削の多段送り研削加工方法は、回転する段部端面を有する円筒形状の工作物の端面を、工作物径方向外周から内周に向かって、工作物軸線に対して垂直方向、軸線方向に工作物と砥石車との移動を複数組合わせ、前記砥石車の外周研削面を用いて工作物軸線方向に対して垂直方向への切込み研削加工し、前記砥石車の側面研削面を用いて工作物軸線方向への切込み研削加工する端面スラスト研削において、工作物の径方向外周から内周に向かって、工作物の軸線方向への切込みを、多段に切込み研削送りし、砥石車の側面接触面積を分割させ、少なくとも工作物の軸線方向の切り込み量を、加工開始段階の工作物径方向外周側よりも加工終了段階の工作物径方向内周側の方を深くしたことを特徴とするものである。
【0008】
更に、本発明の端面スラスト研削の多段送り研削加工方法は、前記特徴に加え、前記多段の切込み研削送りにおいて、各段の軸線方向の切込み毎に、砥石車を工作物の端面部外の位置まで戻すことを特徴とするものである。
【0009】
更に、本発明の端面スラスト研削の多段送り研削加工方法は、前記特徴に加え、工作物の軸線方向切込み研削と工作物の径方向切込み研削とを順次に行うことを特徴とするものである。
【0010】
【発明の実施の形態】
本発明の端面スラスト研削の多段送り研削加工方法は、回転する段部端面を有する円筒形状の工作物の端面を、工作物径方向外周から内周に向かって、工作物軸線に対して垂直方向、軸線方向に工作物と砥石車との移動を複数組合わせ、前記砥石車の外周研削面を用いて工作物軸線方向に対して垂直方向への切込み研削加工し、前記砥石車の側面研削面を用いて工作物軸線方向への切込み研削加工する端面スラスト研削において、工作物の径方向外周から内周に向かって、工作物の軸線方向への切込みを、多段に切込み研削送りし、砥石車の側面接触面積を分割させたことを特徴とするものであり、工作物端面をスラスト研削するに当たり、多段研削送りとしたので砥石車の側面接触面積を分割させることができ、研削抵抗を低く抑えることができ、研削面の研削焼けが生じることがなく、砥石車の急激な摩耗を防止することができる。多段送りの段階は適宜数とすることができ、夫々の研削段階の研削送り速度を最適に設定することにより研削効率を上げることができる。
【0011】
また、本発明の端面スラスト研削の多段送り研削加工方法における多段の切込み研削送りは、少なくとも工作物の軸線方向の切り込み量を、加工開始段階の工作物径方向外周側よりも加工終了段階の工作物径方向内周側の方を深くすることにより、加工終了段階としての仕上げ研削時の研削量を少なくすることができ、トータルの研削時間が短縮できる。
【0012】
更に、本発明の端面スラスト研削の多段送り研削加工方法における多段の切込み研削送りは、各段の軸線方向の切込み毎に、砥石車を工作物の端面部外の位置まで戻すことにより、切込み毎に砥石車を工作物加工面から離間させているので、工作物研削部分へのクーラント液の入り込みが十分となり、研削抵抗がさらに減少し、研削焼けを防ぐことができると共に、戻し工程は早戻しできるので、結果的に加工時間の短縮にもなる。
【0013】
更にまた、本発明の端面スラスト研削の多段送り研削加工方法は、工作物の軸線方向切込み研削と工作物の径方向切込み研削とを順次に行うことにより、砥石車の側面接触面積を分割させることができ、研削抵抗を低く抑えることができると共に、砥石車の側面研削面と外周研削面を交互に使用することができるので、砥石車の寿命を延ばすことができる。
【0014】
【実施例】
以下本発明の実施例を図面に基づいて説明する。
図1は本発明の端面スラスト研削の多段送り研削加工方法が実施される研削加工装置を示し、1は研削加工装置のベッドであり、このベッド1上には砥石台2がX軸線方向(工作物軸に直交する方向)に進退可能に載置されている。前記砥石台2には砥石車3が回転可能に軸承されている。この砥石車3は、図2で示すように、薄幅であり、ダイヤモンド又はCBNのような超硬質砥粒の砥石層を備えており、砥石層は工作物Wの回転軸線Owに対し平行な外周研削面3bと、その外周研削面と直角をなす側面研削面3aが設けられている。4は砥石回転用モータであり、これによって砥石車3は回転駆動される。5はエンコーダ5aが連結されたX軸サーボモータであり、前記砥石台2をX軸線方向に進退送り移動する。
【0015】
前記ベッド1上の砥石台2の前方にはエンコーダ9aが連結されたZ軸サーボモータ9によってZ軸方向(工作物W軸線方向)に移動するテ一ブル6が載置され、このテーブル6上には主軸台7と心押台8とが対向して設置されている。前記主軸台7の主軸センタ7aと心押台8の心押センタ8aとにフランジ部WFを有する工作物Wが支承され、主軸台7に内蔵されている主軸駆動モータによって回転駆動されるようになっている。
【0016】
11は前記研削加工装置を制御する数値制御装置である。この数値制御装置11は、中央処理装置12と、データの入力を行うキ一ボード,データの表示を行うCRT表示装置を備えている入出力装置14と接続され、かつ前記中央処理装置12と接続しているインタフェース13と、前記中央処理装置12と接続しているメモリ15と、前記中央処理装置12と接続され、かつモータ駆動回路17,18と接続されているインタフェース16とから構成されている。
【0017】
前記メモリ15には、加工プログラム及び数値制御プログラムを実行するのに必要な制御データが記憶されている。
前記一方のモータ駆動回路17はX軸サーボモータ5に接統されており、X軸サーボモータ5のエンコーダ5aは前記モータ駆動回路17とインタフェ−ス16に接続している。
【0018】
また、他方のモータ駆動回路18はZ軸サーボモータ9に接続されており、Z軸サーボモータ9のエンコーダ9aは前記モータ駆動回路18とインタフェス16に接続している。
【0019】
前記X軸サーボモータ5に連結されているエンコーダ5aとZ軸サーボモータ9に連結されたエンコーダ9aによって砥石台2,テ一ブル6の絶対位置が検出されるようになっており、検出信号はモータ駆動回路17,18に帰還されて位置のフィードバック制御が行われると共に、数値制御装置11に入力される。
【0020】
そこで、工作物Wのフランジ部WFの段部端面を複数の段階に分けてスラスト研削する本発明の端面スラスト研削の多段送り研削加工方法の第1実施例を図2により説明する。
以後説明する研削加工方法の工程は、その経路のプログラムを予め前記数値制御装置11のメモリ15に記憶させておき、そのプログラムに基づいて、X軸サーボモータ5及びZ軸サーボモータ9を制御することにより砥石車3をX軸方向に、工作物WをZ軸方向に適宜進退させることにより所望の研削加工を行うことになる。
【0021】
まず、図2の状態から工作物Wを工作物軸線方向(Z軸方向)に切込み研削送りすることにより砥石車3の側面研削面3aで部分(1)を研削する。そして、砥石車3の角点P0が、P1点に到達するすることにより部分(1)の研削を終了する。次に、工作物Wのその位置で、砥石車3を工作物軸線に垂直方向(X軸方向)に砥石車3の角点P0がP1点からP2点に到達するまで切込み研削送りすることにより、砥石車3の外周研削面3bにより、部分(2)を研削する。ついで、砥石車3はそのままの位置で、工作物WをZ軸方向に砥石車3の角点P0がP2点からP3点に至るまで切込み研削送りし、砥石車3の側面研削面3aにより部分(3)を研削する。更に、工作物Wはそのままの位置で砥石車3の角点P0がP3点からP4点に到達するまで砥石車3をX軸方向に切込み研削送りし、砥石車3の外周研削面3bにより部分(4)を研削する。なお、この場合工作物Wの部分(4)の加工幅は砥石車3の幅よりも小さいことが条件となる。さらに、砥石車3はそのままの位置で、砥石車3の角点P0がP4点からP5点に至まで、工作物WをZ軸方向に切込み研削送りし、砥石車3の側面研削面3aにより部分(5)の研削を行う。この際、工作物Wの段部の円筒外周面は、砥石車3の外周研削面3bにより仕上げ研削される。したがって、仕上げ研削が行われる部分の研削送りは他の研削送りと比較して遅い送り速度に設定される。砥石車3の角点P0がP5点に到達した時点でスパークアウト研削を行い所定の研削作業を終了し、砥石車3をX軸方向に退避させる。この際、工作物WをZ軸方向に僅かに逃がし、砥石車3が工作物の加工済端面に接触しないようにして、砥石車3をX軸方向に退避するようにしても良い。
【0022】
以上のように、工作物端面をスラスト研削するに当たり、その研削部分を(1)〜(5)に分割し、多段送り研削加工をするようにしたものである。その内、スラスト研削は(1)、(3)、(5)の3段階で研削加工をしているが、その段階は必要に応じて4段階加工とする等適宜に決めることができる。工作物端面をスラスト研削するに当たり、多段送りとしたので砥石車の側面接触面積を分割させることができ、研削抵抗を低く抑えることができ、夫々の研削段階の研削送り速度を最適に設定することにより研削効率を上げることができ、加工時間が短縮できる。また、研削抵抗を低く抑えることができるので、研削面の研削焼けが生じることがなく、砥石車の急激な摩耗を防止することができる。
更にこの場合の多段送りは、工作物の軸線方向切込み研削送りと、工作物軸線と垂直方向の切込み研削送りとを交互に繰り返しているので、砥石車の側面研削面と、外周研削面とを交互に使用することになり、砥石車を有効に使用するので、砥石車の寿命を延ばすことができる。
【0023】
次に、本発明の端面スラスト研削の多段送り研削加工方法の第2実施例を図3により説明する。
まず、図3の状態から工作物WをZ軸方向に切込み研削送りすることにより砥石車3の側面研削面3aで部分(1)を研削する。そして、砥石車3の角点P0が、P1点に到達するすることにより部分(1)の研削を終了し、一旦、点線矢印のように砥石車3を工作物の端面よりZ軸方向に逃がし、その状態で砥石車3をX軸方向へ一定量送り込む。その状態で工作物Wを再びZ軸方向へ切込み研削送りし、部分(1)と同様に、砥石車3の角P0点がP2点に到達するまで切込み研削送りをすることにより、砥石車3の側面研削面3aにより、部分(2)を研削する。ついで、前記同様に一旦、点線矢印のように工作物WをZ軸方向に移動させることにより砥石車3を工作物Wの端面より逃がし、その状態で砥石車3をX軸方向へ工作物Wの仕上げ寸法まで送り込む。その状態で工作物WをZ軸方向へ切込み研削送りし、部分(1)と同様に、砥石車3の角点P0がP3点に到達するまで切込み研削送りをすることにより、砥石車3の側面研削面3aにより、部分(3)を研削すると同時に、砥石車3の外周研削面3bで工作物段部の外周面の仕上げ研削を行う。砥石車3の角点P0がP3点に到達した時点でスパークアウト研削を行い所定の研削作業を終了し、工作物WをZ軸方向に点線矢印に沿って僅かに逃がし、砥石車3が工作物加工済端面に接触しないようにして、砥石車3をX軸方向に退避させる。
【0024】
この方法では、砥石車の工作物の径方向への切込み研削送りは行われず、工作物の軸線方向への切込み研削送りを(1)、(2)、(3)の3段階に分割して行っており、その切込み量は、(1)から(3)へと順次深くなっている。図2の場合と同様に分割は3段階に限られるものではない。
この方法では、前記図2の研削方法の作用効果に加え、端面のスラスト研削の工作物軸線方向への切込み研削を3段階に分割し、なおかつ、その切込み研削毎に砥石車3を工作物加工面から離間させているので、工作物研削部分へのクーラント液の入り込みが十分となり、研削抵抗がさらに減少し、研削焼けを防ぐことができると共に、結果的に加工時間の短縮にもつながる。
【0025】
図4に示すものは、前記第2実施例の変形例(第3実施例)である。
図3に示した第2実施例と同様に、砥石車の工作物の径方向(X軸方向)への切込み研削送り加工は行われず、工作物の軸線方向への切込み研削送りを(1)、(2)、(3)の3段階に分割して行っている。しかし、その軸線方向への切込み量は、加工開始段階の工作物径方向外周側の(1)よりも加工終了段階の工作物径方向内周側の(3)の方を深くなっているが、工作物径方向中間部の(2)の切込み量は(1)、(3)よりも浅くなっている。
第3実施例においては、研削部分(1)及び研削部分(2)のX軸方向の研削量(取り代)を多くすることにより、仕上げ研削である研削部分(3)の研削量を少なくしたことにより、研削送り速度を速くできる研削部分(1)及び研削部分(2)の研削量を多くし、研削送り速度の遅い仕上げ研削加工である研削部分(3)の研削量を少なくすることができ、トータルの研削加工時間の更なる短縮が図れる。
【0026】
【発明の効果】
本発明の端面スラスト研削の多段送り研削加工方法は、工作物の径方向外周から内周に向かって、工作物の軸線方向への切込みを、多段に切込み研削送りし、砥石車の側面接触面積を分割させたものであり、工作物端面をスラスト研削するに当たり、多段送りとしたので砥石車の側面接触面積を分割させることができ、研削抵抗を低く抑えることができ、研削面の研削焼けが生じることがなく、砥石車の急激な摩耗を防止することができる。多段送りの段階の数は任意とすることができ、夫々の研削段階の研削送り速度を最適に設定することにより研削効率を上げることができる。
【0027】
また、多段の切込み研削送りにおける工作物の軸線方向の切込み量を、加工開始段階の工作物径方向外周側よりも加工終了段階の工作物径方向内周側の方を深くすることにより、加工終了段階としての仕上げ研削時の研削量を少なくすることができ、トータルの研削時間が短縮できる。
【0028】
更に、多段の切込み研削送りにおける各段の軸線方向の切り込み毎に、砥石車を工作物の端面部外の位置まで戻すことにより、切込み毎に砥石車を工作物加工面から離間するので、工作物研削部分へのクーラント液の入り込みが十分となり、研削抵抗がさらに減少し、研削焼けを防ぐことができると共に、戻し工程は早戻しできるので、結果的に加工時間の短縮にもなる。
【0029】
更にまた、本発明の端面スラスト研削の多段送り研削加工方法は、工作物の軸線方向切込み研削と工作物の径方向切込み研削とを順次に行うことにより、砥石車の側面接触面積を分割させることができ、研削抵抗を低く抑えることができると共に、砥石車の側面研削面と外周研削面を交互に使用することができるので、砥石車の寿命を延ばすことができる。
【図面の簡単な説明】
【図1】本発明の端面スラスト研削の多段送り研削加工方法を適用する研削加工装置とその数値制御装置を示す平面図。
【図2】本発明の端面スラスト研削の多段送り研削加工方法の1実施例を示す図。
【図3】本発明の端面スラスト研削の多段送り研削加工方法の他の実施例を示す図。
【図4】本発明の端面スラスト研削の多段送り研削加工方法の他の実施例を示す図。
【図5】従来の端面の研削加工方法の1例を示す図。
【図6】従来の端面の研削加工方法の1例を示す図。
【符号の説明】
1: ベッド
2: 砥石台
3: 砥石車
3a: 砥石車の側面研削面
3b: 砥石車の外周研削面
5: X軸サーボモータ
6: テーブル
9: Z軸サーボモータ
11: 数値制御装置
W: 工作物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multistage feed grinding method for end face thrust grinding in which an end face of a cylindrical workpiece having a stepped end face is ground by a grinding wheel having a width smaller than a machining width of the workpiece.
[0002]
[Prior art]
When grinding the outer peripheral surface and the end surface of a cylindrical workpiece having a stepped end surface, conventionally, it was processed by an anguilla grinder that advancing and retreating an anguilla whetstone along a path oblique to the workpiece axis. .
As shown in FIG. 5, the grinding method is such that the path 50 of the grinding wheel G obliquely intersecting the axis Ow of the workpiece W forms an acute angle θ with the workpiece axis 0w, and the outer peripheral surface of the grinding wheel G Includes a first grinding surface Ga for grinding the cylindrical portion Wa of the workpiece W parallel to the workpiece axis Ow, and a second grinding surface Gb for grinding the step end surface Wb of the workpiece W perpendicular to the first grinding surface Ga. Is formed, and the cylindrical portion Wa of the workpiece W is ground by the first grinding surface Ga, and the end surface Wb of the stepped portion is ground by the second grinding surface Gb.
In this angular grinding machine, when the stepped end surface Wb wider than the second grinding surface Gb of the grinding wheel G is ground at right angles to the workpiece axis Ow, the grinding wheel G is obliquely crossed with the workpiece axis Ow as indicated by an arrow. The step end surface Wb is moved outward by repeating the cutting operation for cutting along the path 50 and the position correcting operation for the workpiece W for moving the second grinding surface Gb on the end surface side of the grinding wheel G away from the end surface Wb. Grinding in stages. That is, the end face portion is ground by controlling the grinding wheel G and the workpiece W so that the corner point P of the angular grinding wheel G moves along the arrow.
[0003]
In addition, as shown in FIG. 6, in the angular grinder, the workpiece W is moved in the axial direction, and a step end surface Wb of the workpiece W is cut into the second grinding surface Gb of the grinding wheel G by a predetermined amount. Operation, the grinding wheel G is retracted along the path 50, the second grinding surface Gb is moved away from the stepped end surface Wb, and the workpiece radial direction position of the second grinding surface Gb is within the width of the grinding surface. The step of shifting outward is repeated, and the stepped end face Wb is ground stepwise from the inner periphery toward the outer periphery. That is, the end face portion is ground by controlling the grinding wheel G and the workpiece W so that the corner point P of the angular grinding wheel G moves from the inside to the outside along the arrow.
[0004]
[Problems to be solved by the invention]
However, in the end face grinding method in the above anguilla grinder, the grinding wheel and the workpiece move stepwise, so that the machining surface tends to be stepped, and finishing grinding requires separate finish grinding. Has the disadvantage of becoming longer.
Further, when the machining allowance in the axial direction of the end face machining is large, in the grinding method, in order to prevent the grinding surface of the grinding wheel from being worn, the amount of grinding per time cannot be increased. As indicated by the dotted line, it has to be divided and processed in the axial direction, resulting in disadvantages such as a long processing time.
[0005]
Therefore, the object of the present invention is to eliminate the above-mentioned problems and to reduce the grinding resistance by reducing the axial cutting in multi-stage feed, so that the grinding surface does not burn and the total grinding time can be shortened. It is to provide a multistage feed grinding method for end face thrust grinding.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the multi-stage feed grinding method of the end face thrust grinding of the present invention, the end surface of a cylindrical workpiece having a rotating step end surface, from the outer periphery in the workpiece radial direction toward the inner periphery, Perpendicular grinding with respect to the workpiece axis direction perpendicular to the workpiece axis by using a combination of multiple movements of the workpiece and grinding wheel in the direction perpendicular to the workpiece axis and in the axial direction. In the end surface thrust grinding in which cutting grinding is performed in the workpiece axial direction using the side grinding surface of the grinding wheel, the cutting in the axial direction of the workpiece is performed in multiple stages from the radially outer periphery to the inner periphery. The grinding wheel feed is divided into two , and the side contact area of the grinding wheel is divided , and at least the cutting depth in the axial direction of the workpiece is set to the inner diameter side in the workpiece radial direction at the end of machining than the outer diameter side in the workpiece radial direction at the machining start stage. deeply was that the people of It is an feature.
[0008]
Further, the multi-stage feed grinding method of the end face thrust grinding according to the present invention, in addition to the above features, in the multi-stage incision grinding feed, the grinding wheel is positioned at a position outside the end face portion of the workpiece for each axial cut in each stage. It is characterized by returning to.
[0009]
Furthermore, the multi-stage feed grinding method for end face thrust grinding according to the present invention is characterized in that, in addition to the above-described features, the axial cutting of the workpiece and the radial cutting of the workpiece are sequentially performed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the multi-stage feed grinding method of the end face thrust grinding according to the present invention, the end surface of a cylindrical workpiece having a rotating step end surface is perpendicular to the workpiece axis from the outer periphery to the inner periphery in the workpiece radial direction. A plurality of movements of the workpiece and the grinding wheel in the axial direction are combined, a cutting grinding process in a direction perpendicular to the workpiece axial direction is performed using the outer peripheral grinding surface of the grinding wheel, and a side grinding surface of the grinding wheel In end face thrust grinding, which uses incision grinding in the axial direction of the workpiece, the cutting in the axial direction of the workpiece is fed in multiple stages through the grinding from the radially outer periphery to the inner periphery of the workpiece. The side contact area of the grinding wheel is divided, and when grinding the workpiece end face, the side contact area of the grinding wheel can be divided and the grinding resistance can be kept low because of the multi-stage grinding feed. thing Can, without grinding burn of the grinding surface occurs, it is possible to prevent the rapid wear of the grinding wheel. The number of stages of multi-stage feeding can be appropriately set, and the grinding efficiency can be increased by optimally setting the grinding feed speed of each grinding stage.
[0011]
In the multi-stage feed grinding method of the end face thrust grinding according to the present invention, the multi-stage infeed grinding feed feeds at least the cut amount in the axial direction of the work piece at the work end stage than the work outer diameter side at the work start stage. By deepening the inner diameter side in the object diameter direction, it is possible to reduce the amount of grinding at the time of finish grinding at the end of processing, and to shorten the total grinding time.
[0012]
Furthermore, the multi-stage cutting grinding feed in the multi-stage feed grinding method of the end face thrust grinding according to the present invention is performed by returning the grinding wheel to a position outside the end face portion of the workpiece for every cutting in the axial direction of each stage. In addition, the grinding wheel is separated from the workpiece processing surface, so that the coolant fluid can sufficiently enter the workpiece grinding part, grinding resistance can be further reduced, grinding burn can be prevented, and the rewinding process can be returned quickly. As a result, the processing time can be shortened.
[0013]
Furthermore, the multi-stage feed grinding method of the end face thrust grinding according to the present invention divides the side contact area of the grinding wheel by sequentially performing the axial cutting of the workpiece and the radial cutting of the workpiece. Thus, the grinding resistance can be kept low, and the side grinding surface and the outer circumferential grinding surface of the grinding wheel can be used alternately, so that the life of the grinding wheel can be extended.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a grinding apparatus in which the multi-stage feed grinding method of end face thrust grinding according to the present invention is carried out. Reference numeral 1 denotes a bed of the grinding apparatus, and a grinding wheel base 2 is placed on the bed 1 in the X-axis direction (working direction). It is placed so as to be able to advance and retreat in the direction perpendicular to the object axis. A grinding wheel 3 is rotatably supported on the grinding wheel base 2. As shown in FIG. 2, the grinding wheel 3 has a thin width and is provided with a grinding stone layer of superhard abrasive grains such as diamond or CBN, and the grinding wheel layer is parallel to the rotation axis Ow of the workpiece W. An outer peripheral grinding surface 3b and a side grinding surface 3a perpendicular to the outer peripheral grinding surface are provided. Reference numeral 4 denotes a grinding wheel rotating motor, and the grinding wheel 3 is driven to rotate. Reference numeral 5 denotes an X-axis servo motor to which an encoder 5a is connected, and moves the grindstone table 2 forward and backward in the X-axis direction.
[0015]
A table 6 that moves in the Z-axis direction (workpiece W-axis direction) is mounted by a Z-axis servo motor 9 connected to an encoder 9 a in front of the grindstone table 2 on the bed 1. The headstock 7 and the tailstock 8 are installed to face each other. A workpiece W having a flange portion WF is supported on the spindle center 7 a of the spindle stock 7 and the tailstock center 8 a of the tailstock 8 so as to be rotationally driven by a spindle drive motor built in the spindle stock 7. It has become.
[0016]
Reference numeral 11 denotes a numerical control device that controls the grinding device. The numerical controller 11 is connected to a central processing unit 12, an input / output device 14 having a key board for inputting data and a CRT display unit for displaying data, and connected to the central processing unit 12. And the memory 15 connected to the central processing unit 12 and the interface 16 connected to the central processing unit 12 and connected to the motor drive circuits 17 and 18. .
[0017]
The memory 15 stores control data necessary for executing the machining program and the numerical control program.
The one motor drive circuit 17 is connected to the X-axis servomotor 5, and the encoder 5 a of the X-axis servomotor 5 is connected to the motor drive circuit 17 and the interface 16.
[0018]
The other motor drive circuit 18 is connected to the Z-axis servo motor 9, and the encoder 9 a of the Z-axis servo motor 9 is connected to the motor drive circuit 18 and the interface 16.
[0019]
The absolute position of the grinding wheel base 2 and the table 6 is detected by the encoder 5a connected to the X-axis servomotor 5 and the encoder 9a connected to the Z-axis servomotor 9, and the detection signal is The position is fed back to the motor drive circuits 17 and 18 to perform position feedback control and input to the numerical controller 11.
[0020]
Accordingly, a first embodiment of the multi-stage feed grinding method of end face thrust grinding according to the present invention in which the step end face of the flange portion WF of the workpiece W is subjected to thrust grinding in a plurality of stages will be described with reference to FIG.
In the process of the grinding method described below, a program for the path is stored in the memory 15 of the numerical controller 11 in advance, and the X-axis servo motor 5 and the Z-axis servo motor 9 are controlled based on the program. As a result, the grinding wheel 3 is appropriately advanced and retracted in the X-axis direction and the workpiece W in the Z-axis direction, whereby a desired grinding process is performed.
[0021]
First, the part (1) is ground by the side grinding surface 3a of the grinding wheel 3 by cutting and feeding the workpiece W in the workpiece axial direction (Z-axis direction) from the state of FIG. Then, when the corner point P0 of the grinding wheel 3 reaches the point P1, the grinding of the portion (1) is finished. Next, at the position of the workpiece W, the grinding wheel 3 is cut and ground and fed in the direction perpendicular to the workpiece axis (X-axis direction) until the corner point P0 of the grinding wheel 3 reaches the point P2 from the point P1. The portion (2) is ground by the outer peripheral grinding surface 3b of the grinding wheel 3. Next, the grinding wheel 3 is left as it is, and the workpiece W is cut and fed in the Z-axis direction until the corner point P0 of the grinding wheel 3 reaches from the point P2 to the point P3, and is partially fed by the side grinding surface 3a of the grinding wheel 3. Grind (3). Further, the work wheel W is cut and fed in the X-axis direction until the corner point P0 of the grinding wheel 3 reaches the point P4 from the point P3, and the workpiece W is partially cut by the outer peripheral grinding surface 3b of the grinding wheel 3. Grind (4). In this case, the processing width of the part (4) of the workpiece W is required to be smaller than the width of the grinding wheel 3. Further, the grinding wheel 3 is left as it is, and the workpiece W is cut and fed in the Z-axis direction until the corner point P0 of the grinding wheel 3 reaches the point P4 to the point P5, and is fed by the side grinding surface 3a of the grinding wheel 3. Grind part (5). At this time, the cylindrical outer peripheral surface of the stepped portion of the workpiece W is finish-ground by the outer peripheral grinding surface 3 b of the grinding wheel 3. Accordingly, the grinding feed of the portion where finish grinding is performed is set to a slow feed rate compared to other grinding feeds. When the corner point P0 of the grinding wheel 3 reaches the point P5, spark-out grinding is performed to finish a predetermined grinding operation, and the grinding wheel 3 is retracted in the X-axis direction. At this time, the workpiece W may be slightly released in the Z-axis direction, and the grinding wheel 3 may be retracted in the X-axis direction so that the grinding wheel 3 does not contact the processed end surface of the workpiece.
[0022]
As described above, when the workpiece end face is subjected to thrust grinding, the ground portion is divided into (1) to (5), and multi-stage feed grinding is performed. Among them, the thrust grinding is performed in three stages (1), (3), and (5), but the stage can be determined as appropriate, for example, a four-stage process. When thrust grinding the workpiece end face, it is possible to divide the side contact area of the grinding wheel because it is multi-stage feed, keep the grinding resistance low, and set the grinding feed speed at each grinding stage optimally As a result, grinding efficiency can be increased and processing time can be shortened. In addition, since the grinding resistance can be kept low, grinding burn of the grinding surface does not occur, and rapid wear of the grinding wheel can be prevented.
Furthermore, the multi-stage feed in this case repeats alternately the cutting grinding feed of the workpiece in the axial direction and the cutting grinding feed in the direction perpendicular to the workpiece axis, so that the side grinding surface of the grinding wheel and the peripheral grinding surface are separated. Since the wheel is used alternately and the grinding wheel is used effectively, the life of the grinding wheel can be extended.
[0023]
Next, a second embodiment of the multi-stage feed grinding method for end face thrust grinding according to the present invention will be described with reference to FIG.
First, the part (1) is ground by the side grinding surface 3a of the grinding wheel 3 by cutting and feeding the workpiece W in the Z-axis direction from the state of FIG. Then, when the corner point P0 of the grinding wheel 3 reaches the point P1, the grinding of the portion (1) is finished, and the grinding wheel 3 is once released from the end face of the workpiece in the Z-axis direction as indicated by a dotted arrow. In this state, the grinding wheel 3 is fed by a certain amount in the X-axis direction. In this state, the workpiece W is cut and fed again in the Z-axis direction, and the grinding wheel 3 is fed by cutting and feeding until the angle P0 of the grinding wheel 3 reaches the point P2, similarly to the portion (1). The portion (2) is ground by the side grinding surface 3a. Then, as described above, the grinding wheel 3 is released from the end surface of the workpiece W by moving the workpiece W in the Z-axis direction as indicated by a dotted arrow, and in this state, the grinding wheel 3 is moved in the X-axis direction. Send to the finished dimensions. In this state, the workpiece W is cut and fed in the Z-axis direction, and the grinding wheel 3 is cut and fed until the corner point P0 of the grinding wheel 3 reaches the point P3, similarly to the portion (1). The portion (3) is ground by the side grinding surface 3a, and at the same time, the outer peripheral surface of the workpiece step portion is finish ground by the outer peripheral grinding surface 3b of the grinding wheel 3. When the corner point P0 of the grinding wheel 3 reaches the point P3, spark-out grinding is performed to finish a predetermined grinding operation, and the workpiece W is slightly released along the dotted arrow in the Z-axis direction. The grinding wheel 3 is retracted in the X-axis direction so as not to contact the processed end surface.
[0024]
In this method, the cutting grinding feed in the radial direction of the workpiece of the grinding wheel is not performed, and the cutting grinding feed in the axial direction of the workpiece is divided into three stages (1), (2), and (3). The depth of cut increases gradually from (1) to (3). As in the case of FIG. 2, the division is not limited to three stages.
In this method, in addition to the operation and effect of the grinding method of FIG. 2, the incision grinding of the end face thrust grinding in the workpiece axial direction is divided into three stages, and the grinding wheel 3 is machined for each incision grinding. Since the coolant is separated from the surface, the coolant liquid can sufficiently enter the workpiece grinding portion, the grinding resistance can be further reduced, grinding burn can be prevented, and the machining time can be shortened as a result.
[0025]
FIG. 4 shows a modification (third embodiment) of the second embodiment.
Similarly to the second embodiment shown in FIG. 3, the cutting grinding feed in the radial direction (X-axis direction) of the workpiece of the grinding wheel is not performed, and the cutting grinding feed in the axial direction of the workpiece is (1). , (2) and (3) are divided into three stages. However, the amount of cutting in the axial direction is deeper in (3) on the inner diameter side in the workpiece radial direction at the end of machining than in (1) on the outer diameter side in the workpiece radial direction at the machining start stage. The cutting depth of (2) in the intermediate part in the workpiece radial direction is shallower than (1) and (3).
In the third embodiment, the grinding amount of the grinding portion (3), which is finish grinding, is reduced by increasing the grinding amount (removal allowance) in the X-axis direction of the grinding portion (1) and the grinding portion (2). By increasing the grinding amount of the grinding portion (1) and the grinding portion (2) that can increase the grinding feed speed, the grinding amount of the grinding portion (3), which is a finish grinding process with a slow grinding feed speed, can be reduced. This can further reduce the total grinding time.
[0026]
【The invention's effect】
The multi-stage feed grinding method of the end surface thrust grinding of the present invention is a multi-stage infeed in the axial direction of the work from the radially outer circumference to the inner circumference of the work. In the thrust grinding of the workpiece end face, the multi-stage feed makes it possible to divide the side contact area of the grinding wheel, keep the grinding resistance low, and reduce the grinding burn of the grinding surface. It does not occur, and rapid wear of the grinding wheel can be prevented. The number of stages of multi-stage feeding can be arbitrarily set, and the grinding efficiency can be increased by optimally setting the grinding feed speed of each grinding stage.
[0027]
In addition, the amount of cut in the axial direction of the workpiece in multi-stage cutting grinding feed is made deeper on the inner diameter side in the workpiece radial direction at the end of machining than on the outer diameter side in the workpiece radial direction at the machining start stage. It is possible to reduce the amount of grinding at the finish grinding as the end stage, and to shorten the total grinding time.
[0028]
Furthermore, the grinding wheel is moved away from the workpiece processing surface at every cutting by returning the grinding wheel to a position outside the end face of the workpiece for each cutting in the axial direction of the multi-stage cutting grinding feed. The coolant liquid can sufficiently enter the workpiece grinding portion, the grinding resistance can be further reduced, grinding burn can be prevented, and the returning process can be returned quickly, resulting in a reduction in processing time.
[0029]
Furthermore, the multi-stage feed grinding method of the end face thrust grinding according to the present invention divides the side contact area of the grinding wheel by sequentially performing the axial cutting of the workpiece and the radial cutting of the workpiece. Thus, the grinding resistance can be kept low, and the side grinding surface and the outer circumferential grinding surface of the grinding wheel can be used alternately, so that the life of the grinding wheel can be extended.
[Brief description of the drawings]
FIG. 1 is a plan view showing a grinding apparatus to which a multi-stage feed grinding method for end face thrust grinding according to the present invention is applied and a numerical control apparatus thereof.
FIG. 2 is a diagram showing an embodiment of a multi-stage feed grinding method for end face thrust grinding according to the present invention.
FIG. 3 is a view showing another embodiment of the multi-step feed grinding method of the end face thrust grinding according to the present invention.
FIG. 4 is a view showing another embodiment of the multi-stage feed grinding method of the end face thrust grinding according to the present invention.
FIG. 5 is a view showing an example of a conventional end face grinding method;
FIG. 6 is a view showing an example of a conventional end face grinding method.
[Explanation of symbols]
1: Bed 2: Grinding wheel base 3: Grinding wheel 3a: Grinding wheel side grinding surface 3b: Grinding wheel outer peripheral grinding surface 5: X-axis servo motor 6: Table 9: Z-axis servo motor 11: Numerical control device W: Machine tool object

Claims (3)

回転する段部端面を有する円筒形状の工作物の端面を、工作物径方向外周から内周に向かって、工作物軸線に対して垂直方向、軸線方向に工作物と砥石車との移動を複数組合わせ、前記砥石車の外周研削面を用いて工作物軸線方向に対して垂直方向への切込み研削加工し、前記砥石車の側面研削面を用いて工作物軸線方向への切込み研削加工する端面スラスト研削において、
工作物の径方向外周から内周に向かって、工作物の軸線方向への切込みを、多段に切込み研削送りし、砥石車の側面接触面積を分割させ、少なくとも工作物の軸線方向の切り込み量を、加工開始段階の工作物径方向外周側よりも加工終了段階の工作物径方向内周側の方を深くしたことを特徴とする端面スラスト研削の多段送り研削加工方法。
A plurality of movements of the workpiece and the grinding wheel are performed in the direction perpendicular to the workpiece axis and in the axial direction from the outer periphery in the workpiece radial direction to the inner periphery on the end surface of the cylindrical workpiece having a rotating stepped end surface. In combination, an end face that is cut and ground in the direction perpendicular to the workpiece axial direction using the outer peripheral grinding surface of the grinding wheel, and is cut and ground in the workpiece axial direction using the side grinding surface of the grinding wheel In thrust grinding,
From the radial outer circumference to the inner circumference of the workpiece, the cut in the axial direction of the workpiece is cut and fed in multiple stages, the side contact area of the grinding wheel is divided , and at least the cut amount in the axial direction of the workpiece A multistage feed grinding method for end face thrust grinding, characterized in that the inner diameter side in the workpiece radial direction at the end of machining is deeper than the outer diameter side in the workpiece radial direction at the machining start stage .
前記多段の切込み研削送りにおいて、各段の軸線方向の切込み毎に、砥石車を工作物の端面部外の位置まで戻すことを特徴とする請求項1記載の端面スラスト研削の多段送り研削加工方法。  2. The multi-stage feed grinding method for end face thrust grinding according to claim 1, wherein the grinding wheel is returned to a position outside the end face portion of the workpiece for each cut in the axial direction of each stage in the multi-stage cut grinding feed. . 前記端面スラスト研削の多段送り研削加工方法において、工作物の軸線方向切込み研削と工作物の径方向切込み研削とを順次に行うことを特徴とする請求項1記載の端面スラスト研削の多段送り研削加工方法。  2. A multi-stage feed grinding process for end face thrust grinding according to claim 1, wherein in the multi-stage feed grinding method for end face thrust grinding, the axial cut grinding of the workpiece and the radial cut grinding of the work piece are sequentially performed. Method.
JP2000059365A 2000-03-03 2000-03-03 Multistage feed grinding method for end face thrust grinding Expired - Fee Related JP4482632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059365A JP4482632B2 (en) 2000-03-03 2000-03-03 Multistage feed grinding method for end face thrust grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059365A JP4482632B2 (en) 2000-03-03 2000-03-03 Multistage feed grinding method for end face thrust grinding

Publications (2)

Publication Number Publication Date
JP2001246535A JP2001246535A (en) 2001-09-11
JP4482632B2 true JP4482632B2 (en) 2010-06-16

Family

ID=18579827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059365A Expired - Fee Related JP4482632B2 (en) 2000-03-03 2000-03-03 Multistage feed grinding method for end face thrust grinding

Country Status (1)

Country Link
JP (1) JP4482632B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855587B2 (en) * 2001-05-21 2012-01-18 株式会社岡本工作機械製作所 One-way grinding method of workpiece
JP4940729B2 (en) 2006-03-31 2012-05-30 株式会社ジェイテクト Workpiece grinding method and grinding apparatus

Also Published As

Publication number Publication date
JP2001246535A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JPH052458B2 (en)
JP4482632B2 (en) Multistage feed grinding method for end face thrust grinding
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
US4866887A (en) Method of truing grinding wheel
JP4929790B2 (en) Truing method of grinding wheel
US5228241A (en) Method and machine for grinding
JP2007260880A (en) Method of truing grinding wheel, and grinding machine
JP4270115B2 (en) Workpiece grinding method
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
JPS60263657A (en) Abrasive polishing device
JP3365439B2 (en) Grinding equipment
JP4225210B2 (en) Truing device and truing method for grinding wheel
JPH06134668A (en) Grinding machine
JP2002283235A (en) Truing method of grinding wheel for grinding end surface
JP5262437B2 (en) Truing method and grinding method for grinding wheel
JPH09136248A (en) Die groove machining method for cemented carbide ring roll hole type die for rolling
JP3555318B2 (en) Grinding method
JPH01271173A (en) Grinding wheel shaping method and device for nc tool grinding machine
JPS62282852A (en) Grinding method
JP2001225249A (en) Grinding method
JPH09285964A (en) Shaft orthogonal direction gear material cutting method by disc type cutting grinding wheel for providing backlash eliminating function in gear
JP2023552716A (en) Conditioning of superabrasive grinding tools
JPH0569667B2 (en)
JPH04240061A (en) Method and device for machining small hole internal surface
JP3802387B2 (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees