JPS6238350A - High-accuracy measuring instrument for fluorescence yield - Google Patents

High-accuracy measuring instrument for fluorescence yield

Info

Publication number
JPS6238350A
JPS6238350A JP17774285A JP17774285A JPS6238350A JP S6238350 A JPS6238350 A JP S6238350A JP 17774285 A JP17774285 A JP 17774285A JP 17774285 A JP17774285 A JP 17774285A JP S6238350 A JPS6238350 A JP S6238350A
Authority
JP
Japan
Prior art keywords
ray
intensity
incident
fluorescent
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17774285A
Other languages
Japanese (ja)
Other versions
JPH0680422B2 (en
Inventor
Asao Nakano
朝雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60177742A priority Critical patent/JPH0680422B2/en
Publication of JPS6238350A publication Critical patent/JPS6238350A/en
Publication of JPH0680422B2 publication Critical patent/JPH0680422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure the fluorescence yield of a sample material with high accuracy by subtracting the intensity of the fluorescent X-ray generated by a higher harmonic X-ray from the fluorescent X-ray emitted from the sample. CONSTITUTION:The X-ray generated from an X-ray source focus 1 passes through a divergent slit 2 and a solar slit 3 and after the energy thereof is selected by a curved type spectroscope, the X-ray is irradiated through a filter 9a attached to a filter exchange mechanism 9, a photodetecting slit 5 and an incident X-ray intensity measuring instrument 6 to the sample 7. The fluorescent X-ray generated from the sample 7 is made incident to a fluorescent X-ray measuring instrument 8, by which the intensity is measured. The energy of the incident X-ray is selected by a goniometer 10. The incident X-rays on the instruments 6, 8 are subjected to energy analysis by respective multichannel pulse height analyzers 11, 12 by which the incident X-ray intensity, the high harmonic X-ray intensity and the fluorescent X-ray intensity are determined. These intensities are thereafter transferred to a data processing unit 13. The higher harmonic X-ray intensity is subtracted from the fluorescent X-ray intensity in the unit 13. The fluorescence yields are calculated by the prescribed equation with the energy steps of the respective incident X-rays. The structure of the fluorescent X-ray is analyzed in accordance with the calculated yields.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は物質のX線に対するけい光取率を高精度に測定
する装置に係り、特にけい光X線構造解析装置に好適な
高精度けい光収率測定装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device for measuring the fluorescence absorption rate of a substance with respect to X-rays with high precision, and in particular, a high-precision fluorescence device suitable for a fluorescence X-ray structure analysis device. This invention relates to a yield measuring device.

〔発明の背景〕[Background of the invention]

従来、物質のx線に対するけい光取率を高精度に測定す
る装置は、分光器に入射するX線ビームを分解能のある
X線計数器を用いて高調波を含む基本波のエネルギーレ
ベルを測定し、その後このX線ビームを二結晶分光器に
導いて高調波を取り除き、この高調波を取り除いたX線
ビーム試料にあて、試料から発生するけい光X線を測定
していた。しかし、上記の装置二結晶分光器に入射する
X線強度が大きいときは問題ないが、入射するX線強度
が小さいときは基本波も微弱となり、試料からけい光X
線が発生せず、測定不可能であった。
Conventionally, a device that accurately measures the fluorescence absorption rate of a substance for X-rays uses an X-ray counter with high resolution to measure the energy level of the fundamental wave, including harmonics, of the X-ray beam that enters the spectrometer. Then, this X-ray beam was guided to a two-crystal spectrometer to remove harmonics, and the X-ray beam from which the harmonics were removed was applied to a sample to measure the fluorescent X-rays generated from the sample. However, when the intensity of the X-rays incident on the two-crystal spectrometer is high, there is no problem, but when the intensity of the incident X-rays is low, the fundamental wave becomes weak, and the fluorescence is emitted from the sample.
No line was generated and measurement was impossible.

また、高調波を除去するには、上記の複雑な構造の二結
晶分光器を複雑に調整する必要があった(レビュ・オプ
・サイエンティフィック・インスツルメント(Revi
ew of 5cientific Instrume
nt53(1) 、 J an、1982や[ぶんせき
J 4.1981等)。
In addition, in order to remove harmonics, it was necessary to make complex adjustments to the double-crystal spectrometer with the above-mentioned complex structure (Review of Scientific Instruments).
ew of 5 scientific instruments
nt53(1), J an, 1982 and [Bunseki J 4.1981, etc.).

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の欠点をなくし、簡単
な操作でかつ分光器に入射するX線強度が弱くても高精
度で試料物質のけい光取率が測定できる高精度けい光収
率測定装置を提供するにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a high-precision fluorescence yield that allows for easy operation and measurement of the fluorescence absorption rate of a sample material with high precision even when the X-ray intensity incident on the spectrometer is weak. To provide measuring equipment.

〔発明の概要〕[Summary of the invention]

上記目的は分光器の出すX線中の高調波X線強度を測定
し、試料から出るけい光X線より高調波X線によって生
ずるけい光X線強度分を差し引くことで達成される。
The above objective is achieved by measuring the intensity of harmonic X-rays in the X-rays emitted by the spectrometer, and subtracting the fluorescence X-ray intensity produced by the harmonic X-rays from the fluorescence X-rays emitted from the sample.

即ち試料に入射するX線のエネルギー分析を行なってX
線中に含まれる不要なエネルギー値の高調波X線強度を
も測定し、その値を用いて試料から生ずるけい光X線の
うち設定した基本波に基づくエネルギーのX線のみによ
るけい光X線のX線値を算出することによってX線分光
器により生じる高調波の影響を排除し、けい光収率測定
が高精度になる。このようにすれば複雑な構造の分光器
を用いる必要もなく、複雑な構造の分光器を用いる必要
もなく、複雑な分光器の調整も不要となる。
That is, the energy of the X-rays incident on the sample is analyzed and
The harmonic X-ray intensity of unnecessary energy values included in the radiation is also measured, and this value is used to determine the fluorescence X-rays generated from only the X-rays with energy based on the set fundamental wave among the fluorescence X-rays generated from the sample. By calculating the X-ray value of , the influence of harmonics caused by the X-ray spectrometer is eliminated, and the fluorescence yield measurement becomes highly accurate. In this way, there is no need to use a spectroscope with a complicated structure, there is no need to use a spectroscope with a complicated structure, and there is no need to make complicated adjustments to the spectrometer.

またX線はエネルギーレベルを変えてスキャンしてもよ
い。
Furthermore, X-rays may be scanned with different energy levels.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を一実施例によって説明する。第1図は湾
曲型結晶分光器を用いたけい光収率測定装置の模式図で
ある。X″W源焦点lから放出されるX線は、発散スリ
ット2、ソーラースリット3から成るスリット系によっ
て進行方向が制限され、装置内壁で生ずる散乱による迷
光の発生が抑制されている。湾曲型分光器4と受光スリ
ット5は、X線源焦点l、受光スリット5が湾曲型分光
結晶4によるX線収束点になるように配置される。
The present invention will be explained below by way of an example. FIG. 1 is a schematic diagram of a fluorescence yield measuring device using a curved crystal spectrometer. The traveling direction of the X-rays emitted from the X''W source focal point 1 is restricted by a slit system consisting of a divergent slit 2 and a solar slit 3, and the generation of stray light due to scattering occurring on the inner wall of the apparatus is suppressed. Curved spectroscopy The device 4 and the light receiving slit 5 are arranged so that the X-ray source focal point l and the light receiving slit 5 are the X-ray convergence point by the curved spectroscopic crystal 4.

受光スリット5を通過したX線は、湾曲型分光結晶4に
よって所望のエネルギーのX線が主成分となる。しかし
分光結晶の材料や結晶構造は、できる限り小さくなるよ
うに選択されるが、全ての高調波を取り去ることは本質
的に不可能である。
The X-rays that have passed through the light-receiving slit 5 are turned into X-rays with a desired energy as the main component by the curved spectroscopic crystal 4 . However, although the material and crystal structure of the spectroscopic crystal are selected to be as small as possible, it is essentially impossible to eliminate all harmonics.

したがって上記の所望のエネルギーのX線中には、その
エネルギー整数倍の高調波X線が含まれてしまう。そこ
で、試料7に入射するX線強度を測定する入射X線強度
測定器6、試料7より発生したけい光X線強度を測定す
るけい光X線強度測定器8ともエネルギー分析が可能な
ものとし、条件を複数選択して測定し、データを処理す
ることにより高調波の影響を除去した。
Therefore, the X-rays having the desired energy include harmonic X-rays having an integral multiple of the energy. Therefore, both the incident X-ray intensity measuring device 6, which measures the intensity of the X-rays incident on the sample 7, and the fluorescent X-ray intensity measuring device 8, which measures the intensity of the fluorescent X-rays generated from the sample 7, are designed to be capable of energy analysis. , the effects of harmonics were removed by selecting multiple conditions for measurement and processing the data.

次に高調波の影響を除去する方法について詳細に説明す
る。いま、分光結晶の回折に寄与する結晶面の原子配列
の周期をd、ブラック回折角をθ、X線の波長をλとす
ると、(11式を満足するときのみ回折が生ずる。
Next, a method for removing the influence of harmonics will be explained in detail. Now, if the period of the atomic arrangement on the crystal plane that contributes to diffraction of the spectroscopic crystal is d, the Black diffraction angle is θ, and the wavelength of the X-ray is λ, then diffraction occurs only when Equation 11 is satisfied.

2dsinθ−nλ ・・・・・・・旧旧旧・・・・・
・旧・・(1)上記+11式はブラ・ツク則として知ら
れている。この式の右辺のnは自然数である。そして(
11式は、n=1の波長に対して1/nの波長のX線も
同一の条件で回折を起こし、n−1の基本波に対してエ
ネルギーがn倍の高調波も同時に回折されることを意味
する。
2dsinθ−nλ・・・・・・Old and old・・・・・・
- Old... (1) The above formula +11 is known as the Bra-Tsuku rule. n on the right side of this equation is a natural number. and(
Equation 11 shows that X-rays with a wavelength of 1/n of the wavelength of n=1 will also be diffracted under the same conditions, and harmonics with n times the energy of the fundamental wave of n-1 will also be diffracted at the same time. It means that.

高調波X線の強度は、分光結晶の構成元素と、結晶構造
による回折強度の項と、X線源の波長(エネルギー)対
強度特性の項との積で表わされる。
The intensity of harmonic X-rays is expressed as the product of the constituent elements of the spectroscopic crystal, the diffraction intensity term due to the crystal structure, and the wavelength (energy) vs. intensity characteristic of the X-ray source.

このうち回折強度(1)の項は、(2)式で表わされる
。但し、(2)式中のF(n)、Sは(31,(41式
で表わされる。
Among these, the term of diffraction intensity (1) is expressed by equation (2). However, F(n) and S in equation (2) are expressed by equations (31 and (41).

F (n) =Σfj(ns)・exp (2πn1(
hxj+kyj+j!zj) )・exp(−Bj”n
2s2)  ・・・・・・・・・・・・・・・・・・(
3)S冨5insθ/λ ・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・(4)なお、上記式(11,(2)、 (3)中、A
は分光結晶によるX線吸収等の因子、Fは構造因子、r
jはj番目の原子の散乱因子、Nは結晶の周期中にある
原子の数、  (hkl)は回折に寄与する結晶面のミ
ラー指数、 (xj yj zj)はj番目の原子の座
標、  Bjはj番目の原子の等方性温度因子である。
F (n) = Σfj (ns)・exp (2πn1(
hxj+kyj+j! zz) )・exp(-Bj”n
2s2) ・・・・・・・・・・・・・・・・・・(
3) S depth 5ins θ/λ ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・(4) In the above formula (11, (2), (3), A
is a factor such as X-ray absorption by a spectroscopic crystal, F is a structure factor, r
j is the scattering factor of the j-th atom, N is the number of atoms in the period of the crystal, (hkl) is the Miller index of the crystal plane contributing to diffraction, (xj yj zzj) is the coordinate of the j-th atom, Bj is the isotropic temperature factor of the j-th atom.

このうちfj (ns)の関数形は例としてSiのf 
(ns)を第2図に示す。またexp(−B j2n”
s2)の項はnsに対して単調減少であるからF (n
)はnの増加に対して減少の傾向を示す。幾何構造因子
exp (2πn1(hx+ky + ffz))の項
は結晶の繰り返し単位内の全原子の位相和を示している
ため、原子の配列(結晶構造)を反映した値をとる。本
実施例装置に利用した分光結晶について(5)式に示さ
れたU (n) U (n) =Σexp (2πn1(hxj +ky
j + 1 zj)) −(5)を求めると第3図のよ
うになる。リン酸二水素アンモニウム(ADPと略す)
の(101)結晶面、AD P (100)結晶面、 
S 1(111)結晶面でそれぞれの特徴は次の通りで
ある。
Among these, the functional form of fj (ns) is, for example, f of Si.
(ns) is shown in FIG. Also exp(-B j2n”
Since the term s2) is monotonically decreasing with respect to ns, F (n
) shows a decreasing tendency as n increases. Since the term of the geometrical structure factor exp (2πn1(hx+ky+ffz)) indicates the phase sum of all atoms in the repeating unit of the crystal, it takes a value that reflects the arrangement of atoms (crystal structure). U (n) U (n) = Σexp (2πn1(hxj +ky
When we calculate j + 1 zz)) - (5), we get the result shown in Figure 3. Ammonium dihydrogen phosphate (abbreviated as ADP)
(101) crystal plane of ADP (100) crystal plane,
The characteristics of each of the S1 (111) crystal planes are as follows.

i) ADP(101)  ; U(n)/U(1) 
<0.3ii) ADP(100)  ; U(n) 
=0.  n :奇数U(4)=O iii) 5i(111) ;   U(n) = 0
.  n :偶数一方、X線源の波長(エネルギー)対
強度特性は)lの発生方法により異なる。シンクロトロ
ン軌導輻射では電子のエネルギーと偏向磁場強度。
i) ADP(101); U(n)/U(1)
<0.3ii) ADP(100); U(n)
=0. n: odd number U(4) = O iii) 5i(111); U(n) = 0
.. n: Even number On the other hand, the wavelength (energy) vs. intensity characteristics of the X-ray source differ depending on the method of generation of )l. In synchrotron orbital radiation, electron energy and deflection magnetic field strength.

電子ビーム励起型では電子ビーム加速電圧によりその短
波長側の限界が定まる。一般的には、この限界はエネル
ギーで20〜30 KeVに相当する。
In the electron beam excitation type, the short wavelength limit is determined by the electron beam acceleration voltage. Generally, this limit corresponds to 20-30 KeV in energy.

これらを考慮すると、n=1のX線エネルギーが5 K
eVより大きな領域でのけい光取率はADP(100)
や5i(111)のような分光特性を示す結晶を選択す
れば、容易に高調波を除去できる。5 KeVより低エ
ネルギーの領域では、結晶の特性のみで高調波除去を行
なうことは困難で、特に2 KeV以下では分光器の機
械的な限界からA D P (101)のような結晶を
用いる必要があり、他の方法による高調波除去を行なわ
ねばならない。
Considering these, the X-ray energy of n=1 is 5 K
The fluorescence extraction rate in the region larger than eV is ADP (100)
By selecting a crystal exhibiting spectral characteristics such as or 5i (111), harmonics can be easily removed. In the energy range lower than 5 KeV, it is difficult to remove harmonics using crystal properties alone, and especially below 2 KeV, it is necessary to use a crystal such as A D P (101) due to the mechanical limitations of the spectrometer. Therefore, harmonics must be removed by other methods.

けい光励起エネルギー1840eVのSiKα X線の
けい光取率測定を行なうとき、A D P (101)
分光結晶を用い2 KeVのX線を照射しようとすると
、その自然数倍のエネルギーのX線も照射される。
When measuring the fluorescence absorption rate of SiKα X-rays with a fluorescence excitation energy of 1840 eV, A D P (101)
When attempting to irradiate X-rays of 2 KeV using a spectroscopic crystal, X-rays with energy that is a natural number times that amount will also be irradiated.

いま、各エネルギーのX線の入射強度をIn、各Inに
対するけい光取率をCnとすると、試料から発生したS
iKαけい光X線の強度Gは(6)式で表わされる。
Now, if the incident intensity of X-rays of each energy is In, and the fluorescence extraction rate for each In is Cn, then the S generated from the sample is
The intensity G of the iKα fluorescent X-ray is expressed by equation (6).

G;ΣCn1n   ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(6)第1図における
入射X線強度測定器6.けい光X線強度測定器8にエネ
ルギー分析型を用いると試料に他の元素が混入して、異
なるけい光X線を発生していようとも、(6)式の関係
を正確に求めることができる。本実施例装置では両方に
エネルギー分解能0.8Keν程度のフロー型比例計数
器(FPC)とマルチチャンネル波高分析型データ収集
装置を用いた。
G;ΣCn1n ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(6) Incident X-ray intensity measuring device 6 in Fig. 1. If an energy analysis type is used as the fluorescence X-ray intensity measuring device 8, the relationship in equation (6) can be accurately determined even if other elements are mixed into the sample and different fluorescence X-rays are generated. . In this embodiment, a flow type proportional counter (FPC) with an energy resolution of about 0.8 Keν and a multichannel pulse height analysis type data acquisition device are used for both.

いま、第4図に示すように、分光結晶4と受光スリット
5の間に入射X線フィルタ機構9を設置し、フィルタ材
を交換可能とする。フィルタによるX線の減衰は(7)
、(8)式で与えられる。
Now, as shown in FIG. 4, an incident X-ray filter mechanism 9 is installed between the spectroscopic crystal 4 and the light receiving slit 5, so that the filter material can be replaced. The attenuation of X-rays by the filter is (7)
, given by equation (8).

It= Is exp(−It)・・・・・・・・・・
・・・・・・・・・・・(71μ=μm (E)  ρ
  ・・・・・・・・・・・・・・・・・・・・・(8
)ここで10は入射X線強度、Itは吸収係数μで厚さ
七のフィルタを通過した後のX線強度1μm(E)は入
射X線のエネルギーEにおける質量吸収係数、ρはフィ
ルタの密度である。μm (E)は(9)式のようなエ
ネルギーEに対する関数である。
It=Isexp(-It)・・・・・・・・・・・・
・・・・・・・・・・・・(71μ=μm (E) ρ
・・・・・・・・・・・・・・・・・・・・・(8
) Here, 10 is the incident X-ray intensity, It is the absorption coefficient μ, and the X-ray intensity after passing through a filter with a thickness of 7 μm (E) is the mass absorption coefficient at the energy E of the incident X-ray, and ρ is the density of the filter. It is. μm (E) is a function for energy E as shown in equation (9).

μ” (E) = 3 E−3・・・・・・・・・・・
・・・・・・・・・・・・・(9)ここでaはフィルタ
により定まる定数である。したがって(7)式の形から
フィルタの材質及び厚さを選択することにより、あるエ
ネルギーE以下のX線をほとんど透過させないX線光学
系を構成することができる。
μ” (E) = 3 E-3・・・・・・・・・・・・
(9) Here, a is a constant determined by the filter. Therefore, by selecting the material and thickness of the filter from the form of equation (7), it is possible to construct an X-ray optical system that hardly transmits X-rays with energy below a certain energy E.

フィルタの条件をn種類換えて測定し、(6)式を得れ
ば、n元の連立方程式を形成でき、これを解くことによ
り、けい光X線構造解析に必要なけい  ″光取率C1
の入射X線エネルギーEによる微小な変動を求めること
ができる。
By performing measurements with n types of filter conditions and obtaining equation (6), it is possible to form n-element simultaneous equations, and by solving this, the light extraction rate C1 required for fluorescence X-ray structure analysis can be calculated.
It is possible to determine minute fluctuations due to the incident X-ray energy E.

本実施例装置による測定動作を、本実施例装置のブロッ
ク図である第4図で説明する。X線源焦点1から発生す
るX線は、発散スリット2.ソーラースリット3を通し
て湾曲型分光結晶4によりエネルギー選択後、フィルタ
交換機構9に取り付けられたフィルタ9a、受光スリッ
ト5.入射X線強度測定器6の後方にある試料7を照射
する。
The measurement operation by the apparatus of this embodiment will be explained with reference to FIG. 4, which is a block diagram of the apparatus of this embodiment. X-rays generated from the X-ray source focal point 1 are passed through the divergent slit 2. After energy selection by the curved spectroscopic crystal 4 through the solar slit 3, the filter 9a attached to the filter exchange mechanism 9 and the light receiving slit 5. A sample 7 located behind the incident X-ray intensity measuring device 6 is irradiated.

試料7から発生したけい光X線はけい光X線強度測定器
8に入射し強度が測定される。入射X線のエネルギーは
ゴニオメータ10により選択される。
The fluorescent X-rays generated from the sample 7 enter a fluorescent X-ray intensity measuring device 8, and the intensity is measured. The energy of the incident X-rays is selected by a goniometer 10.

入射X線強度測定器6とけい光X線強度測定器8に入射
したX線は、それぞれのマルチチャンネル波高分析器1
1及び12によりエネルギー分析され、入射X線強度、
高調波X線強度及びけい光X線強度が求められた後デー
タ処理装置13に転送される。
The X-rays incident on the incident X-ray intensity measuring device 6 and the fluorescence X-ray intensity measuring device 8 are transmitted to the respective multichannel pulse height analyzers 1.
1 and 12, the incident X-ray intensity,
After the harmonic X-ray intensity and fluorescence X-ray intensity are determined, they are transferred to the data processing device 13.

データ処理装置13はフィルタ交換機構9を制御し、各
フィルタを挿入してデータを収集した後、ゴニオメータ
10を制御して入射X線のエネルギーを変え、次のデー
タを測定する。
The data processing device 13 controls the filter exchange mechanism 9, inserts each filter and collects data, and then controls the goniometer 10 to change the energy of incident X-rays and measure the next data.

データ処理装置13は各入射X線エネルギーステップの
測定データを収集後、各エネルギー毎に(6)式のけい
光取率C5を計算し、これを基にけい光X線構造解析を
行なう。これらの計算過程はキーボード14により制御
可能であり、測定データ及び結果はCRT15に表示さ
れ、外部記録装置16に出力される。
After collecting measurement data for each incident X-ray energy step, the data processing device 13 calculates the fluorescence extraction ratio C5 of equation (6) for each energy, and performs fluorescence X-ray structure analysis based on this. These calculation processes can be controlled by the keyboard 14, and the measurement data and results are displayed on the CRT 15 and output to the external recording device 16.

本実施例装置ではデータ収集時間の短縮のため次のよう
な測定動作も可能である。ある元素のけい光励起エネル
ギーより若干高いエネルギーの入射X線によるけい光取
率C3に比べ、その0次高調波によるけい光取率Cnは
微小な変動がほとんどなく滑らかに変化する。これを利
用すると、各入射X線エネルギーステップ毎にフィルタ
を常に0回交換する必要はなく、全データの収集後に内
挿、外挿等によりCnを算出しても、充分精度の高いけ
い光取率C1の測定を行なうことが可能である。
The device of this embodiment also allows the following measurement operation to shorten the data collection time. Compared to the fluorescence extraction ratio C3 due to an incident X-ray with an energy slightly higher than the fluorescence excitation energy of a certain element, the fluorescence extraction ratio Cn due to its 0th harmonic changes smoothly with almost no minute fluctuations. By using this, there is no need to always replace the filter 0 times for each incident It is possible to make measurements of the rate C1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば分光結晶による高調波の影響を除去でき
、殊にX線源が特性X線をもつような場合にも高調波X
線のけい光取率測定への影響を除去することができるた
め、5 KeV以下の低エネルギーX線領域での微小な
けい光取率の変動を精密に測定可能であり高精度なけい
光X線構造解析装置を構成できるという効果がある。
According to the present invention, the influence of harmonics caused by the spectroscopic crystal can be removed, and especially when the X-ray source has characteristic X-rays, harmonics
Since it is possible to remove the influence of radiation on the fluorescence absorption rate measurement, it is possible to precisely measure minute fluctuations in the fluorescence absorption rate in the low energy X-ray region of 5 KeV or less, and to perform high-precision fluorescence X-ray measurement. This has the effect of configuring a line structure analysis device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はけい光収率測定装置のX線光学系を示す模式図
、第2図はSiを例とした原子散乱因子の関数形、第3
図は本実施例装置で使用した分光結晶の幾何構造因子、
第4図は本実施例装置のブロック図である。 1・・・X線源焦点、2・・・発散スリット、3・・・
ソーラースリット、4・・・湾曲型分光器、5・・・ス
リット、6・・・入射X線強度測定器、7・・・試料、
8・・・けい光X線強度測定器、9・・・フィルタ交換
機構、1o・・・ゴニオメータ、11.12・・・マル
チチャンネルエネルギー分析器、13・・・データ処理
装置。 代理人 弁理士  秋 本 正 実 第2図 0 0.250,500.75 1.00  +、25
 1.50   ns第3図 1      2     3     4     
5  n第4図
Figure 1 is a schematic diagram showing the X-ray optical system of the fluorescence yield measurement device, Figure 2 is the functional form of the atomic scattering factor using Si as an example, and Figure 3 is the functional form of the atomic scattering factor using Si as an example.
The figure shows the geometric structure factors of the spectroscopic crystal used in this example device.
FIG. 4 is a block diagram of the apparatus of this embodiment. 1... X-ray source focal point, 2... Diverging slit, 3...
Solar slit, 4... Curved spectrometer, 5... Slit, 6... Incident X-ray intensity measuring device, 7... Sample,
8... Fluorescence X-ray intensity measuring device, 9... Filter exchange mechanism, 1o... Goniometer, 11.12... Multi-channel energy analyzer, 13... Data processing device. Agent Patent Attorney Tadashi Akimoto Figure 2 0 0.250,500.75 1.00 +, 25
1.50 ns Fig. 3 1 2 3 4
5 nFigure 4

Claims (1)

【特許請求の範囲】[Claims] X線発生手段と、X線発生手段より発生した高調波を含
むX線の波長を選択する手段と、波長を選択したX線の
強度を測定する手段と、波長を選択したX線を試料に照
射する手段と、試料より発生するけい光線強度を測定す
る手段と、前記波長を選択する手段と前記波長を選択し
たX線の強度を測定する手段との間に各種のフィルタを
そう入する手段が設けられ、かつ各種のフィルタをそう
入する手段の前にフィルタに対する入射X線エネルギー
測定手段が設けられ、この入射X線エネルギー測定手段
で測定した複数のフィルタに対する入射X線エネルギー
とけい光X線強度の関係を解析して高調波の影響を除去
する手段からなることを特徴とする高精度けい光収率測
定装置。
an X-ray generating means, a means for selecting the wavelength of the X-ray containing harmonics generated by the X-ray generating means, a means for measuring the intensity of the X-ray having the selected wavelength, and a means for applying the X-ray having the selected wavelength to the sample. means for inserting various filters between the means for irradiating, the means for measuring the intensity of fluorescent rays generated from the sample, the means for selecting the wavelength, and the means for measuring the intensity of the X-rays having selected the wavelengths; A means for measuring the energy of incident X-rays on the filters is provided before the means for inserting the various filters, and the X-ray energies and fluorescent X-rays incident on the plurality of filters are measured by the means for measuring the energy of incident X-rays on the filters. A high-precision fluorescence yield measuring device characterized by comprising means for analyzing the relationship between intensities and removing the effects of harmonics.
JP60177742A 1985-08-14 1985-08-14 High-accuracy fluorescence yield measuring device Expired - Lifetime JPH0680422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177742A JPH0680422B2 (en) 1985-08-14 1985-08-14 High-accuracy fluorescence yield measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177742A JPH0680422B2 (en) 1985-08-14 1985-08-14 High-accuracy fluorescence yield measuring device

Publications (2)

Publication Number Publication Date
JPS6238350A true JPS6238350A (en) 1987-02-19
JPH0680422B2 JPH0680422B2 (en) 1994-10-12

Family

ID=16036324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177742A Expired - Lifetime JPH0680422B2 (en) 1985-08-14 1985-08-14 High-accuracy fluorescence yield measuring device

Country Status (1)

Country Link
JP (1) JPH0680422B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237349A (en) * 1984-05-11 1985-11-26 Hitachi Ltd Fluorescent x-ray structural analysis apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237349A (en) * 1984-05-11 1985-11-26 Hitachi Ltd Fluorescent x-ray structural analysis apparatus

Also Published As

Publication number Publication date
JPH0680422B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
Perry et al. Quantitative measurement of mid-Z opacities
Salvat et al. Theory of conversion electron Mössbauer spectroscopy (CEMS)
Hayakawa et al. Fluorescence x‐ray absorption fine structure measurements using a synchrotron radiation x‐ray microprobe
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
Beyer et al. FOCAL: X-ray optics for accurate spectroscopy
Nejedly et al. Standardization of a micro-PIXE system using NIST iron-and nickel-based alloy reference materials
JPS6238350A (en) High-accuracy measuring instrument for fluorescence yield
Criss Wavelength Calibration of Flat-Crystal and Convex Curved-Crystal X-ray Spectrographs
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
Wittry Methods of quantitative electron probe analysis
WO1994019920A1 (en) Method and apparatus for precisely measuring accelerating voltages applied to x-ray sources
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JPH071311B2 (en) Method for peak separation of fluorescent X-ray spectrum
Mitchell et al. Experimental separation of the coherent component of X-ray scattering prior to RDF analysis of non-crystalline polymers
JP2759922B2 (en) Method for measuring high-order X-ray intensity
RU2706445C1 (en) Device for waveguide-resonance x-ray fluorescence element analysis
Arai Measurements of soft and ultrasoft X-rays with total reflection monochromator
Shaffer Determination of the rydberg constant from the emission spectra of h and he+
Ong et al. Line‐focusing x‐ray monochromator for the analysis of trace elements in biological specimens
Von Dreele Peak profiles for constant-wavelength radiation (X-rays and neutrons)
DuMond FINAL REPOIJiJiYSICS 34 liBRARY DO NOT REMOVE
JPH04198745A (en) X-ray diffracting method
SU911265A1 (en) Device for x-ray fluorescent analysis
Jossem Advances in High-Resolution X-ray Spectrometry
Bates Background removal, intensity normalization and choice of X-ray optics