JPH04198745A - X-ray diffracting method - Google Patents

X-ray diffracting method

Info

Publication number
JPH04198745A
JPH04198745A JP2179988A JP17998890A JPH04198745A JP H04198745 A JPH04198745 A JP H04198745A JP 2179988 A JP2179988 A JP 2179988A JP 17998890 A JP17998890 A JP 17998890A JP H04198745 A JPH04198745 A JP H04198745A
Authority
JP
Japan
Prior art keywords
sample
rays
ray
angle
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179988A
Other languages
Japanese (ja)
Inventor
Futoshi Katsuki
太 香月
Toru Takayama
透 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2179988A priority Critical patent/JPH04198745A/en
Publication of JPH04198745A publication Critical patent/JPH04198745A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the effect by scattered X-rays and analyze the structure of a sample precisely and correctly by limiting the X-ray extracting angle expressed by the preset equation. CONSTITUTION:X-rays gamma generated from an X-ray source 12 are radiated to a sample 10 formed on a substrate through a solar slit 13, diffracted X-rays are extracted to analyze the crystal structure of the sample 10 in the X-ray diffracting method, and the X-ray extracting angle beta expressed by the equation beta=2theta-alpha is set to 0-5 deg., where 2theta is the diffraction angle of the sample 10 and betais the incidence angle of X-rays to the substrate. The effect by scattered X-rays caused by irregularities on the surface of the sample 10 can be reduced even when the diffraction angle 2theta of the sample 10 is 30 deg. or below, and the diffraction profile of the sample 10 can be obtained correctly with high sensitiv ity even when the sample 10 is a thin film about 100 Angstrom . The structure of the sample 10 can be analyzed precisely and correctly.

Description

【発明の詳細な説明】 L1上五■里ユ1 本発明はX線回折方法に関し、より詳しくは基板上に形
成された薄膜等の試料の結晶構造を解析するためのxw
A回折方法に関する。
[Detailed Description of the Invention] L1 Kamigorisu 1 The present invention relates to an X-ray diffraction method, and more specifically, to an X-ray diffraction method for analyzing the crystal structure of a sample such as a thin film formed on a substrate.
A related to the diffraction method.

兜米凹■カ ーMに試料の結晶構造を解析する方法としてはX線回折
方法が用いられており、θ−2θ法であるデイフラクト
メーター法、写真を使ったX線回折法、視斜角入射X線
回折法等が知られている。
The X-ray diffraction method is used to analyze the crystal structure of a sample. Incident X-ray diffraction methods and the like are known.

デイフラクトメーター法では、下記の式(1)で表わさ
れるブラッグの式に基づいてX線回折強度と回折角2θ
のプロフィールとを求め、未知物質の同定、格子定数、
歪等の測定を行なっている。
In the diffractometer method, the X-ray diffraction intensity and the diffraction angle 2θ are calculated based on the Bragg equation expressed by the following equation (1).
identify the unknown substance, determine the lattice constant,
Measures distortion, etc.

2dsinθ=nえ      −(1)但し、d:格
子面間隔 θ・ブラッグ角 n:反射次数 λ:使用したX線の波長 をそれぞれ表わしている。
2dsinθ=n−(1) where d: lattice spacing θ·Bragg angle n: reflection order λ: wavelength of the X-ray used.

しかしながらデイフラクトメーター法を用いて、試料と
して例えば基板上に形成された薄膜を測定すると、第9
図に示す如く入射X 99 rの侵入深さが大きいため
に、基板11からの回折X線dが薄膜試料10からの回
折X #J! dに重なる。従って薄膜試料10からだ
けの回折X線dが得られず、薄膜試料lOの構造解析は
困難である。
However, when measuring a thin film formed on a substrate as a sample using the diffractometer method, the 9th
As shown in the figure, since the penetration depth of the incident X 99 r is large, the diffracted X-ray d from the substrate 11 becomes the diffracted X #J! from the thin film sample 10. overlaps with d. Therefore, diffraction X-rays d from only the thin film sample 10 cannot be obtained, making it difficult to analyze the structure of the thin film sample IO.

そこで従来、基板11上に形成された薄膜試料10を測
定する場合には、第1O図に示すようにX#!の入射角
βを1〜5°程度の小さな角度に固定し侵入深さを制御
して、薄膜試料10からの回折X線dだけを測定する方
法が行なわれている(Y、Arnaud、M、 Bru
nel et al、Applied 5urf、Sc
i。
Conventionally, when measuring the thin film sample 10 formed on the substrate 11, as shown in FIG. 1O, X#! A method has been used in which only the diffracted X-rays d from the thin film sample 10 are measured by fixing the incident angle β to a small angle of about 1 to 5 degrees and controlling the penetration depth (Y, Arnaud, M. Bru
nel et al, Applied 5urf, Sc
i.

、26 (1986) 12 )。この方法によれば基
板11からの回折X線dを抑えることができ、薄膜試料
10の構造解析を精度よく行なうことができる。
, 26 (1986) 12). According to this method, the diffracted X-rays d from the substrate 11 can be suppressed, and the structural analysis of the thin film sample 10 can be performed with high precision.

日が ′しようとする課題 しかしながら上記した方法においては、回折角2θが3
0’以下の場合、第11図に示す如くX線取り出し角α
が小さくなるため、入射X線rが薄膜試料10表面の凹
凸で散乱されることによって生じる散乱X線SがX線検
出器に入り、その結果、測定プロフィールのバックグラ
ウンド強度が上がって正確な測定が困難になるという課
題があった。
However, in the above method, the diffraction angle 2θ is 3
0' or less, the X-ray extraction angle α is as shown in Figure 11.
becomes smaller, the scattered X-rays S generated when the incident X-rays r are scattered by the irregularities on the surface of the thin film sample 10 enter the X-ray detector, and as a result, the background intensity of the measurement profile increases and accurate measurements can be made. The problem was that it became difficult.

また「特開平1−167642号公報」では、散乱スリ
ット、X線検出器等を試料面と平行に駆動することによ
り、入射XL9rの入射角βだけでなくX線取り出し角
αをも小さくして、入射X線rの侵入深さをより小さく
する方法が提案されているが、この方法においでも上記
した課題の解決は図られていなかった。
Furthermore, in ``Japanese Unexamined Patent Publication No. 1-167642'', by driving the scattering slit, X-ray detector, etc. parallel to the sample surface, not only the incident angle β of the incident XL9r but also the X-ray extraction angle α can be reduced. , a method of reducing the penetration depth of incident X-rays r has been proposed, but the above-mentioned problems have not been solved even in this method.

本発明は上記した課題に鑑みなされたものであり、試料
の回折角2θが30°以下の場合でも、散乱XIsによ
る影響を少なくすることができ、精度良(かつ正確に薄
膜等の試料の構造解析を行なうことができるX線回折方
法を提供することを目的としている。
The present invention was made in view of the above-mentioned problems, and even when the diffraction angle 2θ of the sample is 30° or less, it is possible to reduce the influence of scattered The purpose is to provide an X-ray diffraction method that can perform analysis.

課題を解決する為の 段 上記した目的を達成するために本発明に係るX線回折方
法は、基板上に形成された試料にX線を照射し、回折さ
れたX線を取り出して前記試料の結晶構造を解析するX
線回折方法において、β=2θ−α(2θ:試料の回折
角、β X線の基板に対する入射角)で表わされるX線
取り出し角aを、0°より大きくかっ5°以下に設定す
ることを特徴としている。
Steps for Solving the Problems In order to achieve the above-mentioned objects, the X-ray diffraction method according to the present invention irradiates a sample formed on a substrate with X-rays, extracts the diffracted X-rays, and extracts the diffracted X-rays from the sample. X to analyze crystal structure
In the line diffraction method, the X-ray extraction angle a expressed by β = 2θ - α (2θ: diffraction angle of the sample, β the incident angle of X-rays to the substrate) is set to be greater than 0° and less than 5°. It is a feature.

作置 上記した方法によれば、β=20−α(2θ:試料の回
折角、β:X線の基板に対する入射角)で表わされるX
線取り出し角αを、0°より大きくかつ5°以下に設定
しているので、X線侵入深さが小さく抑えられると共に
前記入射角βが大きくなり、試料表面における入射X線
に基づく散乱X線が抑制される。従って試料の回折プロ
フィールが高感度にしかも正確に得られることとなる。
According to the method described above,
Since the beam extraction angle α is set to be greater than 0° and less than 5°, the X-ray penetration depth is kept small and the incident angle β becomes large, so that the scattered X-rays based on the incident X-rays on the sample surface are suppressed. is suppressed. Therefore, the diffraction profile of the sample can be obtained with high sensitivity and accuracy.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

試料表面及び界面での反射、屈折を無視すると、X線侵
入深さt、の入射角依存性は次式(2)%式% μ:試料のX線吸収係数 β:Xlaの基板に対する入射角 α:X線取り出し角 をそれぞれ表わしている。
Ignoring reflection and refraction at the sample surface and interface, the dependence of the X-ray penetration depth t on the angle of incidence is expressed by the following formula (2): % μ: X-ray absorption coefficient of the sample β: Incident angle of Xla with respect to the substrate α: represents the X-ray extraction angle.

X線取り出し角aを固定し、X線の入射角βを変化させ
たときのXll侵入深さt2を(2)式を用いて計算し
た結果を第6図に示す。なお、試料はAuとした。
FIG. 6 shows the results of calculating the Xll penetration depth t2 using equation (2) when the X-ray extraction angle a is fixed and the X-ray incident angle β is varied. Note that the sample was Au.

第6図から明らかなように、X線取り出し角αを固定す
ると、X線侵入深さt、はX線の基板に対する入射角β
によって変化する。これは逆にX線侵入深さ1pが、X
線取り出し角αで制御できることを示している。
As is clear from FIG. 6, when the X-ray extraction angle α is fixed, the X-ray penetration depth t is equal to the incident angle β of the X-ray on the substrate.
It changes depending on. Conversely, the X-ray penetration depth 1p is
This shows that it can be controlled by the wire take-off angle α.

一方、第7図は試料10表面に全反射臨界角β0と同じ
角度で入射X tra rを照射したときの様子を示し
た模式図であり、全反射臨界角β。はrP、Wobra
uschek et al、、Anal、chem、、
47(19751852」より次式(3)で示される。
On the other hand, FIG. 7 is a schematic diagram showing the situation when the surface of the sample 10 is irradiated with incident X tra r at the same angle as the critical angle β0 of total reflection. is rP, Wobra
uschek et al,,Anal,chem,,
47 (19751852), it is expressed by the following equation (3).

2ρ βe 二(5,4×1O10−コーえ21 ’/2−(
3)但し、ρ;試料の密度(g/cm’1 2:試料の原子番号 A:試料の原子量 え、入射X線の波長(cm) をそれぞれ表わしている。
2ρ βe 2(5,4×1O10-Koe21'/2-(
3) However, ρ: the density of the sample (g/cm'1) 2: the atomic number of the sample A: the atomic weight of the sample, and the wavelength (cm) of incident X-rays, respectively.

入射X線rの入射角がこの全反射臨界角β。よりも大き
い場合は入射X線rは試料10内部に侵入し、回折X線
dと散乱X線Sとを生じる。またX線の入射角βがX線
取り出し角aよりも小さい場合、つまり2θ=15°程
度のときは、第11図に示したように試料10表面の凹
凸に起因する散乱X線SがX線検出器に入り、バックグ
ラウンド強度が増大して測定精度が低下する。このよう
な散乱X線Sは、第8図(a)、 (b)に示したよう
にX線の入射角βをβ1からβ2へと大きくして、試料
10表面の凹凸による散乱X線Sを抑えることによって
低下する。しかしながら入射角βが大きくなるに従いX
線侵入深さ1pも大きくなるため、基板11上に形成さ
れた薄膜を試料10として測定する場合においては、薄
膜試料lOからだけでなく基板11からの回折X 4?
1 dも生しることとなり、入射角βを大きく設定する
方法は薄膜試料10の構造解析には適さない。
The angle of incidence of the incident X-ray r is this total reflection critical angle β. If it is larger than , the incident X-ray r penetrates into the sample 10 and generates diffracted X-rays d and scattered X-rays S. Furthermore, when the incident angle β of the X-ray is smaller than the X-ray extraction angle a, that is, when 2θ=15°, the scattered X-rays S due to the unevenness of the surface of the sample 10 are rays into the detector, increasing the background intensity and reducing measurement accuracy. Such scattered X-rays S are generated by increasing the incident angle β of the X-rays from β1 to β2 as shown in FIGS. 8(a) and 8(b). It decreases by suppressing the However, as the angle of incidence β increases,
Since the line penetration depth 1p also increases, when measuring a thin film formed on the substrate 11 as the sample 10, the diffraction X 4?
1 d, and the method of setting the incident angle β to a large value is not suitable for structural analysis of the thin film sample 10.

そこで上記とは逆に、X線取り出し角αをO。Therefore, contrary to the above, the X-ray extraction angle α is set to O.

より大きくかつ5°以下という小さな角度に設定するこ
とにより、X線の入射角βをある程度大きくして回折X
線dを取り出せば、X線侵入深さt。
By setting the angle to be larger and as small as 5° or less, the incident angle β of the X-ray can be increased to a certain extent and the diffraction
If we take out the line d, the X-ray penetration depth is t.

が小さく抑えられると共に、試料10表面の凹凸による
散乱X !li! sが抑制されることとなり、試料1
0の回折プロフィールが高感度にしかも正確に得られる
こととなる。
is suppressed to a small value, and the scattering due to the unevenness of the surface of the sample 10, X! li! s is suppressed, and sample 1
A zero diffraction profile can be obtained with high sensitivity and accuracy.

!国舅 以下、本発明に係るX線回折方法を図面に基づいて説明
する6なお、従来例と同一機能を有する構成部品には同
一の符合を付すこととする。
! In the following, the X-ray diffraction method according to the present invention will be explained based on the drawings. Note that components having the same functions as those of the conventional example are given the same reference numerals.

第1図は本発明に係るX線回折方法を実施するための装
置の一実施例を模式的に示した斜視図であり、図中12
はX線源を示している。X線源12から発生した入射X
線rはソーラースリット13を通り、例えば薄膜等の試
料10表面に入射する、試料10表面で回折された回折
X線dは第1のスリット14、ソーラースリット15、
第2のスリット16を順次通過し、モノクロメータ17
で反射された後、第3のスリット18を通過してX線検
出器19に到達する。
FIG. 1 is a perspective view schematically showing an embodiment of an apparatus for carrying out the X-ray diffraction method according to the present invention.
indicates an X-ray source. Incident X generated from the X-ray source 12
The ray r passes through the Solar slit 13 and enters the surface of the sample 10, such as a thin film.
It sequentially passes through the second slit 16, and the monochromator 17
, passes through the third slit 18 and reaches the X-ray detector 19 .

上記した装置においては、回折されたX線dの取り出し
角αが0°より大きくかつ5°以下という小さな角度に
予め設定されている。従って試料10への入射X線rの
侵入深さを制限でき、薄膜等の試料lOの回折X線を大
きな回折強度で得ることが可能となっている。またX線
取り出し角αが小さな角度に設定されているため、試料
10の回折角2θが小さい場合でもX線の基板11に対
する入射角β(β=20−〇)を大きくとることができ
、試料10表面の凹凸に起因する散乱X線Sを抑えるこ
とができるようになっている。
In the above-described apparatus, the extraction angle α of the diffracted X-ray d is set in advance to a small angle of greater than 0° and less than 5°. Therefore, the penetration depth of the incident X-rays r into the sample 10 can be limited, and it is possible to obtain diffracted X-rays from the sample IO, such as a thin film, with a high diffraction intensity. In addition, since the X-ray extraction angle α is set to a small angle, even if the diffraction angle 2θ of the sample 10 is small, the incident angle β (β = 20−〇) of the X-rays to the substrate 11 can be set large. 10. Scattered X-rays S caused by surface irregularities can be suppressed.

なお入射側及び受光側の2種類のソーラースリット13
.15は、いずれも横及び縦の発散を抑えて角度分解能
の低下を防止する働きを有しており、モノクロメータ1
7は蛍光X線を除去しバックグラウンド強度を下げる効
果を有している。
There are two types of solar slits 13 on the incident side and the light receiving side.
.. 15 has the function of suppressing horizontal and vertical divergence to prevent a decrease in angular resolution, and monochromator 1
7 has the effect of removing fluorescent X-rays and lowering the background intensity.

次に上記した実施例に係る方法により、ガラス基板上に
形成されたAuを試料10として回折X##dを測定し
た結果について説明する。第2図〜第4図はそれぞれ試
料10の回折角2θが30°、25°、20°であると
きのX線取り出し角αと検出されたX線の強度工との関
係を示したグラフである。第2図〜第4図から明らかな
ように、試料10の回折角2θが小さ(なるにつれて、
またX線取り出し角αが大きくなるにつれて検出される
X線の強度Iは強くなり、X線検出器19に試料10表
面の凹凸に起因する散乱X線が入っていることがわかる
。しかしながら試料10の回折角2θが20°でxIJ
i!取り出し角が3″′の場合でも、検出された散乱X
線の強度■は5 cps程度である。これに対して、従
来方法によりX線の入射角βが3°である場合のX線の
強度Iを測定すると、第12図に示したように試料10
の回折角2θが20°のときの散乱X線の強度■は45
cpsにもなる。
Next, the results of measuring diffraction X##d using the method according to the above-described embodiment using Au formed on a glass substrate as sample 10 will be explained. Figures 2 to 4 are graphs showing the relationship between the X-ray extraction angle α and the detected X-ray intensity when the diffraction angle 2θ of sample 10 is 30°, 25°, and 20°, respectively. be. As is clear from FIGS. 2 to 4, the diffraction angle 2θ of the sample 10 becomes smaller (as it becomes smaller,
Furthermore, as the X-ray extraction angle α increases, the intensity I of the detected X-rays increases, indicating that the X-ray detector 19 contains scattered X-rays due to the unevenness of the surface of the sample 10. However, when the diffraction angle 2θ of sample 10 is 20°, xIJ
i! Even when the extraction angle is 3″′, the detected scattering
The intensity of the line ■ is about 5 cps. On the other hand, when the X-ray intensity I is measured using the conventional method when the incident angle β of the X-ray is 3°, as shown in FIG.
The intensity of scattered X-rays when the diffraction angle 2θ is 20° is 45
It also becomes cps.

以上のことからも上記した実施例に係る方法を用いるこ
とによってX線侵入深さが抑えられ、試料10からの回
折X線を大きな回折強度で得ることができると共に、試
料10表面の凹凸に起因する散乱X線を著しく減少させ
ることができることがわかる。従って上記した実施例に
係る方法は、試料100回折プロフィールを高感度にし
かも正確に得る上で有効である。
From the above, by using the method according to the embodiment described above, the penetration depth of X-rays can be suppressed, and the diffraction X-rays from the sample 10 can be obtained with a large diffraction intensity. It can be seen that the scattered X-rays caused by this method can be significantly reduced. Therefore, the method according to the embodiment described above is effective in obtaining a 100-sample diffraction profile with high sensitivity and accuracy.

光咀五文逮 以上詳述したように本発明に係るX線回折方法にあって
は、β:2θ−α(2θ:試料の回折角、β:X線の基
板に対する入射角)で表わされるX線取り出し角αを、
Ooより大きくかつ5゜以下に設定しているので、試料
の回折角2θが30゛以下の場合でも、試料表面の凹凸
に起因する散乱X線による影響を少なくすることができ
、試料が100人程度の薄膜であっても試料の回折プロ
フィールを高感度にしかも正確に得ることができる。従
って試料の構造解析を精度良くかつ正確に行なうことが
可能となる。
As detailed above, in the X-ray diffraction method according to the present invention, β: 2θ - α (2θ: diffraction angle of the sample, β: incident angle of the X-ray to the substrate) The X-ray extraction angle α is
Since it is set to be larger than Oo and 5° or less, even if the diffraction angle 2θ of the sample is 30° or less, the influence of scattered X-rays caused by unevenness on the sample surface can be reduced, and even if the sample has 100 people. Even with a relatively thin film, the diffraction profile of the sample can be obtained with high sensitivity and accuracy. Therefore, it becomes possible to perform structural analysis of the sample with high precision and accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るX線回折方法を実施するための装
置の一実施例を模式的に示した斜視図、第2図〜第4図
はそれぞれ試料の回折角2θが30°、25°、20°
であるときのX線取り出し角aと検出されたX線の強度
Iとの関係を示したグラフ、第5図は本発明に係るX線
回折方法を説明するための模式図、第6図は(2)式を
用いてx#j!侵入深さを計算した結果を示したグラフ
、第7図は試料表面に全反射臨界角Beと同じ角度で入
射xIaを照射したときの様子を示した模式図、第8図
は(a)、(b)はX線の入射角βと散乱X線との関係
を示した模式図、第9図は従来のデイフラクトメーター
法を説明するための模式図、第1O図は薄膜のX線回折
を測定するための従来方法を示した模式図、第11図は
試料の回折角2θが30’以下である場合の試料表面の
凹凸に起因する散乱X線の影響を示した模式図、第12
図は従来方法によりX線の入射角βが3°であるときの
X、ljj!の強度Iを測定した結果を示したグラフで
ある。 10・・・試料 11・・・基板 r・・・入射X線 d・・・回折X線 特許出願人:住友金属工業株式会社 代  理  人:弁理士  弁内 龍ニ第5図 u 第6図 第7図 第8図 第9図 第10図 第11図 +5.0      20.0      25.0 
     30.0口折角 2e
FIG. 1 is a perspective view schematically showing an embodiment of an apparatus for carrying out the X-ray diffraction method according to the present invention, and FIGS. °, 20°
A graph showing the relationship between the X-ray extraction angle a and the detected X-ray intensity I when Using equation (2), x#j! A graph showing the results of calculating the penetration depth, Figure 7 is a schematic diagram showing the situation when the sample surface is irradiated with incident xIa at the same angle as the critical angle Be of total reflection, Figure 8 is (a), (b) is a schematic diagram showing the relationship between the incident angle β of X-rays and scattered X-rays, Figure 9 is a schematic diagram to explain the conventional diffractometer method, and Figure 1O is the X-ray diffraction of a thin film. Fig. 11 is a schematic diagram showing the conventional method for measuring .
The figure shows X, ljj! when the incident angle β of X-rays is 3° using the conventional method. 3 is a graph showing the results of measuring the intensity I of . 10... Sample 11... Substrate r... Incident X-ray d... Diffraction Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 +5.0 20.0 25.0
30.0 turn angle 2e

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に形成された試料にX線を照射し、回折さ
れたX線を取り出して前記試料の結晶構造を解析するX
線回折方法において、 β=2θ−αで表わされるX線取り出し角αを、0°よ
り大きくかつ5°以下に設定することを特徴とするX線
回折方法。 但し、2θ:試料の回折角 β:X線の基板に対する入射角 をそれぞれ表わす。
(1) A sample formed on a substrate is irradiated with X-rays, and the diffracted X-rays are extracted to analyze the crystal structure of the sample.
An X-ray diffraction method characterized in that an X-ray extraction angle α expressed by β=2θ−α is set to be greater than 0° and less than 5°. However, 2θ: diffraction angle of the sample β: represents the incident angle of X-rays to the substrate, respectively.
JP2179988A 1990-07-06 1990-07-06 X-ray diffracting method Pending JPH04198745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179988A JPH04198745A (en) 1990-07-06 1990-07-06 X-ray diffracting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179988A JPH04198745A (en) 1990-07-06 1990-07-06 X-ray diffracting method

Publications (1)

Publication Number Publication Date
JPH04198745A true JPH04198745A (en) 1992-07-20

Family

ID=16075497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179988A Pending JPH04198745A (en) 1990-07-06 1990-07-06 X-ray diffracting method

Country Status (1)

Country Link
JP (1) JPH04198745A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098091A (en) * 1998-09-28 2000-04-07 Rigaku Corp Solar slit and x-ray device
JP2009085668A (en) * 2007-09-28 2009-04-23 Rigaku Corp X-ray diffraction device and x-ray diffraction method
JP2009085669A (en) * 2007-09-28 2009-04-23 Rigaku Corp X-ray diffraction device and x-ray diffraction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098091A (en) * 1998-09-28 2000-04-07 Rigaku Corp Solar slit and x-ray device
JP2009085668A (en) * 2007-09-28 2009-04-23 Rigaku Corp X-ray diffraction device and x-ray diffraction method
JP2009085669A (en) * 2007-09-28 2009-04-23 Rigaku Corp X-ray diffraction device and x-ray diffraction method

Similar Documents

Publication Publication Date Title
KR101275532B1 (en) Apparatus and method for analysis of a sample having a surface layer
US7231016B2 (en) Efficient measurement of diffuse X-ray reflections
JP2848751B2 (en) Elemental analysis method
JPH04198745A (en) X-ray diffracting method
US9851313B2 (en) Quantitative X-ray analysis—ratio correction
JP3968350B2 (en) X-ray diffraction apparatus and method
Voegeli et al. A quick convergent-beam laboratory X-ray reflectometer using a simultaneous multiple-angle dispersive geometry
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP2777147B2 (en) Surface analyzer
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
JP2912127B2 (en) X-ray fluorescence analysis method
JPH02107952A (en) X-ray diffraction measurement for powder
JP2961881B2 (en) X-ray diffraction method for measuring film thickness
Malaurent et al. In situ X-ray multilayer reflectometry based on the energy dispersive method
JP3777581B2 (en) Film thickness measurement method using X-ray diffraction method
JP3840503B2 (en) X-ray analysis method and apparatus
JP2880381B2 (en) X-ray fluorescence analyzer
WO2020003675A1 (en) Total reflection x-ray fluorescence analysis device and measuring method
JPS6353457A (en) 2-d scan type state analyzer
JPH09304308A (en) Analytical method for thin-film structure and its device
JPH0293355A (en) Apparatus for x-ray fluorescence analysis of angle of total reflection
JPH04329347A (en) Thin film sample x-ray diffracting device
JPH0933451A (en) Total reflection x-ray spectrometric apparatus of energy angle dispersion type
JPH0344544A (en) Measuring method for internal strain of crystal substrate