JPH02107952A - X-ray diffraction measurement for powder - Google Patents

X-ray diffraction measurement for powder

Info

Publication number
JPH02107952A
JPH02107952A JP63260213A JP26021388A JPH02107952A JP H02107952 A JPH02107952 A JP H02107952A JP 63260213 A JP63260213 A JP 63260213A JP 26021388 A JP26021388 A JP 26021388A JP H02107952 A JPH02107952 A JP H02107952A
Authority
JP
Japan
Prior art keywords
angle
rays
ray
sample
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63260213A
Other languages
Japanese (ja)
Inventor
Toru Takayama
透 高山
Yoshiro Matsumoto
松本 義朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63260213A priority Critical patent/JPH02107952A/en
Publication of JPH02107952A publication Critical patent/JPH02107952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement of a diffraction profile of a small amount (about 0.1-1mg) of a sample at a high accuracy by setting an angle of incidence of X rays into a sample support substrate at the sum of an angle preset and a critical angle of the sample support substrate. CONSTITUTION:X rays R1 generated from an X-ray source 2 is incident into a total reflection mirror 1 at an angle alpha passing through a double-crystal spectroscope 3. X rays R3 reflected are detected 6 as voltage pulse to be amplified 12 and after a noise is removed with a pulse height analyzer 13, they are counted 14 to be sent to an arithmetic circuit 15. X rays R6 diffracted by a sample C adhering to the mirror 1 and detected 8 likewise and counted 11 to be sent to the circuit 15. The circuit 15 computes a critical angle alphac from the intensity of the reflected X rays and the angle alpha to determine a sum alpha=alphac+DELTAalpha with an angle DELTAalpha preset and sends a control signal to an X-Y stage 4. Detectors 6 and 8 are arranged in a triply coaxial vertical type goniometer separately to vary the angle alpha and an angle for measuring intensities of reflected and diffracted X rays roughly centering around the sample C continuously by a signal of the circuit 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微少量粉末試料の結晶構造を解析するために
用いるX線回折測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray diffraction measurement method used to analyze the crystal structure of a minute powder sample.

〔従来の技術] 従来、微少量試料の成分分析を非破壊的に行う方法とし
て全反射蛍光X線分析法が用いられている(X線分析の
進歩、[1(198B)217)。
[Prior Art] Conventionally, total internal reflection fluorescent X-ray analysis has been used as a method for nondestructively analyzing the components of a minute sample (Advances in X-ray Analysis, [1 (198B) 217).

全反射蛍光X線分析法は蛍光X線分析装置の全反射ミラ
ー上に試料を付着させ、全反射ミラーにおけるX線の入
射が全反射を起こす臨界角以下の入射角で前記ミラー上
にX線を照射し試料から発生する試料含有元素の蛍光X
線を検出する方法である。
In the total internal reflection X-ray fluorescence analysis method, a sample is deposited on the total internal reflection mirror of a fluorescent X-ray analyzer, and the X-rays are directed onto the mirror at an incident angle below the critical angle at which the incident X-rays on the total internal reflection mirror cause total internal reflection. Fluorescence X of the elements contained in the sample generated from the sample when irradiated with
This is a method of detecting lines.

一方、試料の結晶構造の解析としてはX線回折法が用い
られており、θ−2θ法であるデイフラクトメーター法
、写真を使ったX線回折法、視斜角入射xIa法等が知
られている。デイフラクトメーター法では、下記式(1
)に示すブラッグの式に基づいてX線回折強度と回折角
2θのプロフィールとを求め未知物質の同定、格子定数
、歪等の測定を行っている。
On the other hand, X-ray diffraction is used to analyze the crystal structure of a sample, and known methods include the diffractometer method, which is the θ-2θ method, the X-ray diffraction method using photographs, and the oblique incidence xIa method. ing. In the diffractometer method, the following formula (1
) The X-ray diffraction intensity and diffraction angle 2θ profile are determined based on Bragg's equation, and unknown substances are identified and lattice constants, strain, etc. are measured.

2dsinθ=nλ   −(1) 但し d:格子面間隔 θニブラッグ角 n:反射次数 λ:使用したX線の波長 しかし、デイフラクトメーター法は微少量試料の場合X
線回折強度が減少し、X線回折検出器により直接のX線
回折プロフィールが得られないという問題があった。 
そこで、微少量試料のX線回折プロフィールを得るため
に高感度フィルムを用いデバイシェーラー法により写真
撮影したフィルムの濃淡度及び回折角2θの関係からミ
クロフォトメータを用い、X線回折プロフィールを得る
写真法X線回折が行われている(耐火物、 F (19
86)686)。
2dsinθ=nλ - (1) where d: lattice spacing θ Nibragg angle n: reflection order λ: wavelength of the X-ray used However, the diffractometer method is
There was a problem in that the ray diffraction intensity decreased and a direct X-ray diffraction profile could not be obtained using an X-ray diffraction detector.
Therefore, in order to obtain the X-ray diffraction profile of a very small amount of sample, a high-sensitivity film was used to take a photograph using the Debye-Scherer method, and based on the relationship between the density of the film and the diffraction angle 2θ, a microphotometer was used to obtain the X-ray diffraction profile. Normal X-ray diffraction is performed (refractories, F (19
86)686).

視斜角入射X線回折法は、デイフラクトメーター法にお
いて視斜角(試料面に対してすれすれに浅く入射する角
度)でX線を入射して薄膜及び薄層の構造解析を行うも
のであり1.試料表面近傍の多結晶相のX線回折プロフ
ィールを得ることができる(^PP1.5urf、Sc
i、26  (1986) 12)。
The oblique angle incidence X-ray diffraction method is a diffractometer method in which X-rays are incident at an oblique angle (an angle of shallow incidence that almost approaches the sample surface) to analyze the structure of thin films and thin layers. 1. The X-ray diffraction profile of the polycrystalline phase near the sample surface can be obtained (^PP1.5urf, Sc
i, 26 (1986) 12).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した全反射蛍光X線装置における試料の分析測定で
は、微少量で測定できるという利点を有するが、元素の
組成分析に限られ試料の結晶構造までは解析できない。
The analytical measurement of a sample using the total internal reflection fluorescent X-ray apparatus described above has the advantage of being able to measure a minute amount, but is limited to elemental composition analysis and cannot analyze the crystal structure of the sample.

また、デイフラクトメーター法においては、X線回折に
よる結晶構造解析が行えるが、試料が微少量の場合、写
真を使ったX線回折法に依らなければならず、測定の手
間がかかるため常用的ではない。さらに、視斜角入射X
線回折法では、薄膜及び薄層の構造解析には有効である
が、微少量粉末試料に対しては、X線光学系の適正条件
設定が必要であるため、この方法の適用はできなかった
In addition, in the diffractometer method, crystal structure analysis can be performed using X-ray diffraction, but if the sample is small, it is necessary to rely on the X-ray diffraction method using photographs, which is time-consuming and therefore not commonly used. isn't it. Furthermore, oblique angle incidence X
Linear diffraction is effective for structural analysis of thin films and thin layers, but this method cannot be applied to microscopic powder samples because it requires appropriate conditions for the X-ray optical system. .

本発明は斯かる事情に鑑みてなされたものであり、0.
1〜1mg程度の非常に少量の試料の回折プロフィール
を高感度にしかも正確に測定できる粉末のX線回折測定
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the present invention has been made in view of the above circumstances.
It is an object of the present invention to provide a powder X-ray diffraction measurement method that allows highly sensitive and accurate measurement of the diffraction profile of a very small sample amount of about 1 to 1 mg.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る粉末のX線回折測定方法は、ゴニオメータ
−の試料支持台上の試料支持基質に付着させた粉末試料
にX線を照射し、得られた回折X線の強度に基づいて前
記粉末試料の結晶構造を同定する方法において、前記試
料支持基質にX線を照射し、X線入射角と反射X線強度
との関係から前記試料支持基質の臨界角αcを求め、試
料支持基質へのX線の入射角αを予め設定した角度Δα
との和α=αゎ+Δαに設定することを特徴とする。
The powder X-ray diffraction measuring method according to the present invention irradiates a powder sample attached to a sample support substrate on a sample support stand of a goniometer with X-rays, and based on the intensity of the obtained diffracted X-rays, the powder In the method of identifying the crystal structure of a sample, the sample supporting substrate is irradiated with X-rays, the critical angle αc of the sample supporting substrate is determined from the relationship between the X-ray incident angle and the reflected X-ray intensity, and the critical angle αc of the sample supporting substrate is determined. Angle Δα where the incident angle α of X-rays is set in advance
It is characterized by setting the sum α=αゎ+Δα.

〔作用〕[Effect]

本発明方法では、X線入射角を試料支持基質の全反射臨
界角近傍に設定するので、回折X線の検出を効率良く行
えると共に試料支持基質における散乱X線が抑制され、
微少量の試料の回折プロフィールを高感度にしかも正確
に得ることができる。
In the method of the present invention, since the X-ray incident angle is set near the critical angle of total reflection of the sample support substrate, diffracted X-rays can be efficiently detected and scattered X-rays in the sample support substrate are suppressed.
Diffraction profiles of minute amounts of samples can be obtained with high sensitivity and accuracy.

〔原理〕〔principle〕

第4図は1000人のFeからなる平板試料の表面にお
ける回折X線強度の理論値IrについてX線を視斜角で
入射させた場合とθ−2θ法すなわちデイフラクトメー
ター法の場合とを比較したグラフであり、横軸に回折角
2θ度また縦軸に回折X線強度1rをとって示しである
。前記理論値1rはPe1serら(X−ray Di
ffraction’ by Polycrystal
lineMaterials、In5t、 Phys、
+ London、(1955)159 )による下記
式(2) %式%) 但し ■o:吸収がないときの試料の 単位面積あたりの回折X 線強度 S:入射X線束の断面積 μ:試料の線吸収係数 α:試料表面と入射X線とが なす角 β:試料表面と回折X線とが なす角 2θ:回折角α十β L:試料厚さ (膜厚) を用いることにより求めることができ、第4図ではX線
を視斜角で入射させた場合の入射角α−ピ2°、  4
″、 10″、 20°、 40’ 、の夫々における
演算結果を実線で表し、θ−2θ法を用いた場合の演算
結果を破線で表している。
Figure 4 compares the theoretical value Ir of the diffracted X-ray intensity on the surface of a flat sample made of 1000 Fe specimens when the X-ray is incident at an oblique angle and when the θ-2θ method, that is, the diffractometer method. This graph shows the diffraction angle 2θ degrees on the horizontal axis and the diffraction X-ray intensity 1r on the vertical axis. The theoretical value 1r was determined by Pe1ser et al. (X-ray Di
ffraction' by Polycrystal
lineMaterials, In5t, Phys,
+ London, (1955) 159) The following formula (2) % formula %) However, o: Diffraction X-ray intensity per unit area of the sample when there is no absorption S: Cross-sectional area of the incident X-ray flux μ: Line of the sample Absorption coefficient α: Angle between the sample surface and the incident X-ray β: Angle between the sample surface and the diffracted X-ray 2θ: Diffraction angle α + β L: Sample thickness (film thickness) , In Fig. 4, when the X-ray is incident at an oblique angle, the incident angle α-pi 2°, 4
The calculation results at ``, 10'', 20°, and 40' are shown by solid lines, and the calculation results when the θ-2θ method is used are shown by broken lines.

・・・(2) このグラフから明らかな如く、一定厚みの薄膜に対して
視斜角一定人射における回折X線強度1rは回折角2θ
によらず一定した強度を示しており、また入射角αが4
0’ 、 20°、10°・・・と小さくなる程回折X
線強度Irが大きくなることがわかる。
...(2) As is clear from this graph, the diffracted X-ray intensity 1r for a thin film with a constant thickness and a constant oblique angle is determined by the diffraction angle 2θ.
It shows a constant intensity regardless of the angle of incidence α
The smaller the diffraction X becomes, 0', 20°, 10°...
It can be seen that the line intensity Ir increases.

方、θ−2θ法おける回折X線強度1rは回折角2θが
小さくなるのに反比例して大きくなるが、視斜角入射の
α−1°又はα−2°はど大きい値を示していない。こ
のことからX線の入射角を小さくして一定に照射すれば
、試料の表面近傍層の回折X線強度が非常に高感度で得
られることがわかる。
On the other hand, the diffracted X-ray intensity 1r in the θ-2θ method increases inversely as the diffraction angle 2θ decreases, but it does not show a large value at α-1° or α-2° at oblique angle of incidence. . This shows that if the incident angle of X-rays is made small and the X-rays are irradiated at a constant rate, the diffracted X-ray intensity of the layer near the surface of the sample can be obtained with extremely high sensitivity.

第5図は表面を鏡面研磨した基質1にX線R2を照射し
たときの模式図であり、全反射臨界角αゎは(Anal
、 Chem、、4:L、(1975) 852 )に
より下記式(3)で与えられることが知られている。
FIG. 5 is a schematic diagram when X-ray R2 is irradiated to the substrate 1 whose surface has been mirror-polished, and the total reflection critical angle αゎ is (Anal
, Chem, 4:L, (1975) 852), it is known that it is given by the following formula (3).

Zρ αo〜(5,4Xl0IOλ2)””  ・(3)但し
 ρ:基質の密度(gram” )Z:基質の原子番号 A:基質の原子量 λ:入射X線の波長(c+n) 第5図(ハ)に示した如く、X線入射角αが全反射臨界
角αcより大きい場合、X線R2が基質Iに深く進入す
るため散乱X線が多く生ずる。また第5図(イ)に示し
た如くX線入射角αが全反射臨界角αcより小さい場合
、基質1上で入射X線R2は全反射される。第6図はこ
の場合において基質1上の表面Pに試料が存在している
ときの入射X線R2の回折状況を示す模式図であり、こ
の図に表される如く、試料Cで回折したX線には基質1
の反射面Pに対して角度αで入射した入射X線R2が、
反射面Pにおいて角度αで反射し、その反射X線R3が
さらに基質1上の試料Cに投射されて生じた回折X線R
4と、基質1上の試料Cに直接入射したX線R9が投射
されて生じた回折X線R6とに分別される。ここで試料
Cに対して直接入射したX線R6の入射角をθとすると
直接入射したX1%R,で住しる回折X線R6の回折角
は2θであり、反射面Pにおける反射X線R3で生しる
回折X線R4の回折角は2θ+2αであ従って反射面P
における反射X線R6により生じる回折角は2αだけ高
角度側にずれ、第7図のような正規分布を表す回折プロ
フィールが得られる。第7図において横軸は回折角2θ
、縦軸はX線回折強度を示しており、図中実線で表され
ている(二)は反射X線による回折線であり、同しく実
線で表されている(ホ)は入射X線による回折線であり
、破線で表されている(へ)は実測される回折プロフィ
ールである。図からも明らかな如く、反射X線による回
折線(ニ)のX線回折強度が最大であるときの回折角2
θは入射X線による回折線(ホ)のX線回折強度が最大
であるときの回折角2θよりも高角度側にずれ、実測さ
れる回折プロフィール(へ)は入射X線による回折線(
ホ)に反射X線による回折線(ニ)を重畳した形態を有
している。この反射X線による回折X線は演算処理によ
り除去可能であるが、本発明者が実験により見出した知
見に基づいてX線入射角αを全反射臨界角αcよりΔα
−0,05〜0.1°程度大きくすれば、反射X線によ
って生ずる回折X線が除去され、演算処理を行わずに入
射X線による粉末試料の回折X線を効率良く検出できる
ことが判明している。
Zρ αo〜(5,4Xl0IOλ2)"" ・(3) However, ρ: Density of substrate (gram") Z: Atomic number of substrate A: Atomic weight of substrate λ: Wavelength of incident X-ray (c+n) ), when the X-ray incident angle α is larger than the total reflection critical angle αc, the X-rays R2 deeply enter the substrate I, resulting in a large amount of scattered X-rays.Also, as shown in FIG. When the X-ray incident angle α is smaller than the total reflection critical angle αc, the incident X-ray R2 is totally reflected on the substrate 1. In this case, FIG. is a schematic diagram showing the diffraction situation of incident X-ray R2, and as shown in this diagram, the X-ray diffracted by sample C has a substrate 1.
The incident X-ray R2 incident at an angle α with respect to the reflecting surface P is
Diffracted X-rays R are reflected at an angle α on the reflecting surface P, and the reflected X-rays R3 are further projected onto the sample C on the substrate 1.
4 and diffracted X-rays R6 generated by the projection of the X-rays R9 directly incident on the sample C on the substrate 1. Here, if the incident angle of the directly incident X-ray R6 to the sample C is θ, the diffraction angle of the directly incident diffracted X-ray R6 at X1%R is 2θ, and the reflected X-ray at the reflecting surface P is The diffraction angle of the diffracted X-ray R4 generated at R3 is 2θ+2α, so the reflection surface P
The diffraction angle caused by the reflected X-ray R6 is shifted by 2α to the higher angle side, and a diffraction profile representing a normal distribution as shown in FIG. 7 is obtained. In Figure 7, the horizontal axis is the diffraction angle 2θ
, the vertical axis shows the X-ray diffraction intensity, the solid line (2) in the figure is the diffraction line due to reflected X-rays, and the solid line (E) is the diffraction line due to incident X-rays. This is a diffraction line, and the dashed line (h) is the actually measured diffraction profile. As is clear from the figure, the diffraction angle 2 when the X-ray diffraction intensity of the diffraction line (d) due to reflected X-rays is maximum
θ is shifted to the higher angle side than the diffraction angle 2θ when the X-ray diffraction intensity of the diffraction line (E) due to the incident X-rays is maximum, and the actually measured diffraction profile (E) is
It has a form in which diffraction lines (d) due to reflected X-rays are superimposed on (e). The diffracted X-rays due to the reflected X-rays can be removed by arithmetic processing, but based on the knowledge found through experiments by the present inventor, the X-ray incident angle α is set by Δα from the total reflection critical angle αc.
It has been found that if the angle is increased by about -0.05 to 0.1 degrees, the diffracted X-rays generated by the reflected X-rays are removed, and the diffracted X-rays of the powder sample caused by the incident X-rays can be efficiently detected without performing calculation processing. ing.

このことは、入射X線が基質に深く侵入しない(1μm
程度)ために、基質による散乱X線、蛍光X線などに起
因するノイズやハックグラウンド強度を低減させること
ができ、また、全反射現像による回折X線を除去できる
ためと推定される。
This means that the incident X-rays do not penetrate deep into the matrix (1 μm
This is presumed to be due to the fact that noise and hackground intensity caused by X-rays scattered by the substrate, fluorescent X-rays, etc. can be reduced, and diffracted X-rays due to total internal reflection development can be removed.

従って、基質1上に付着させた粉末試料の回折X線を効
率よく検出し、かつX線が基質に深く進入することによ
り生ずる散乱しX線を少なくすくためには、基質表面近
傍すなわち第5図(ロ)で示す如くX線入射角αがα−
αcであるよりΔα=0.05〜0.1°程度大きくす
ることが有効となる。
Therefore, in order to efficiently detect the diffracted X-rays of the powder sample deposited on the substrate 1 and to reduce the amount of scattered X-rays caused by the deep penetration of the X-rays into the substrate, it is necessary to As shown in figure (b), the X-ray incident angle α is α−
It is effective to make Δα=0.05 to 0.1° larger than αc.

なお、αcは前式(3)によっておおよその値をす推定
できるが、全反射面の光学系のずれ等装置的な誤差が生
じるため、測定にあたっては正確に求める必要があり、
全反射蛍光X線分析法(たとえば、X線分析の進歩、 
lu  (1988)  217.特開昭634781
7号)に記されている方法にしたがって反射X線強度か
らαcの値を求めるようにする。
Note that αc can be roughly estimated using the previous equation (3), but it must be determined accurately during measurement due to equipment errors such as deviations in the optical system of the total reflection surface.
Total internal reflection X-ray fluorescence spectrometry (e.g. advances in X-ray analysis,
lu (1988) 217. Japanese Patent Publication No. 634781
The value of αc is determined from the reflected X-ray intensity according to the method described in No. 7).

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る粉末のX線回折測定の実施方法を
示す模式図である。図中2はX!’ilを発生するX線
源であり、X線源部2のX線放出部分2aにはX線放出
の際に解放可能な遮蔽板2bが配設されている。、X線
源2で発生したX線R1は、X線をCod、 1等に単
色化する二結晶分光器3を通り、試料Cを付着させる試
料支持基質すなわち全反射ミラー1に角度αで入射させ
る。前記全反射ミラー1は試料支持台であるX−Yステ
ージ4に載置されている。
FIG. 1 is a schematic diagram showing a method of performing X-ray diffraction measurement of powder according to the present invention. 2 in the diagram is X! The X-ray source section 2 is an X-ray source that generates 'il, and an X-ray emitting portion 2a of the X-ray source section 2 is provided with a shielding plate 2b that can be released when emitting X-rays. , X-rays R1 generated by the X-ray source 2 pass through a double-crystal spectrometer 3 that monochromates the X-rays into Cod, 1, etc., and are incident at an angle α on the sample support substrate, that is, the total reflection mirror 1, on which the sample C is attached. let The total reflection mirror 1 is placed on an XY stage 4 which is a sample support.

第2図はX−Yステージ4に全反射ミラー1を載置した
状態を示す平面模式図であり、第3図は第2図の側面か
ら見た概略断面図である。第2図及び第3図に示す如く
微調整用の三同軸縦型ゴニオメータ−(図示せず)に配
設されている。XYステージ4は、試料Cを略中心とし
て時計回り方向すなわち白抜き矢印方向に回転可能な図
示していない試料台を内設し、さらに水平面において直
交するX軸方向、Y軸方向への移動が可能である。この
χ−Yステージ4に載置された全反射ミラー1において
反射したX線R3は反射χ線強度検出器6に付設したダ
ブルスリットコリメーター5を通り、検出器6にて電圧
パルスとして検出される。検出された電圧パルスは増幅
器12にて増幅され、波高分析器13によりノイズ等を
除去して一定範囲の波高のパルスだけが取り出される。
FIG. 2 is a schematic plan view showing a state in which the total reflection mirror 1 is placed on the X-Y stage 4, and FIG. 3 is a schematic cross-sectional view seen from the side of FIG. As shown in FIGS. 2 and 3, it is arranged in three coaxial vertical goniometers (not shown) for fine adjustment. The XY stage 4 includes a sample stage (not shown) that can rotate clockwise around the sample C, that is, in the direction of the outlined arrow, and can also move in the X-axis and Y-axis directions perpendicular to each other in a horizontal plane. It is possible. The X-ray R3 reflected by the total reflection mirror 1 placed on the χ-Y stage 4 passes through the double slit collimator 5 attached to the reflected χ-ray intensity detector 6, and is detected as a voltage pulse by the detector 6. Ru. The detected voltage pulse is amplified by an amplifier 12, and a pulse height analyzer 13 removes noise and the like and extracts only pulses with a certain range of wave heights.

そのパルスの数は計数器14で計数されて、演算回路1
5に送られる。
The number of pulses is counted by a counter 14, and the arithmetic circuit 1
Sent to 5.

一方、全反射ミラー1に付着した試料Cにおいて回折し
たX線R6は回折X線強度検出器8に付設したソーラー
スリット7を通り、検出器8で電圧パルスとして検出さ
れ、その値は反射X線検出の場合と同じく増幅器9.波
高分析器10.計数器11を経て演算回路15に送られ
る。演算回路15はノ々ルス値で入力された前記反射X
線強度及びχ線入射角αから臨界角αcを演算し、予め
設定した角度Δαとの和α=αc+Δαを求め、演算回
路15に接続しているX−Yステージ4に制御信号を送
る。ダブルスリットコリメーター5を付設している反射
χ線強度検出器6及びソーラースリット7を付設してい
る回折X線強度検出器8は微調整用の三同軸縦型ゴニオ
メータ−に夫々配設されており、前記ゴニオメータ−は
、x wAR2の入射角αと反射X線強度及び回折X線
強度を測定するための角度とを演算回路15の信号によ
り該試料Cを略中心として円周方向に連続的に変化させ
る。
On the other hand, the X-ray R6 diffracted by the sample C attached to the total reflection mirror 1 passes through the Solar slit 7 attached to the diffraction X-ray intensity detector 8, and is detected as a voltage pulse by the detector 8, and its value is As in the case of detection, amplifier 9. Wave height analyzer10. The signal is sent to the arithmetic circuit 15 via the counter 11. The arithmetic circuit 15 calculates the reflection
The critical angle αc is calculated from the ray intensity and the chi-ray incident angle α, and the sum α=αc+Δα with a preset angle Δα is determined, and a control signal is sent to the XY stage 4 connected to the calculation circuit 15. A reflection x-ray intensity detector 6 equipped with a double slit collimator 5 and a diffraction X-ray intensity detector 8 equipped with a solar slit 7 are respectively arranged in three coaxial vertical goniometers for fine adjustment. The goniometer continuously measures the incident angle α of x wAR2 and the angle for measuring the reflected X-ray intensity and the diffracted X-ray intensity in the circumferential direction with the sample C as the center based on the signal from the calculation circuit 15. change to

演算回路15はX線源2.二結晶分光器3にも接続して
おり、測定操作における制御信号を送っている。
The arithmetic circuit 15 is connected to the X-ray source 2. It is also connected to the two-crystal spectrometer 3, and sends control signals for measurement operations.

次に本発明の測定手順を具体的に説明する。Next, the measurement procedure of the present invention will be specifically explained.

入射源2からあらかしめ設定した出力で発生したX線R
,はたとえばSi (100)単結晶からなる結晶分光
器3により分光され測定に必要な波長に設定される。こ
の設定された波長のX線R2の入射角αをα−〇として
、入射X線R2の強度を反射X線強度検出器6で測定し
た後、X線源放出部分2aの遮蔽板2bを閉じてX線の
照射を止める。全反射ミラー1上に粉末試料を付着させ
、その全反射ミラー1をX−Yステージ4に内設する図
示しない回転試料台に設置し、試料Cの付着量が特に少
ない全反射ミラーの一部をX線R2の光路内に設定して
α−2αの倍角走査により反射X線強度を測定する。こ
のとき、反射X線強度を入射X線強度で除した値である
反射率を演算回路15によって求め、通常反射率が0.
01程度のとき、入射角α−αゎ+0.075°となる
所定の値になるよう入射角αを固定する。次に、X−Y
ステージ4を作動させて、試料粉末Cが十分に付着した
部分をX線R2の光路内に移動させ、回折角2θだけの
走査によって得られる回折プロフィールを記録する。
X-ray R generated from incident source 2 with a preset output
, are separated by a crystal spectrometer 3 made of Si (100) single crystal, for example, and set to a wavelength necessary for measurement. After measuring the intensity of the incident X-ray R2 with the reflected X-ray intensity detector 6 with the incident angle α of the X-ray R2 having the set wavelength set as α-〇, the shielding plate 2b of the X-ray source emission part 2a is closed. to stop the X-ray irradiation. A powder sample is deposited on the total reflection mirror 1, and the total reflection mirror 1 is installed on a rotating sample stage (not shown) installed in the X-Y stage 4, and a part of the total reflection mirror on which the amount of sample C attached is particularly small is measured. is set in the optical path of the X-ray R2, and the reflected X-ray intensity is measured by double angle scanning of α-2α. At this time, the reflectance, which is the value obtained by dividing the reflected X-ray intensity by the incident X-ray intensity, is determined by the arithmetic circuit 15, and the reflectance is normally 0.
01, the incident angle α is fixed to a predetermined value of incident angle α−αゎ+0.075°. Next, X-Y
The stage 4 is operated to move the portion to which the sample powder C has sufficiently adhered into the optical path of the X-ray R2, and the diffraction profile obtained by scanning only at the diffraction angle 2θ is recorded.

第8図及び第9図は本発明方法により測定して得られた
回折プロフィールである。本発明の実施方法を示す第1
図において、X線源2にCOツタ−ット、全反射ミラー
1には30mmφの非晶質石英板を用い、略1mgのS
i粉末標準試料を測定した回折プロフィールの結果を示
しており、第8閲、第9図共、横軸は回折角2θ(度)
、縦軸はX軸回折強度を表している。第8図から明らが
な如く、回折角2θを10°から100°まで走査した
とき、α−〇、2°及びα−0,35°の双方で回折プ
ロフィールが得られているが、α−o、35°の方がよ
り明確な回折プロフィールを得ることができているのが
わかる。θ−2θ法では、バックグラウンドノイズが全
体的に大きくなり、回折線も明確ではない。
FIGS. 8 and 9 are diffraction profiles obtained by measurement according to the method of the present invention. A first example showing a method of carrying out the present invention
In the figure, a CO tube is used as the X-ray source 2, an amorphous quartz plate with a diameter of 30 mm is used as the total reflection mirror 1, and approximately 1 mg of S
It shows the results of the diffraction profile measured for the i powder standard sample, and in both Figures 8 and 9, the horizontal axis is the diffraction angle 2θ (degrees).
, the vertical axis represents the X-axis diffraction intensity. As is not clear from Fig. 8, when scanning the diffraction angle 2θ from 10° to 100°, diffraction profiles are obtained at both α-0, 2° and α-0, 35°, but α It can be seen that a clearer diffraction profile can be obtained at -o and 35 degrees. In the θ-2θ method, the background noise is large overall, and the diffraction lines are not clear.

ここで用いた全反射ミラー1である石英(SiOz)の
全反射臨界角αcはCoK 、X線に対しαゎ−0,2
75゜であるためα−0,375°の回折プロフィール
の2θ−25°付近において非晶質石英(Sing)に
よる散乱が観察される。また、α−0,2° α−o、
35″′の夫々2θ=10°付近でバンクグラウンド強
度が増大しているが、これは基質である石英表面での入
射X線の散乱によって生ずるものである。
The total reflection critical angle αc of quartz (SiOz), which is the total reflection mirror 1 used here, is αゎ−0.2 for CoK and X-rays.
Since the angle is 75°, scattering due to amorphous quartz (Sing) is observed near 2θ-25° of the α-0,375° diffraction profile. Also, α−0,2° α−o,
The bank ground intensity increases near 2θ=10° at each angle of 35″′, and this is caused by scattering of incident X-rays on the quartz surface, which is the substrate.

第9図は、回折角2θを特に31″から36°まで走査
させSi (111)面の回折プロフィールの入射角α
に伴う変化を測定したものである。グラフがら明らかな
如く入射角αが全反射臨界角αゎ−0,275゜より大
きい場合、反射X線による回折線が生じピークがブロー
ドになり、回折角が高角度側にシフトした。従って第8
図、第9図のグラフの結果から、α−〇、35°におい
て試料支持基質による散乱X線が小さ(明確な回折プロ
フィールを得られることがわかる。
Figure 9 shows the incident angle α of the diffraction profile of the Si (111) plane by scanning the diffraction angle 2θ from 31″ to 36°.
This is a measurement of changes associated with As is clear from the graph, when the incident angle α is larger than the total reflection critical angle α°-0.275°, diffraction lines due to reflected X-rays are generated, the peak becomes broad, and the diffraction angle shifts to the higher angle side. Therefore the 8th
From the results shown in the graphs in Figure 9 and Figure 9, it can be seen that the X-rays scattered by the sample supporting substrate are small (a clear diffraction profile can be obtained) at α-〇, 35°.

なお、X線の視斜角入射では、X線測定光学系のずれが
生じ易いため、試料毎に入射角αのセツティングを行う
ことが好ましい。
Note that when X-rays are incident at oblique angles, the X-ray measuring optical system is likely to shift, so it is preferable to set the incident angle α for each sample.

〔効果〕〔effect〕

以上に詳述した如く本発明方法によれば、X線入射角α
を全反射ミラーの臨界角αcと予め設定した角度Δαと
の和α−αゎ+Δαに設定するので回折X線強度が増し
、さらに試料支持基質における散乱X線が抑制され試料
が微少量であっても回折プロフィールを高感度にしかも
正確に得ることができる等本発明は優れた効果を奏する
As detailed above, according to the method of the present invention, the X-ray incident angle α
Since it is set to the sum of the critical angle αc of the total reflection mirror and the preset angle Δα, α−αゎ+Δα, the diffracted X-ray intensity increases, and the scattered X-rays on the sample support substrate are suppressed, so that the sample is in a very small amount. The present invention exhibits excellent effects such as being able to obtain a diffraction profile with high sensitivity and accuracy even when using a wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施方法を示す模式図、第2図はX−
Yステージに試料支持基質を載せた状態を示す平面模式
図、第3図は第2図の側面からみた略断面図、第4図は
入射角αの理論計算結果における回折X線強度と回折角
2θとの関係を示すグラフ、第5図はX線の反射と屈折
の関係を示した模式図、第6図は試料における入射X線
の回折する様子を示す模式図、第7図は第6図の現象に
よって得られた回折プロフィールを示す図、第8図及び
第9図は標準Si試料を非晶質石英板上に付着させて得
られたX線回折プロフィールを示す図である。 ■・・・試料支持基質  4・・・X−Yステージ5・
・・ダブルスリットコリメーター  6・・・反射χ線
検出器  7・・・ソーラースリット  8・・・回折
X線検出器  C・・・試料 特 許 出願人 住友金属工業株式会社代理人 弁理士
 河  野  登  夫×璽回撃団郁 味 ヤに
FIG. 1 is a schematic diagram showing the method of carrying out the present invention, and FIG. 2 is an X-
A schematic plan view showing the sample support substrate placed on the Y stage, Figure 3 is a schematic cross-sectional view from the side of Figure 2, and Figure 4 shows the diffraction X-ray intensity and diffraction angle based on the theoretical calculation results of the incident angle α. Graph showing the relationship with 2θ, Figure 5 is a schematic diagram showing the relationship between X-ray reflection and refraction, Figure 6 is a schematic diagram showing how incident X-rays are diffracted in a sample, and Figure 7 is a schematic diagram showing the relationship between X-ray reflection and refraction. Figures 8 and 9 are diagrams showing the diffraction profiles obtained by the phenomenon shown in the figure, and Figures 8 and 9 are diagrams showing the X-ray diffraction profiles obtained by depositing a standard Si sample on an amorphous quartz plate. ■...Sample support substrate 4...X-Y stage 5.
...Double slit collimator 6...Reflection chi-ray detector 7...Solar slit 8...Diffraction X-ray detector C...Sample patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Kono To Noboru x Seikaikaidan Ikumiya

Claims (1)

【特許請求の範囲】 1、ゴニオメーターの試料支持台上の試料支持基質に付
着させた粉末試料にX線を照射し、得られた回折X線の
強度に基づいて前記粉末試料の結晶構造を同定する方法
において、 前記試料支持基質にX線を照射し、X線入 射角と反射X線強度との関係から前記試料支持基質の臨
界角α_cを求め、試料支持基質へのX線の入射角αを
予め設定した角度Δαとの和α=α_c+Δαに設定す
ることを特徴とする粉末のX線回折測定方法。
[Claims] 1. A powder sample attached to a sample support substrate on a sample support stand of a goniometer is irradiated with X-rays, and the crystal structure of the powder sample is determined based on the intensity of the obtained diffraction X-rays. In the identification method, the sample support substrate is irradiated with X-rays, the critical angle α_c of the sample support substrate is determined from the relationship between the X-ray incident angle and the reflected X-ray intensity, and the incident angle of the X-rays on the sample support substrate is determined. A method for measuring X-ray diffraction of powder, characterized in that α is set as a sum of α and a preset angle Δα=α_c+Δα.
JP63260213A 1988-10-15 1988-10-15 X-ray diffraction measurement for powder Pending JPH02107952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63260213A JPH02107952A (en) 1988-10-15 1988-10-15 X-ray diffraction measurement for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63260213A JPH02107952A (en) 1988-10-15 1988-10-15 X-ray diffraction measurement for powder

Publications (1)

Publication Number Publication Date
JPH02107952A true JPH02107952A (en) 1990-04-19

Family

ID=17344918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63260213A Pending JPH02107952A (en) 1988-10-15 1988-10-15 X-ray diffraction measurement for powder

Country Status (1)

Country Link
JP (1) JPH02107952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488740B2 (en) 2010-11-18 2013-07-16 Panalytical B.V. Diffractometer
JP2018084531A (en) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 Method for x-ray diffraction analysis of powder sample
JP2022516141A (en) * 2018-12-28 2022-02-24 中国兵器工業第五九研究所 A method for performing non-destructive inspection of the uniformity of crystal orientation inside the diffractive device and the work.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488740B2 (en) 2010-11-18 2013-07-16 Panalytical B.V. Diffractometer
JP2018084531A (en) * 2016-11-25 2018-05-31 住友金属鉱山株式会社 Method for x-ray diffraction analysis of powder sample
JP2022516141A (en) * 2018-12-28 2022-02-24 中国兵器工業第五九研究所 A method for performing non-destructive inspection of the uniformity of crystal orientation inside the diffractive device and the work.
US11846595B2 (en) 2018-12-28 2023-12-19 The 59Th Institute Of China Ordnance Industry Diffraction device and method for non-destructive testing of internal crystal orientation uniformity of workpiece

Similar Documents

Publication Publication Date Title
US6680996B2 (en) Dual-wavelength X-ray reflectometry
US7120228B2 (en) Combined X-ray reflectometer and diffractometer
JP4796254B2 (en) X-ray array detector
US4169228A (en) X-ray analyzer for testing layered structures
JP4724662B2 (en) X-ray fluorescence system with an aperture mask for the analysis of patterned surfaces
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
JP3889851B2 (en) Film thickness measurement method
KR920003050A (en) Inspection method of external phase precipitate of single crystal material
JP2005140777A (en) Sample inspection method, its device, cluster tool for manufacturing microelectronics device, and device for manufacturing microelectronics device
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JPH02107952A (en) X-ray diffraction measurement for powder
JP2012108126A (en) Diffractometer
JP3127875B2 (en) Total reflection X-ray fluorescence analysis method and apparatus
JP3373698B2 (en) X-ray analysis method and X-ray analyzer
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
Dhez et al. Tests Of Short Period X-Ray Multilayer Mirrors Using A Position Sensitive Proportional Counter
JPH0792112A (en) X-ray evaluation system
JP2921597B2 (en) Total reflection spectrum measurement device
JP2006133000A (en) Minute-part layered structure inspection device
JPH04198745A (en) X-ray diffracting method
JP2952284B2 (en) X-ray optical system evaluation method
JPS6353457A (en) 2-d scan type state analyzer
JPH0344544A (en) Measuring method for internal strain of crystal substrate
JPH04329347A (en) Thin film sample x-ray diffracting device
JPH03282243A (en) Total-reflection fluorescence x-ray analyzer