JPS6353457A - 2-d scan type state analyzer - Google Patents

2-d scan type state analyzer

Info

Publication number
JPS6353457A
JPS6353457A JP61197123A JP19712386A JPS6353457A JP S6353457 A JPS6353457 A JP S6353457A JP 61197123 A JP61197123 A JP 61197123A JP 19712386 A JP19712386 A JP 19712386A JP S6353457 A JPS6353457 A JP S6353457A
Authority
JP
Japan
Prior art keywords
sample
light
detector
chemical shift
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61197123A
Other languages
Japanese (ja)
Inventor
Yasuharu Hirai
平井 康晴
Izumi Wake
和気 泉
Kazunobu Hayakawa
早川 和延
Akira Fukuhara
福原 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61197123A priority Critical patent/JPS6353457A/en
Publication of JPS6353457A publication Critical patent/JPS6353457A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]

Abstract

PURPOSE:To enable state analysis of a sample, by scanning over the surface of the sample with soft X rays or an X ray beam to obtain a 2-D distribution of chemical shift, coordination number and bond distance between atoms from an EXAFS spectrum gained. CONSTITUTION:Monochromic light emitted from a monochrometer 1 passes through an I0 monitor 2 to converge on a sample stage 5 with a Fresnel zone plate 3. A position on the (z) axis of the plate 3 is controlled to ensure that a convergent light of the same size is always irradiated on the surface of a sample. A collimator 4 removes a stray light and high-order light. The stage 5 is driven with a control measuring device 8 so that a spot of the convergent light scans over a x-y surface two-dimensionally. A detector 6 detects a signal from a sample allowed to detect the intensity of transmission light and a detector 7 detects reflected light, fluorescence and secondary electron. A measuring device determines an EXAFS spectrum from data obtained at points on the sample to obtain chemical shift, coordination number and distance between atoms and a 2-D distribution image is displayed thereby enabling the analyzing of the sample.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜材料評価、表面基礎物性を解析するため
の新しい計測技術に係シ、特に化学シフト、配位数、お
よび原子間結合距離に関する二次元分布を得るのに好適
な二次元走査型状態分析装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to new measurement techniques for evaluating thin film materials and analyzing basic surface physical properties, particularly chemical shifts, coordination numbers, and interatomic bond distances. The present invention relates to a two-dimensional scanning state analyzer suitable for obtaining a two-dimensional distribution of information.

〔従来の技術〕[Conventional technology]

従来、フレネルゾーンプレートを使って軟X線1200
0〜3000A  に絞って試料に照射し、試料を二次
元的に走亘しつつ透過光強度を測定して分M能2000
〜3000人の二次元像を得ること、および、試料に含
まれる元素の吸収端前後の波長で試料の透過光強度を測
定し、両者の強度差をとって、特定元素の二次元像を得
る方法は、フィジックス トワデエイ38巻(1985
)  22−32頁(Physics roday 3
8 (1985) 22−32 ) K論じられている
Conventionally, soft X-rays of 1200
The sample is irradiated with a focused beam of 0 to 3000 A, and the intensity of the transmitted light is measured while traveling across the sample two-dimensionally.
Obtain two-dimensional images of ~3,000 people, measure the transmitted light intensity of the sample at wavelengths around the absorption edge of the elements contained in the sample, and calculate the difference in intensity between the two to obtain a two-dimensional image of a specific element. The method is published in Physics Towadei Volume 38 (1985
) pages 22-32 (Physics roday 3
8 (1985) 22-32) K is discussed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、二次元の元素分布像や、拡大像を得る
事が主目的であるため、試料の状態分析間する情報が得
られず、また試料を透過した光の強度を測定するため、
自己保持でさ々い薄膜を測定できなかった。
Since the above-mentioned conventional techniques mainly aim to obtain two-dimensional element distribution images or enlarged images, information for analyzing the state of the sample cannot be obtained, and because they measure the intensity of light transmitted through the sample,
Due to self-retention, it was not possible to measure thin films.

不発明の目的は、まずフレネルゾーンプレート、あるい
は反射光学系)てよす細束化した軟X線〜X線領域の光
を試料Cて照射し、かつ−点一点で波長を走査してEX
AFS  スペクトルを得、それによシ化学シフト、配
位数、および原子間距N&の二次元分布を得る事にちる
The purpose of the invention is to first irradiate the sample C with light in the soft X-ray to X-ray region that is narrowed using a Fresnel zone plate or reflective optical system, and scan the wavelength point by point to perform the EX
The goal is to obtain an AFS spectrum and thereby obtain a two-dimensional distribution of chemical shifts, coordination numbers, and interatomic distances N&.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、まず軟X線〜X線領域の光を細束化するた
めにフレネルゾーンプレート、または収束用反射鏡(表
面に多層膜を形成すれば収差を小さくできる)を用い、
これを二次元走査機構をもつ試料台上の試料に入射させ
る。試料からの透過光、反射光、螢光、および二次電子
をそれぞれ測定してEXAFSスペクトルを得、−点一
点におけるデータを記録装置に蓄積してデータ処理すれ
ば、(ヒ学/フト、配位数、および原子間距離の二次元
分布像を得、目的を達成する事ができる。また自己保持
不可能な薄膜等は基板上に形成しておき、細束ビームを
反射させてその強度測定からEX、、1.Fsスペクト
ルを得る事ができる。また試料表面から放出される螢光
X線や二次電子を測定する事によシ同様のEXAFSス
ペクトルを得る事ができる。
The above purpose is to first use a Fresnel zone plate or a converging reflector (aberrations can be reduced by forming a multilayer film on the surface) to converge light in the soft X-ray to X-ray region;
This is made incident on a sample on a sample stage equipped with a two-dimensional scanning mechanism. If you measure the transmitted light, reflected light, fluorescence, and secondary electrons from the sample to obtain an EXAFS spectrum, then store the data at each point in a recording device and process the data. The purpose can be achieved by obtaining a two-dimensional distribution image of the order and interatomic distance.Also, thin films that cannot be self-retained are formed on the substrate, and the intensity is measured by reflecting the narrow beam. EX, , 1. Fs spectra can be obtained from the sample surface.A similar EXAFS spectrum can also be obtained by measuring fluorescent X-rays and secondary electrons emitted from the sample surface.

〔作用〕[Effect]

軟X線〜X線領域の単色光をサブミクロンに収束するた
めにフレネルゾーンプレート、または収束反射鏡が用い
られる。試料に入射した光は、透過光、反射光、螢光、
または二次電子を生じ、それぞれに応じた検出器にて強
度を測定する。このとき波長を走査することによシ最終
的にEXAFSスペクトルを得る。これを解析するソフ
トにより試料各点の構成元素の化学シフト、配位数、お
よび原子間距離の値を得る。これを試料の各点について
測定してデータメモリに蓄積し、二次元分布像を得る事
が可能と々る。
A Fresnel zone plate or a converging reflector is used to converge monochromatic light in the soft X-ray to X-ray region to submicron dimensions. The light incident on the sample is transmitted light, reflected light, fluorescent light,
Alternatively, secondary electrons are generated, and the intensity is measured using a corresponding detector. At this time, by scanning the wavelength, an EXAFS spectrum is finally obtained. Using software to analyze this, we obtain values for the chemical shift, coordination number, and interatomic distance of the constituent elements at each point in the sample. By measuring this at each point on the sample and storing it in a data memory, it is possible to obtain a two-dimensional distribution image.

〔実施例〕〔Example〕

以下、本発明の実施例を、第1図と第2図を用いて説明
する。第1図において示す全体構成は、lのモノクロメ
ータ(軟X線領域の単色光を出射する)、2の工0モニ
タ(出射光強度を測定する)3の7レネルゾーンプレー
ト(Auto〜100人の軟X線とそれより長波長の光
を収束可能)およびZ軸上での駆動機構、4のコリメー
タ55のxy面内二次元走査試料ステージ、6の検出器
(透過光強度測定)、7の検出器(反射光、螢光、また
は二次電子強度測定)、8の制御・計測器、刀)ら成る
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. The overall configuration shown in Figure 1 consists of 1 monochromator (which emits monochromatic light in the soft (capable of converging human soft X-rays and light with a longer wavelength) and a drive mechanism on the Z axis, a two-dimensional scanning sample stage in the xy plane with a collimator 55 (4), a detector (6) (for measuring transmitted light intensity), It consists of 7 detectors (reflected light, fluorescence, or secondary electron intensity measurement), 8 control/measuring instruments, and a sword).

モノクロメータ1から出射された単色光は。The monochromatic light emitted from monochromator 1 is.

■0モニタ2を通過し、フレネルゾーンプレート3によ
り試料ステージ5上に収束される。単色光の波長を変化
させるとフレネルゾーンプレート3の焦点距離は変化す
るため、フレネルゾーンプレート3のZ軸上の位置を制
御して、常に試料面上に同じサイズの収束光を照射する
様にする。コリメータ4は、迷光および高次光を除去す
る。ステージ5はサブミクロンの位置決め精度をもち、
収束光のスポットがxy画面上二次元走査する様信号8
により駆動されるっ検出器6は、試料の厚さがaAm以
下で、透過光強度が検出できる試料からの信号を検出す
る装置であり、電子増倍管、比例計数管等を吏う。一方
、試料が厚く透過光が検出できない試料(自己保持でき
ないほど薄い膜を基板上に形成した試料を含む)からの
信号は、その反射光、螢光、および二次成子を検出器7
にて検出する。反射光は電子増倍管、螢光は半導体検出
器、および二次電子は電子エネルギ分析器等を用いて検
出する。反射光、螢光、および二次電子のいずれを検出
するかは、試料が含むどの元素に着目するかで決める。
(2) Passes through the 0 monitor 2 and is focused onto the sample stage 5 by the Fresnel zone plate 3. Since the focal length of the Fresnel zone plate 3 changes when the wavelength of the monochromatic light changes, the position of the Fresnel zone plate 3 on the Z axis is controlled so that convergent light of the same size is always irradiated onto the sample surface. do. Collimator 4 removes stray light and higher order light. Stage 5 has submicron positioning accuracy,
Signal 8 so that the spot of convergent light scans two-dimensionally on the xy screen
The detector 6 driven by the detector 6 is a device for detecting a signal from a sample whose thickness is less than aAm and whose intensity of transmitted light can be detected, and includes an electron multiplier tube, a proportional counter tube, etc. On the other hand, signals from samples where the sample is too thick to detect transmitted light (including samples where a film so thin that it cannot self-retain is formed on the substrate) are transmitted to the detector 7 as reflected light, fluorescence, and secondary rays.
Detected by The reflected light is detected using an electron multiplier, the fluorescent light is detected using a semiconductor detector, and the secondary electrons are detected using an electron energy analyzer. Whether to detect reflected light, fluorescence, or secondary electrons is determined by which element contained in the sample is of interest.

制御・計測器8は、試料上の各点で、波長を走査して検
出器からの信号を計測・蓄積し、試料を二次元走査して
、各点でのデータをため込み、各点でのデータからEX
AFSスペクトルを求めて、化学シフト、配位数および
原子間距離を得、その二次元分布像を表示する機能を有
している。
The control/measuring device 8 scans the wavelength at each point on the sample, measures and accumulates the signal from the detector, scans the sample two-dimensionally, accumulates data at each point, and measures and accumulates the signal from the detector at each point. EX from the data of
It has the function of determining the AFS spectrum, obtaining the chemical shift, coordination number, and interatomic distance, and displaying the two-dimensional distribution image.

つぎに、現在フレネルゾーンプレートでは収束でする事
が困難なX線領域(数Aより短かい波長)の光を収束す
るためには、第2図に示す様に、収束反射鏡9を使用す
る(収束反射鏡は軟X線領域でも使用可能)。この収束
反射鏡にはウオルタ−(Wolter ) 、 t’&
iiシュワルツシールド(Sehwalzschild
 )型のものを用いる事によシサブミクロンオーダの収
束光を試料面上に得る事ができる。この収束反射鏡は波
長を変えても焦点距離が一定なので、7レネルゾーンプ
レートの様にZ軸上を移動させる必要はない。試料に入
射した光は1反射光、螢光、透過光、または二次電子を
発生する。検出器によるデータ取得、制御・計測器によ
るデータ蓄積と二次元分布像形成方法は第1図のばあい
と全く同様である。
Next, in order to converge light in the X-ray region (wavelength shorter than several amps), which is currently difficult to converge using Fresnel zone plates, a converging reflector 9 is used as shown in Figure 2. (The convergent reflector can also be used in the soft X-ray region). This convergent reflector has Walter, t'&
ii Sehwalzschild
) type, it is possible to obtain convergent light on the order of submicrons on the sample surface. Since this converging reflector has a constant focal length even if the wavelength is changed, there is no need to move it on the Z axis like a 7-Renel zone plate. Light incident on the sample generates reflected light, fluorescent light, transmitted light, or secondary electrons. The data acquisition by the detector, the data accumulation by the control/measuring instrument, and the two-dimensional distribution image forming method are exactly the same as in the case of FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば(イ)サブミクロンの分解能で、試料に
含まれる元素の化学シフト、配位数、および原子間距離
の二次元分布像を得る事が可能となりこれによりfP)
軽元素から重元素に至る元素を含む材料の評価を迅速か
つ精密に行う事ができる効果がある。
According to the present invention, (a) it is possible to obtain a two-dimensional distribution image of chemical shifts, coordination numbers, and interatomic distances of elements contained in a sample with submicron resolution, thereby fP)
The effect is that materials containing elements ranging from light to heavy elements can be evaluated quickly and precisely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例として第1番目の配置を示す全
体図であり、第2図は第2番目の配置を示す全体図であ
る。 1・・・モノクロメータ、2・・・工0モニタ、3・・
・フレネルゾーンプレート、4・・・コリメータ、5・
・・二次元試料走査ステージ、6・・・検出器、7・・
・検出器、8・・・制御・計測器、9・・・収束反射鏡
FIG. 1 is an overall view showing a first arrangement as an embodiment of the present invention, and FIG. 2 is an overall view showing a second arrangement. 1... Monochromator, 2... Work 0 monitor, 3...
・Fresnel zone plate, 4...collimator, 5・
... Two-dimensional sample scanning stage, 6... Detector, 7...
- Detector, 8... Control/Measurement instrument, 9... Convergent reflector.

Claims (1)

【特許請求の範囲】[Claims] 1、試料面上に、軟X線またはX線領域のサブミクロン
以下の細束ビームを照射するためのフレネルゾーンプレ
ートまたは収束反射鏡から成る入射光学系と、試料面上
でビームを走査するための試料走査系と、試料からの反
射光、螢光、二次電子、または透過光強度を検出し、そ
の波長依存性からEXAFSスペクトルを得、化学シフ
ト、配位数および原子間結合距離の二次元分布を得るた
めの検出器およびデータ処理系から構成されたことを特
徴とする二次元走査型状態分析装置。
1. An input optical system consisting of a Fresnel zone plate or a convergent reflector for irradiating a soft X-ray or submicron focused beam in the X-ray region onto the sample surface, and for scanning the beam on the sample surface. The sample scanning system detects the intensity of reflected light, fluorescence, secondary electrons, or transmitted light from the sample, obtains the EXAFS spectrum from its wavelength dependence, and calculates the chemical shift, coordination number, and interatomic bond distance. A two-dimensional scanning state analysis device comprising a detector and a data processing system for obtaining a dimensional distribution.
JP61197123A 1986-08-25 1986-08-25 2-d scan type state analyzer Pending JPS6353457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197123A JPS6353457A (en) 1986-08-25 1986-08-25 2-d scan type state analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197123A JPS6353457A (en) 1986-08-25 1986-08-25 2-d scan type state analyzer

Publications (1)

Publication Number Publication Date
JPS6353457A true JPS6353457A (en) 1988-03-07

Family

ID=16369119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197123A Pending JPS6353457A (en) 1986-08-25 1986-08-25 2-d scan type state analyzer

Country Status (1)

Country Link
JP (1) JPS6353457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132754A (en) * 1997-10-30 1999-05-21 Nippon Telegr & Teleph Corp <Ntt> X-ray gap measuring method and device
JP2008209176A (en) * 2007-02-26 2008-09-11 Fujitsu Ltd Sample analyzer and sample analyzing method
JP2010230481A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Sample analyzer and sample analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132754A (en) * 1997-10-30 1999-05-21 Nippon Telegr & Teleph Corp <Ntt> X-ray gap measuring method and device
JP2008209176A (en) * 2007-02-26 2008-09-11 Fujitsu Ltd Sample analyzer and sample analyzing method
JP2010230481A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Sample analyzer and sample analysis method

Similar Documents

Publication Publication Date Title
JP4796254B2 (en) X-ray array detector
US6054712A (en) Inspection equipment using small-angle topography in determining an object&#39;s internal structure and composition
US5619548A (en) X-ray thickness gauge
US20100172470A1 (en) Three-dimensional contents determination method using transmitted x-ray
WO1998033062A1 (en) Inspection equipment using small-angle topography in determining an object&#39;s internal structure and composition
JP3889851B2 (en) Film thickness measurement method
JP2002189004A (en) X-ray analyzer
JP2821585B2 (en) In-plane distribution measuring method and apparatus
JP3968350B2 (en) X-ray diffraction apparatus and method
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JPS6353457A (en) 2-d scan type state analyzer
JP2008170236A (en) Measuring method for reflectivity curve of x ray and of neutron radiation and measuring instrument
JP3049313B2 (en) X-ray imaging analysis method and apparatus
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
JP2544428B2 (en) Stress measuring method and stress measuring device
RU2119660C1 (en) Gear determining composition and structure of inhomogeneous object ( versions )
JP2002333409A (en) X-ray stress measuring device
JP2968460B2 (en) X-ray analysis method
JPH0627056A (en) Method for alalyzing composition and structure of substance
RU2137114C1 (en) Method of small-angle introscopy and device for its realization ( versions )
JP2012013659A (en) Measuring method for reflectivity curve of x-ray and of neutron radiation, and measuring instrument
JPH01244344A (en) Apparatus for measuring x-ray absorbing spectrum
JP2004503771A (en) X-ray reflectivity apparatus and method
JP3856500B2 (en) X-ray thin film thickness analysis method and analyzer
USH922H (en) Method for analyzing materials using x-ray fluorescence