JP3034420B2 - Background correction method for X-ray fluorescence analysis - Google Patents

Background correction method for X-ray fluorescence analysis

Info

Publication number
JP3034420B2
JP3034420B2 JP6047763A JP4776394A JP3034420B2 JP 3034420 B2 JP3034420 B2 JP 3034420B2 JP 6047763 A JP6047763 A JP 6047763A JP 4776394 A JP4776394 A JP 4776394A JP 3034420 B2 JP3034420 B2 JP 3034420B2
Authority
JP
Japan
Prior art keywords
ray
intensity
rays
fluorescent
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6047763A
Other languages
Japanese (ja)
Other versions
JPH07229863A (en
Inventor
久征 河野
勝久 戸田
寛 小林
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP6047763A priority Critical patent/JP3034420B2/en
Publication of JPH07229863A publication Critical patent/JPH07229863A/en
Application granted granted Critical
Publication of JP3034420B2 publication Critical patent/JP3034420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、蛍光X線分析におい
て、試料からのX線を回折する分光素子に含まれた元素
に起因する誤差分を補正するバックグランド補正法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a background correction method for correcting an error caused by an element contained in a spectroscopic element for diffracting X-rays from a sample in X-ray fluorescence analysis.

【0002】[0002]

【従来の技術】従来の、蛍光X線分析法として、図4に
示すものがある。同図において、X線管1からの一次X
線X1を試料2に照射し、この試料2で発生する蛍光X
線X2を分光素子3で回折させ、この分光素子3からの
回折X線X3を検出器4に入射させ、この検出器4でX
線強度を測定する。そして、濃度算出式を用いて、上記
強度から試料2に含まれた測定対象元素の濃度を算出す
る。なお、同図において、5,5はX線を平行光にする
ためのソーラースリットである。なお、図4に示した上
記技術以外に分光素子3として弯曲分光素子を使用し、
ソーラースリット5に代えて単孔の光集中用のスリット
を使用した集中法がある。
2. Description of the Related Art FIG. 4 shows a conventional X-ray fluorescence analysis method. In the figure, the primary X from the X-ray tube 1
The sample 2 is irradiated with the X-ray X1, and the fluorescent X
The beam X2 is diffracted by the spectroscopic element 3, and the diffracted X-ray X3 from the spectroscopic element 3 is made incident on the detector 4, and the detector 4
Measure the line intensity. Then, the concentration of the element to be measured contained in the sample 2 is calculated from the intensity using the concentration calculation formula. In the figure, reference numerals 5 and 5 denote solar slits for converting X-rays into parallel light. In addition to the above technique shown in FIG. 4, a curved spectral element is used as the spectral element 3,
There is a concentration method using a single hole light concentration slit instead of the solar slit 5.

【0003】上記検出器4で測定される強度には、各種
の散乱X線がバックグランド成分として含まれるため、
上記濃度算出式においてバックグランド補正を行う必要
がある。
Since the intensity measured by the detector 4 includes various scattered X-rays as a background component,
It is necessary to perform background correction in the above density calculation formula.

【0004】そこで、従来では、蛍光X線ピーク付近の
散乱X線を測定し、そのピークトップのX線強度から散
乱X線強度を差し引く方法でバックグランド補正を行っ
ている。図6は、上記分光素子3として、2d(dは結
晶面間隔)=160オングストロームのMo/B4 Cか
らなる人工累積膜を使用した場合のB−Kα曲線を示し
ている。なお、同図は、別の説明に使用するものである
ため、詳細については後で説明する。そして、上記曲線
において、ピークトップのX線強度から、このピークト
ップの両側裾野部分a,bに現れる散乱X線の強度をバ
ックグランド値BGとして差し引くことにより、バック
グランド補正を行っている。
Therefore, conventionally, background X-rays are corrected by measuring the scattered X-rays near the fluorescent X-ray peak and subtracting the scattered X-ray intensity from the X-ray intensity at the peak top. FIG. 6 shows a B-Kα curve in the case where an artificial cumulative film made of Mo / B 4 C with 2d (d is the crystal plane interval) = 160 Å is used as the spectral element 3. This figure is used for another explanation, and the details will be described later. Then, in the above curve, the background correction is performed by subtracting the intensity of the scattered X-rays appearing at the tail portions a and b of the peak top from the X-ray intensity at the peak top as a background value BG.

【0005】[0005]

【発明が解決しようとする課題】ところで、半導体のウ
ェハーや磁気ディスクなどの表層部に含まれるボロン
(B)や炭素(C)などの超軽元素を分析する場合に
は、これら超軽元素からなる測定対象元素の蛍光X線の
エネルギーが小さいことから、分光素子におけるエネル
ギーの吸収を少なくする必要がある。そこで、蛍光X線
の吸収を少なくするため、上記分光素子3として、その
構成膜に上記測定対象元素と同一元素を用いた人工累積
膜が使用される。
By the way, when analyzing ultra-light elements such as boron (B) and carbon (C) contained in a surface layer portion of a semiconductor wafer, a magnetic disk or the like, these ultra-light elements must be analyzed. Since the energy of the fluorescent X-ray of the element to be measured is small, it is necessary to reduce the energy absorption in the spectroscopic element. Therefore, in order to reduce the absorption of the fluorescent X-ray, an artificial cumulative film using the same element as the element to be measured is used as the constituent film of the spectral element 3.

【0006】しかし、上記超軽元素を分析するに際し
て、以上のバックグランド補正を行っても、正確な濃度
測定はできなかった。つまり、たとえばBPSG/Si
ウェハー(Si基板上にB2 3 ・P2 5 ・SiO2
のガラス状混合物からなる表層部(BPSG膜)が形成
されたもの)について膜厚・組成分析する場合には、B
−Kαの分光素子3として、図5に示すように、多数の
反射層Moをスペーサ層B4 Cを介して積層してなる人
工累積膜が使用される。
[0006] However, even when the above background correction is performed when analyzing the ultra-light element, accurate concentration measurement cannot be performed. That is, for example, BPSG / Si
Wafer (B 2 O 3 · P 2 O 5 · SiO 2 on Si substrate
When the film thickness and composition of the surface layer (BPSG film) made of the glassy mixture of
As shown in FIG. 5, an artificial cumulative film formed by laminating a large number of reflective layers Mo via a spacer layer B 4 C is used as the −Kα spectral element 3.

【0007】ところで、上記分光素子3に試料2から上
記蛍光X線X2を含むX線XOが入射されると、この入
射X線XOにより上記分光素子3のB4 C層中のボロン
Bが励起されて、蛍光X線B−Kαが全方向に向けて発
生する。一方、上記試料2からの入射X線XOは、上記
分光素子3に入射して、その入射角度θに対応する波長
を持った蛍光X線X2のみがMo層で回折され、角度θ
の回折X線X3が上記検出器4に入射される。このた
め、上記回折X線X3と、上記ボロンBの励起により発
生した蛍光X線のうち、上記角度θで出射されるものX
4とが、それぞれ上記検出器4に入射される。
When an X-ray XO including the fluorescent X-ray X2 is incident on the spectral element 3 from the sample 2, boron B in the B 4 C layer of the spectral element 3 is excited by the incident X-ray XO. Then, the fluorescent X-rays B-Kα are generated in all directions. On the other hand, the incident X-ray XO from the sample 2 is incident on the spectral element 3, and only the fluorescent X-ray X2 having a wavelength corresponding to the incident angle θ is diffracted by the Mo layer, and the angle θ
Is incident on the detector 4. Therefore, of the diffracted X-rays X3 and the fluorescent X-rays generated by the excitation of the boron B, those that are emitted at the angle θ
4 enter the detector 4 respectively.

【0008】従って、上記検出器4で検出されるX線強
度は、上記試料2からの蛍光X線に基づく回折X線X3
だけではなく、上記分光素子3のボロンBの励起による
ものX4も含むことになり、正確な強度測定はできな
い。
Accordingly, the intensity of the X-rays detected by the detector 4 is equal to the diffraction X-ray X3 based on the fluorescent X-rays from the sample 2.
Not only that, but also X4 due to the excitation of boron B of the spectroscopic element 3 is included, and accurate intensity measurement cannot be performed.

【0009】図6は、上述したMo/B4 Cからなる人
工累積膜からなる分光素子3を使用した場合で、縦軸に
検出器4で検出されたX線強度を、また、横軸に波長に
対応する回折角θを2倍した2θ(deg)をとって、
軽元素からなるNaFとLiFの分析曲線を、Bの分析
曲線と共に示している。NaFとLiFの各曲線におい
ては、Bが含まれていないにもかかわらず、上記B−K
α曲線のピーク対応箇所に山d,eが現れている。他
方、図7は、上記分光素子3として、ボロン元素を含ま
ないNi/Cからなる人工累積膜を使用した場合のNa
FとLiFの分析曲線を示している。図7の各分析曲線
には、上記ボロン元素を含む分光素子を使用した場合の
ようにB−Kα曲線のピーク対応箇所に山が現れない。
このことから、分光素子3に含まれたボロンの励起によ
る蛍光X線が、分析曲線に影響を与えていることが理解
される。
FIG. 6 shows a case where the spectroscopic element 3 composed of the above-mentioned artificially accumulated film made of Mo / B 4 C is used. The vertical axis represents the X-ray intensity detected by the detector 4, and the horizontal axis represents the X-ray intensity. Taking 2θ (deg), which is twice the diffraction angle θ corresponding to the wavelength,
The analysis curves of NaF and LiF composed of light elements are shown together with the analysis curve of B. In each of the curves of NaF and LiF, B-K
The peaks d and e appear at the positions corresponding to the peaks of the α curve. On the other hand, FIG. 7 shows the Na in the case where an artificial cumulative film made of Ni / C containing no boron element is used as the spectral element 3.
The analysis curve of F and LiF is shown. In each analysis curve of FIG. 7, a peak does not appear at a position corresponding to the peak of the B-Kα curve as in the case of using the above-described spectral element containing a boron element.
From this, it is understood that the fluorescent X-rays due to the excitation of boron contained in the spectroscopic element 3 affect the analysis curve.

【0010】従って、B−Kα線にも上記ボロンの励起
による影響が含まれるから、この影響を含まない上記両
側裾野部分a,bに現れる散乱X線の強度をバックグラ
ンド値BGとして差し引いても、正確な測定はできなか
った。
Accordingly, since the B-Kα ray also includes the influence of the excitation of boron, the intensity of the scattered X-rays appearing in the tail portions a and b that do not include this influence can be subtracted as the background value BG. , Accurate measurements could not be made.

【0011】なお、図6および図7においては、それぞ
れ同一のNaFおよびLiFの分析結果を示し、図7の
各分析曲線には、図6に示すもののように多くのピーク
トップが発生することなく、なだらかな右下がりの傾斜
勾配となっているが、これは使用する分光素子3の膜組
成が異なり、その蛍光X線の吸収率が異なることに起因
する。
FIGS. 6 and 7 show the same analysis results of NaF and LiF, respectively, and each analysis curve of FIG. 7 does not have many peak tops as shown in FIG. , Which is caused by a difference in the film composition of the spectral element 3 used and a difference in the absorptance of the fluorescent X-rays.

【0012】この発明の目的は、分光素子で発生するX
線による分析誤差を少なくして、たとえ超軽元素でも正
確に分析することができるバックグランド補正法を提供
することにある。
An object of the present invention is to provide an X-ray generator that generates X-rays.
An object of the present invention is to provide a background correction method capable of accurately analyzing even ultra-light elements by reducing analysis errors due to lines.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、この発明のバックグランド補正法では、濃度算出式
が、試料に含まれた測定対象元素からの蛍光X線強度に
比例した項と、上記分光素子に入射する外乱X線の強度
に比例した項であって、この外乱X線によって上記分光
素子に含まれた上記測定対象元素と同一の元素が励起さ
れて、上記測定対象元素からの蛍光X線が上記分光素子
で回折される回折角と同一角度で分光素子から出射する
蛍光X線の強度を示す項と、定数項とからなることを特
徴としている。
In order to achieve the above object, in the background correction method of the present invention, the expression for calculating the concentration includes a term proportional to the intensity of the fluorescent X-ray from the element to be measured contained in the sample; The intensity of disturbance X-rays incident on the spectroscopic element
This is a term proportional to
The same element as the element to be measured contained in the element is excited.
X-ray fluorescence from the element to be measured is
Exits the spectroscopic element at the same angle as the diffraction angle diffracted by
It is characterized by comprising a term indicating the intensity of fluorescent X-rays and a constant term.

【0014】[0014]

【作用】上記濃度算出式を用いることにより、外乱X線
によって分光素子に含まれた測定対象元素と同一の元
励起されて生じる蛍光X線の強度を、誤差分として補
正できる。従って、ウェハーや磁気ディスクなどの表層
部に含まれるボロンや炭素などの超軽元素を含む分光素
子を使用しても、正確に元素の分析が可能となる。
The disturbance X-ray can be obtained by using the above formula for calculating the concentration.
Same elemental and measured element included in the spectral element by
There the intensity of the fluorescent X-ray generated is excited, it can be corrected as an error component. Therefore, even if a spectroscopic element containing a superlight element such as boron or carbon contained in a surface layer portion of a wafer, a magnetic disk or the like is used, the element can be accurately analyzed.

【0015】[0015]

【実施例】先ず、上述したBPSG/Siウェハーを試
料として、この試料に含まれるボロンの含有率について
検量線、つまり、組成(元素の種類とその濃度)が既知
の試料の濃度−X線強度の相関曲線を引いて見たとこ
ろ、図1のようになった。この図は、横軸にB2 3
濃度を、縦軸にB−Kα線強度をとり、組成が同一のB
PSG膜の厚さを、3000,6000,9000オン
グストロームに設定した場合の各検量線を示している。
同図で明らかなように、膜厚が厚いものほど一次X線の
吸収が大となるため、試料から発生するB−Kα線が弱
くなり、また、薄いものほどB−Kα線が強くなる。
First, a calibration curve for the content of boron contained in the BPSG / Si wafer described above as a sample, that is, the concentration-X-ray intensity of a sample whose composition (the type of element and its concentration) is known. As a result of drawing the correlation curve of FIG. In this figure, the horizontal axis represents the concentration of B 2 O 3 and the vertical axis represents the B-Kα line intensity.
Each calibration curve is shown when the thickness of the PSG film is set to 3000, 6000, 9000 angstroms.
As is clear from the figure, since the absorption of primary X-rays increases as the film thickness increases, the B-Kα radiation generated from the sample decreases, and as the thickness decreases, the B-Kα radiation increases.

【0016】また、膜厚9000オングストロームの試
料を基準として、これとの見かけの濃度差を偏差ΔBと
したとき、図2に示すように、縦軸に上記偏差ΔBを、
横軸に膜厚をとって、上記偏差ΔBの変化を調べたとこ
ろ、上記偏差ΔBは膜厚が薄いほど大きく,厚いほど小
さくなり、このことは、分析曲線の裾野部分を差し引く
バックグランド補正を行っても同じ傾向となる。
Assuming that a difference of ΔB is an apparent density difference from a sample having a thickness of 9000 angstroms as a reference, as shown in FIG.
When the change in the deviation ΔB was examined by plotting the film thickness on the horizontal axis, the deviation ΔB was larger as the film thickness was thinner and smaller as the film thickness was thicker. This means that the background correction for subtracting the tail of the analysis curve was performed. Even if you do, it will be the same tendency.

【0017】さらに、図3に示すように、縦軸に上記偏
差ΔBを、横軸に上記ウェハーの基板から発生するSi
−Kα線の強度をとって、ΔBの変化を調べたところ、
このSi−Kα線の強度と偏差ΔBは比例関係にある、
つまり、上記Si−Kα線の強度が大きくなるほど偏差
ΔBが大となり、また、上記Si−Kα線の強度が小さ
くなるほど偏差ΔBが小となることが分かった。このこ
とは、上記試料のSi基板からのSi−Kα線が強いほ
ど、上記分光素子(Mo・B4 C)に含まれるボロンが
強く励起されることに起因すると考えられる。特に、上
記試料中のSi層(基板)は、その上のBPSG膜に較
べてはるかに厚いため、このSi層から強いSi−Kα
線が発生し、このSi−Kα線がボロンを強く励起する
ことが主要な誤差発生原因になると推定される。
Further, as shown in FIG. 3, the vertical axis represents the deviation ΔB, and the horizontal axis represents Si generated from the substrate of the wafer.
When the change of ΔB was examined by taking the intensity of −Kα ray,
The intensity of the Si-Kα ray and the deviation ΔB are in a proportional relationship.
That is, it has been found that the deviation ΔB increases as the intensity of the Si-Kα line increases, and the deviation ΔB decreases as the intensity of the Si-Kα line decreases. This is considered to be due to the fact that the stronger the Si-Kα ray from the Si substrate of the sample, the stronger the boron contained in the spectroscopic element (Mo · B 4 C) is excited. In particular, since the Si layer (substrate) in the above sample is much thicker than the BPSG film thereon, strong Si-Kα
A line is generated, and it is estimated that the strong excitation of boron by the Si-Kα line causes a major error.

【0018】ここでは、分光素子3に入射するX線のう
ち、測定対象元素(ボロン)からの蛍光X線(B−Kα
線)を除くX線を外乱X線と呼ぶ。この外乱X線のう
ち、分光素子3に含まれたボロンを励起するX線として
は、上記Si−Kα線以外に、試料2からの1次X線X
1の反射線、コンプトン散乱線、ボロン以外の元素の蛍
光X線なども含まれるが、Si−Kα線の強度が圧倒的
に大きいので、ここではSi−Kα線を、ボロンを励起
させて偏差ΔBを生じさせる外乱X線とみなして、他の
X線の影響を無視しても、補正精度はあまり低下しな
い。この外乱X線Si−KαはB−Kαとは波長が異な
るので、Si−Kα測定専用分光系を用いるか、また
は、分光素子3をSi−Kα測定用分光素子に交換して
回折角度θをSi−Kαの波長に合致させてその強度を
検出器4で測定する。
Here, among the X-rays incident on the spectroscopic element 3, the fluorescent X-ray (B-Kα) from the element to be measured (boron) is used.
X-rays except for the X-ray are referred to as disturbance X-rays. Among the disturbance X-rays, the X-rays for exciting the boron contained in the spectroscopic element 3 include the primary X-rays X-ray
1 include reflected X-rays, Compton scattered X-rays, and fluorescent X-rays of elements other than boron. However, since the intensity of Si-Kα radiation is overwhelmingly large, the deviation of Si-Kα radiation by exciting boron Even if the influence of other X-rays is neglected assuming that the X-ray is a disturbance X-ray, the correction accuracy does not decrease much. Since this disturbance X-ray Si-Kα has a different wavelength from B-Kα, a spectral system dedicated to Si-Kα measurement is used, or the spectral element 3 is replaced with a spectral element for Si-Kα measurement to set the diffraction angle θ. The intensity is measured by the detector 4 in accordance with the wavelength of Si-Kα.

【0019】図3から、上記試料に含まれるB2 3
度の偏差ΔBは、次の一次式で表すことができる。 ΔB=0.0159・Isi-kα−9.96 ……(1) ここで、Isi-kαはSi−Kα線の強度を表す。
From FIG. 3, the deviation ΔB of the B 2 O 3 concentration contained in the sample can be expressed by the following linear equation. ΔB = 0.0159 · Isi-kα−9.96 (1) Here, Isi-kα represents the intensity of the Si-Kα ray.

【0020】一方、Bの濃度Wは次式で表される。 W=b・IB -kα+C1−ΔB ……(2) ここで、bは図1の検量線の勾配に相当し、C1は前述
した裾野部分の散乱X線強度BGに相当する濃度であ
る。そして、上記式(1)を式(2)に代入し、下記の
ようなB2 3 濃度Wの検量線式を求めて、これにより
バックグランド補正を行う。 W=b・IB-K α+C−0.0159・Isi-kα ……(3)
On the other hand, the concentration W of B is expressed by the following equation. W = b · IB−kα + C1−ΔB (2) Here, b corresponds to the gradient of the calibration curve in FIG. 1, and C1 is the concentration corresponding to the scattered X-ray intensity BG in the foot portion described above. Then, the above equation (1) is substituted into the equation (2), and the following calibration curve equation of the B 2 O 3 concentration W is obtained, thereby performing the background correction. W = b · IB-K α + C−0.0159 · Isi-kα (3)

【0021】上記式(3)において、b・IB-Kαbが
試料中の測定対象元素の蛍光X線に比例した項、Cが上
記式(1)に示す−9.96とその他のバックグランド
補正値C1を含む定数項、0.0159・Isi-kα が
試料から発生する外乱X線Isi-kαの強度に比例した項
である。定数項Cの値は、例えば組成が既知の標準試料
について、Mo・B4 Cからなる分光素子を用いたX線
測定結果と、化学分析による濃度測定結果とを比較して
求めることができる。従来の検量線(式(2) )と本発明
の検量線(式(3) )とは、図1に示したように、ΔBだ
けずれた関係となる。
In the above formula (3), b · IB-Kαb is a term proportional to the fluorescent X-ray of the element to be measured in the sample, and C is −9.96 shown in the above formula (1) and other background correction. The constant term including the value C1, 0.0159 · Isi-kα, is a term proportional to the intensity of the disturbance X-ray Isi-kα generated from the sample. The value of the constant term C can be determined, for example, by comparing an X-ray measurement result using a spectroscopic element made of Mo.B 4 C with a concentration measurement result by chemical analysis for a standard sample having a known composition. The conventional calibration curve (Equation (2)) and the calibration curve (Equation (3)) of the present invention have a relationship shifted by ΔB as shown in FIG.

【0022】そして、図1で示すように、上記補正検量
線式によってバックグランド補正を行うことにより、上
記BPSG/Siウェハーの膜厚・組成分析を行う場合
で、上記分光素子として人工累積膜(Mo・B4 C)を
用いるとき、また、試料の膜厚が異なる場合でも、従来
のものに較べて正確な分析を行うことができる。また、
上記BPSG膜中のB2 3 含有率分析を行ったとこ
ろ、従来法による正確度(σd )は0.9重量%である
のに対し、本発明によると0.2重量%に向上させるこ
とができた。
As shown in FIG. 1, when the film thickness and composition of the BPSG / Si wafer are analyzed by performing background correction using the correction calibration curve method, an artificial cumulative film ( When Mo.B 4 C) is used, and even when the thickness of the sample is different, a more accurate analysis can be performed as compared with the conventional one. Also,
Analysis of the content of B 2 O 3 in the BPSG film revealed that the accuracy (σ d ) obtained by the conventional method was 0.9% by weight, but was improved to 0.2% by weight according to the present invention. I was able to.

【0023】以外の超軽元素、例えば炭素の分析にお
いても、同様な濃度算出式により、正確な濃度が得られ
た。
In the analysis of ultra-light elements other than B , for example, carbon, accurate concentrations were obtained by the same concentration calculation formula.

【0024】[0024]

【発明の効果】以上説明したように、この発明によれ
ば、分光素子で発生するX線による分析誤差を少なくで
きて、超軽元素でも正確に分析することができる。
As described above, according to the present invention, an analysis error due to X-rays generated in a spectroscopic element can be reduced, and an ultra-light element can be accurately analyzed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のバックグランド補正法を説明するグラ
フである。
FIG. 1 is a graph illustrating a background correction method of the present invention.

【図2】試料膜厚による濃度偏差の変化を示すグラフで
ある。
FIG. 2 is a graph showing a change in concentration deviation depending on a sample film thickness.

【図3】試料からのSi−Kα線の強度による濃度偏差
の変化を示すグラフである。
FIG. 3 is a graph showing a change in a concentration deviation depending on the intensity of a Si-Kα ray from a sample.

【図4】蛍光X線分析装置を概略的に示す図である。FIG. 4 is a diagram schematically showing a fluorescent X-ray analyzer.

【図5】人工累積膜(Mo・B4 C)を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing an artificial cumulative film (Mo.B 4 C).

【図6】人工累積膜(Mo・B4 C)を用いたNaFと
LiFの分析曲線を示すグラフである。
FIG. 6 is a graph showing an analysis curve of NaF and LiF using an artificial cumulative film (Mo.B 4 C).

【図7】人工累積膜(Ni・C)を用いたNaFとLi
Fの分析曲線を示すグラフである。
FIG. 7: NaF and Li using artificial cumulative film (Ni · C)
5 is a graph showing an analysis curve of F.

【符号の説明】[Explanation of symbols]

2…試料、3…分光素子、X1…1次X線、X2…蛍光
X線、X3…回折X線。
2 ... sample, 3 ... spectroscopic element, X1: primary X-ray, X2: fluorescent X-ray, X3 ... diffraction X-ray.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−240809(JP,A) 特開 平8−271455(JP,A) 特開 昭63−191951(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 23/22 - 23/227 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-240809 (JP, A) JP-A 8-271455 (JP, A) JP-A-63-191951 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) G01N 23/22-23/227

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一次X線が照射された試料から発生する
蛍光X線を分光素子で回折してその強度を測定し、 濃度算出式を用いて上記強度から試料に含まれた測定対
象元素の濃度を算出する蛍光X線分析方法において、 上記濃度算出式は、上記試料中の測定対象元素からの蛍
光X線強度に比例した項と、上記分光素子に入射する外乱X線の強度に比例した項で
あって、この外乱X線によって上記分光素子に含まれた
上記測定対象元素と同一の元素が励起されて、上記測定
対象元素からの蛍光X線が上記分光素子で回折される回
折角と同一角度で分光素子から出射する蛍光X線の強度
を示す 項と、 定数項とからなることを特徴とするバックグランド補正
法。
1. A fluorescent X-ray generated from a sample irradiated with primary X-rays is diffracted by a spectroscopic element to measure its intensity, and the intensity of the element to be measured contained in the sample is calculated from the intensity using a concentration calculation formula. In the fluorescent X-ray analysis method for calculating the concentration, the concentration calculation formula is proportional to a term proportional to the fluorescent X-ray intensity from the element to be measured in the sample and to the intensity of disturbance X-rays incident on the spectroscopic element. In terms
Then, it was included in the above-mentioned spectral element by this disturbance X-ray.
The same element as the element to be measured is excited,
The time when the fluorescent X-rays from the target element are diffracted by the spectroscopic element
The intensity of fluorescent X-rays emitted from the spectroscopic element at the same angle as the angle
Background correction method, wherein the term, that consisting of a constant term that indicates the.
JP6047763A 1994-02-21 1994-02-21 Background correction method for X-ray fluorescence analysis Expired - Fee Related JP3034420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6047763A JP3034420B2 (en) 1994-02-21 1994-02-21 Background correction method for X-ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6047763A JP3034420B2 (en) 1994-02-21 1994-02-21 Background correction method for X-ray fluorescence analysis

Publications (2)

Publication Number Publication Date
JPH07229863A JPH07229863A (en) 1995-08-29
JP3034420B2 true JP3034420B2 (en) 2000-04-17

Family

ID=12784420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6047763A Expired - Fee Related JP3034420B2 (en) 1994-02-21 1994-02-21 Background correction method for X-ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JP3034420B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038825A (en) * 1996-07-18 1998-02-13 Rigaku Ind Co Fluorescent x-ray specromerer
KR100453658B1 (en) * 1998-01-08 2004-12-17 삼성전자주식회사 Method for analyzing thickness of bpsg membrane using xps and recording medium for storing program for bpsg membrane thickness analysis
DE19926056B4 (en) * 1999-06-08 2004-03-25 Gkss-Forschungszentrum Geesthacht Gmbh Device for analyzing atomic and / or molecular elements using wavelength-dispersive, X-ray spectrometric devices
JP3600849B2 (en) * 2001-06-11 2004-12-15 理学電機工業株式会社 Multilayer spectroscopy device for boron X-ray fluorescence analysis
JP6774896B2 (en) * 2017-03-10 2020-10-28 日本電子株式会社 Analyzer and analysis method

Also Published As

Publication number Publication date
JPH07229863A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
EP0422017B1 (en) Method for measuring the thickness of a coating on a substrate
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
JP2954819B2 (en) Calibration method for total reflection X-ray fluorescence analyzer
US8011830B2 (en) Method and system for calibrating an X-ray photoelectron spectroscopy measurement
Agamalian et al. Surface-induced parasitic scattering in Bonse–Hart double-crystal diffractometers
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JP3968350B2 (en) X-ray diffraction apparatus and method
JP2589638B2 (en) X-ray fluorescence analysis method and apparatus
JP2912127B2 (en) X-ray fluorescence analysis method
JP2002022679A (en) X-ray diffraction device
Tochio et al. Broadening of the x-ray emission line due to the instrumental function of the double-crystal spectrometer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP3127875B2 (en) Total reflection X-ray fluorescence analysis method and apparatus
JP2706601B2 (en) X-ray fluorescence analysis method and apparatus
JP2613511B2 (en) X-ray fluorescence analyzer
Dhez et al. Tests Of Short Period X-Ray Multilayer Mirrors Using A Position Sensitive Proportional Counter
JP2961881B2 (en) X-ray diffraction method for measuring film thickness
Malaurent et al. In situ X-ray multilayer reflectometry based on the energy dispersive method
JPH0798285A (en) X-ray evaluation apparatus
Romanenko et al. Estimation of detection limits in electron probe X-ray microanalysis
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JP2645227B2 (en) X-ray fluorescence analysis method
JP3312002B2 (en) X-ray fluorescence analyzer
Arai Measurements of soft and ultrasoft X-rays with total reflection monochromator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees