JP2706601B2 - X-ray fluorescence analysis method and apparatus - Google Patents

X-ray fluorescence analysis method and apparatus

Info

Publication number
JP2706601B2
JP2706601B2 JP4257131A JP25713192A JP2706601B2 JP 2706601 B2 JP2706601 B2 JP 2706601B2 JP 4257131 A JP4257131 A JP 4257131A JP 25713192 A JP25713192 A JP 25713192A JP 2706601 B2 JP2706601 B2 JP 2706601B2
Authority
JP
Japan
Prior art keywords
ray
line
rays
intensity
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4257131A
Other languages
Japanese (ja)
Other versions
JPH05209847A (en
Inventor
久征 河野
寛 小林
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP4257131A priority Critical patent/JP2706601B2/en
Publication of JPH05209847A publication Critical patent/JPH05209847A/en
Application granted granted Critical
Publication of JP2706601B2 publication Critical patent/JP2706601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、たとえば、半導体基
板である大型のウエハの表面に設けた薄膜の膜厚および
測定しようとする元素の濃度の測定に適した蛍光X線分
析方法および装置に関するものである。
BACKGROUND OF THE INVENTION This invention is, for example, semiconductor group
The present invention relates to an X-ray fluorescence analysis method and apparatus suitable for measuring the thickness of a thin film provided on the surface of a large wafer as a plate and the concentration of an element to be measured.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、タング
ステンシリサイド(以下、「WSix」と記す。)のよ
うなシリサイドが、ポリシリコン層よりも、抵抗値が小
さく、かつ、高速動作に優れていることから注目を集め
ている。このWSixの薄膜は、膜厚だけではなく、シ
リコン基板との密着性などの観点から組成比(x)を測
定し、組成比(タングステンの濃度)の厳密な管理を行
う必要がある。この膜厚と組成比を測定する蛍光X線分
析方法の一例を図8に示す。
2. Description of the Related Art In recent years, with high integration of LSI, silicide such as tungsten silicide (hereinafter, referred to as "WSix") has a smaller resistance value than a polysilicon layer and is excellent in high-speed operation. It is attracting attention because it is. It is necessary to measure the composition ratio (x) of the WSix thin film from the viewpoint of not only the film thickness but also the adhesion to the silicon substrate, and strictly control the composition ratio (concentration of tungsten). FIG. 8 shows an example of a fluorescent X-ray analysis method for measuring the film thickness and the composition ratio.

【0003】図8において、被測定試料1Aはモニタ
で、シリコン基板に代えてAl2 3のようなセラミッ
ク製の基板11Aの表面に、WSixの薄膜12を有し
ている。この被測定試料1Aに一次X線B1を照射し、
被測定試料1AからのW−Lα線B3およびSi−Kα
線B5の2種類の蛍光X線を測定する。ここで、上記両
蛍光X線B3,B5は、それぞれ、膜厚tとW(タング
ステン)の濃度により、その測定強度が変化するのであ
るが、W−Lα線B3の強度は膜厚tの影響が大きく、
一方、Si−Kα線B5の強度は濃度の影響が大きい。
そのため、公知のファンダメンタルパラメータ法によ
り、2つの測定強度から、膜厚tおよびWの濃度を比較
的正確に分析することができる。
In FIG. 8, a sample 1A to be measured is a monitor, which has a WSix thin film 12 on the surface of a ceramic substrate 11A such as Al 2 O 3 instead of a silicon substrate. The sample to be measured 1A is irradiated with primary X-rays B1,
W-Lα ray B3 and Si-Kα from sample under test 1A
Two types of fluorescent X-rays of the line B5 are measured. Here, the measured intensity of both the fluorescent X-rays B3 and B5 changes depending on the thickness t and the concentration of W (tungsten), respectively. The intensity of the W-Lα ray B3 is affected by the thickness t. Is large,
On the other hand, the intensity of the Si-Kα ray B5 is greatly affected by the concentration.
Therefore, the concentration of the film thicknesses t and W can be analyzed relatively accurately from the two measured intensities by the known fundamental parameter method.

【0004】[0004]

【発明が解決しようとする課題】しかし、最近、製造さ
れるウエハの直径が大きく(たとえば、8インチ)なっ
たのに伴い、セラミックであるAl2 3 の基板11A
が、コスト的に非常に高価になり、そのため、モニタを
使用しないで、膜厚tおよび濃度を測定する必要に迫ら
れている。上記モニタを使用しない場合は、シリコン基
板と薄膜の双方に同一の元素Siが含まれているので、
その分析が困難となる。上記モニタを用いないで分析す
る方法としては、ラザフォードバックスキャタと呼ばれ
るX線非破壊検査もなされているが、分析に要する時間
が長いなどの欠点がある。
However, recently, as the diameter of a wafer to be manufactured has increased (for example, 8 inches), a substrate 11A made of ceramic Al 2 O 3 has been required.
However, it becomes very expensive in terms of cost, so that it is necessary to measure the film thickness t and the concentration without using a monitor. When the above monitor is not used, since the same element Si is contained in both the silicon substrate and the thin film,
The analysis becomes difficult. As a method of performing analysis without using the monitor, an X-ray nondestructive inspection called Rutherford backscatter is performed, but it has a drawback such as a long time required for analysis.

【0005】また、シリコン基板上にWSixの薄膜を
有する被測定試料に一次X線を照射し、大きな取出角と
極めて小さな取出角で、それぞれ、W−Lα線の強度を
測定することによっても、膜厚と濃度を測定することが
できる。しかし、膜厚の影響が極めて小さくなる程度ま
で、取出角を小さくすると、分析装置の構造が極めて特
殊なものになり、その結果、分析装置が高価なものにな
る。
Further, by irradiating a sample to be measured having a WSix thin film on a silicon substrate with primary X-rays and measuring the intensity of W-Lα rays at a large extraction angle and an extremely small extraction angle, respectively. Film thickness and concentration can be measured. However, if the take-out angle is reduced to such an extent that the influence of the film thickness becomes extremely small, the structure of the analyzer becomes very special, and as a result, the analyzer becomes expensive.

【0006】この発明は上記従来の問題に鑑みてなされ
たもので、基板に含まれている元素と同一の元素を含有
する薄膜の膜厚と濃度を測定する蛍光X線分析方法およ
び装置において、安価な分析装置で、短時間で精度の良
い分析を可能にすることを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and is directed to a method and apparatus for X-ray fluorescence analysis for measuring the thickness and concentration of a thin film containing the same element as that contained in a substrate. It is an object of the present invention to enable accurate analysis in a short time with an inexpensive analyzer.

【0007】[0007]

【0008】[0008]

【課題を解決するための手段および作用】上記目的を達
成するために、請求項1の分析方法は、まず、半導体基
板に含まれている元素と同一の第1の元素と、上記基板
に含まれていない第2の元素とを含有する薄膜を上記基
板の表面に設けた被測定試料に一次X線を照射し、上記
被測定試料から出射される蛍光X線のうち上記第2の元
素の硬X線の強度と、上記第2の元素の超軟X線の強度
をそれぞれ測定する。これら2つの蛍光X線の測定強度
のそれぞれに基づいて上記薄膜の膜厚および第2の元素
の濃度との関係を求め、これらの関係から、上記薄膜の
膜厚と第2の元素の濃度を求める。ここで、上記硬X線
と超軟X線の組合せが、K線とM線、K線とN線、L線
とN線からなる組合せのいずれかである。なお、この発
明において、超軟X線とは、M線およびN線をいう。
In order to achieve the above object, an analysis method according to the first aspect of the present invention comprises a first element identical to an element contained in a semiconductor substrate and a first element contained in the substrate. Irradiating primary X-rays to a sample to be measured provided on the surface of the substrate with a thin film containing a second element that is not included in the second element, and among the fluorescent X-rays emitted from the sample to be measured, The intensity of the hard X-ray and the intensity of the ultra-soft X-ray of the second element are measured. The measured intensity of these two fluorescent X-rays
The thickness of the thin film and the second element based on
Is determined, and from these relationships, the thickness of the thin film and the concentration of the second element are determined. Here, the combination of the hard X-ray and the super soft X-ray is any one of a combination of a K line and an M line, a K line and an N line, and an L line and an N line. In the present invention, the ultra soft X-ray refers to an M line and an N line.

【0009】一方、請求項2の分析装置は、半導体基板
に含まれている元素と同一の第1の元素と、上記基板に
含まれていない第2の元素とを含有する薄膜を上記基板
の表面に設けた被測定試料に一次X線を照射するX線源
と、一次X線を受けた被測定試料からの蛍光X線のうち
上記第2の元素の硬X線および超軟X線をそれぞれ分光
する第1および第2の分光素子とを備えている。上記硬
X線および超軟X線は、それぞれ、第1および第2の測
定器により、そのX線強度が測定される。さらに、この
装置は、上記第1の測定器で測定された硬X線の測定強
度と、上記第2の測定器で測定された超軟X線の測定強
度のそれぞれに基づいて上記薄膜の膜厚および第2の元
素の濃度との関係を求め、これらの関係から、上記薄膜
の膜厚と第2の元素の濃度を求める演算器を備えてい
る。ここで、上記硬X線と超軟X線の組合せが、K線と
M線、K線とN線、L線とN線からなる組合せのいずれ
かである。
According to another aspect of the present invention, there is provided an analyzer comprising a thin film containing a first element identical to an element contained in a semiconductor substrate and a second element not contained in the substrate. An X-ray source for irradiating the sample to be measured provided on the surface with primary X-rays, and hard X-rays and ultra-soft X-rays of the second element among the fluorescent X-rays from the sample to be measured which have received the primary X-rays First and second light-splitting elements for splitting light are provided. The X-ray intensity of the hard X-ray and the ultra-soft X-ray is measured by the first and second measuring instruments, respectively. Furthermore, this
The apparatus measures the intensity of hard X-rays measured by the first measuring instrument.
And the intensity of the ultra-soft X-ray measured by the second measuring instrument.
The thickness of the thin film and the second element based on each of the degrees
The relationship with the elemental concentration was determined, and from these relationships,
And an arithmetic unit for calculating the thickness of the second element and the concentration of the second element.
You. Here, the combination of the hard X-ray and the super soft X-ray is any one of a combination of a K line and an M line, a K line and an N line, and an L line and an N line.

【0010】これらの発明によれば、薄膜中に含まれて
おり、かつ、基板に含まれていない第2の元素について
の蛍光X線のうち、膜厚の影響が大きい硬X線の強度
と、膜厚の影響が小さい超軟X線の強度を測定するか
ら、これら硬X線および超軟X線の測定強度は、それぞ
れ、膜厚および濃度に関して敏感な情報を含んでいる。
したがって、この2つの測定強度に基づいて演算するこ
とで、膜厚と第2の元素の濃度を比較的正確に測定する
ことができる。
According to these inventions, among the fluorescent X-rays of the second element contained in the thin film and not contained in the substrate, the intensity of the hard X-ray having a large influence of the film thickness is improved. Since the intensity of the ultra-soft X-ray whose influence of the film thickness is small is measured, the measured intensity of the hard X-ray and the intensity of the ultra-soft X-ray each include sensitive information regarding the film thickness and the concentration.
Therefore, by calculating based on these two measured intensities, the film thickness and the concentration of the second element can be measured relatively accurately.

【0011】また、請求項の分析方法においては、被
測定試料から出射される蛍光X線のうち、基板および薄
膜中の第1の元素の硬X線の強度と、薄膜中の第2の元
素の超軟X線の強度を測定し、これら2つの測定強度に
基づいて膜厚と濃度を求める。ここで、やはり、上記硬
X線と超軟X線の組合せが、K線とM線、K線とN線、
L線とN線からなる組合せのいずれかである。
In the analysis method according to the third aspect , among the fluorescent X-rays emitted from the sample to be measured, the intensity of the hard X-ray of the first element in the substrate and the thin film and the intensity of the second X-ray in the thin film are different. The intensity of the ultra soft X-ray of the element is measured, and the film thickness and the concentration are obtained based on these two measured intensities. Here, after all,
The combination of X-ray and ultra-soft X-ray is K-line and M-line, K-line and N-line,
One of the combinations consisting of the L line and the N line.

【0012】請求項の分析装置は、半導体基板に含ま
れている元素と同一の第1の元素と、上記基板に含まれ
ていない第2の元素とを含有する薄膜を上記基板の表面
に設けた被測定試料に一次X線を照射するX線源と、
次X線を受けた被測定試料からの蛍光X線のうち第1の
元素の硬X線を分光する第1の分光素子と、上記一次X
線を受けた被測定試料からの蛍光X線のうち第2の元素
の超軟X線を分光する第2の分光素子とを備えている。
上記硬X線および超軟X線は、それぞれ、第1および第
2の測定器により、そのX線強度が測定される。ここ
で、やはり、上記硬X線と超軟X線の組合せが、K線と
M線、K線とN線、L線とN線からなる組合せのいずれ
かである。
The analyzer according to claim 4 is included in a semiconductor substrate.
A first element that is the same as the element
A thin film containing a second element that is not
An X-ray source for irradiating primary X-rays to a sample to be measured, provided in the apparatus, and a first spectral element for splitting hard X-rays of the first element among fluorescent X-rays from the sample to be subjected to primary X-rays And the above primary X
And a second spectral element that splits ultra soft X-ray of the X-ray fluorescence caries Chi second element from the measurement sample that has received the line.
The X-ray intensity of the hard X-ray and the ultra-soft X-ray is measured by the first and second measuring instruments, respectively. here
So, again, the combination of hard X-rays and ultra-soft X-rays
Any combination of M line, K line and N line, L line and N line
Is.

【0013】請求項もしくはの発明では、基板およ
び薄膜中の第1の元素の硬X線の強度を測定するのであ
るが、この硬X線の強度は、硬X線が薄膜において吸収
されるので、薄膜の膜厚が薄い場合、膜厚が厚くなるに
従い小さくなる。したがって、上記硬X線の測定強度に
は、膜厚に関する敏感な情報を含んでいる。一方、第2
元素の超軟X線の測定強度は、エネルギの小さい超軟X
線が薄膜中で大きく吸収されるから、薄膜の厚さにかか
わらず薄膜のごく表面からのみ出射されるので、濃度に
関しての敏感な情報を含んでいる。したがって、この2
つの測定強度に基づいて演算することで、膜厚と第2の
元素の濃度を比較的正確に測定することができる。
According to the third or fourth aspect of the invention, the intensity of the hard X-ray of the first element in the substrate and the thin film is measured. Therefore, when the thickness of the thin film is small, it becomes smaller as the thickness increases. Therefore, the measured intensity of the hard X-ray includes sensitive information on the film thickness. On the other hand, the second
The measured intensity of elemental ultra-soft X-rays is
Since the lines are largely absorbed in the thin film, they are emitted only from the very surface of the thin film regardless of the thickness of the thin film, and thus contain sensitive information about the concentration. Therefore, this 2
By calculating based on the two measurement intensities, the film thickness and the concentration of the second element can be measured relatively accurately.

【0014】[0014]

【実施例】以下、この発明の一実施例を図面にしたがっ
て説明する。図1において、被測定試料1は、基板11
に含まれている元素と同一の第1の元素と、基板11に
含まれていない第2の元素とを含有する薄膜12を、基
板11の表面に設けたもので、たとえば、Siの基板1
1の表面にWSixの薄膜12を有してなるウエハであ
る。この被測定試料1は薄膜12の膜厚tと組成比
(x)つまりWの濃度が未知の試料である。なお、薄膜
12の膜厚tは、たとえば、400Å〜2500Å程度
の範囲である。蛍光X線分析装置2は、X線管(X線
源)3と、第1および第2の分光素子4A,4Bと、第
1および第2の測定器5A,5Bと、演算器6とを備え
ている。第1および第2の測定器5A,5Bは、それぞ
れ、第1および第2のX線検出器8A,8Bと、第1お
よび第2計数回路部9A,9Bとを備えている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a sample 1 to be measured includes a substrate 11
A thin film 12 containing the same first element as the element contained in the substrate 11 and a second element not contained in the substrate 11 is provided on the surface of the substrate 11.
1 is a wafer having a WSix thin film 12 on its surface. The sample 1 to be measured is a sample whose thickness t and composition ratio (x) of the thin film 12, that is, the concentration of W are unknown. The thickness t of the thin film 12 is, for example, in a range of about 400 ° to 2500 °. The X-ray fluorescence analyzer 2 includes an X-ray tube (X-ray source) 3, first and second spectroscopic elements 4A and 4B, first and second measuring devices 5A and 5B, and an arithmetic unit 6. Have. The first and second measuring devices 5A and 5B include first and second X-ray detectors 8A and 8B, and first and second counting circuit units 9A and 9B, respectively.

【0015】X線管3は、被測定試料1の薄膜12の表
面に向かって、一次X線B1を出射するものである。一
次X線B1を受けた被測定試料1は、原子が励起され
て、被測定試料1に含まれている元素固有の蛍光X線B
2を発生する。
The X-ray tube 3 emits primary X-rays B1 toward the surface of the thin film 12 of the sample 1 to be measured. The sample 1 to be measured that has received the primary X-ray B1 has its atoms excited, and the fluorescent X-rays B unique to the element contained in the sample 1 to be measured.
2 is generated.

【0016】上記両分光素子4A,4Bは、真空雰囲気
に保持された分光室7内に収納されている。第1の分光
素子4Aは、たとえばLiFの分光結晶からなり、被測
定試料1からの蛍光X線B2のうち、測定しようとする
元素つまりWの硬X線であるW−Lα線B3を分光す
る。一方、第2の分光素子4Bは、たとえば、シリコン
基板に炭素とニッケルの層を交互に多数積層した人工格
子からなる。この第2の分光素子4Bは、被測定試料1
からの蛍光X線B2のうち、Wの超軟X線であるW−N
x線B4を分光する。これら第1および第2の分光素子
4A,4Bで分光された、W−Lα線B3およびW−N
x線B4は、それぞれ、第1および第2のX線検出器8
A,8Bに入射する。なお、W−Nx線B4の取出角β
2は、W−Lα線B3の取出角β1よりも小さく設定さ
れている。
The two spectral elements 4A and 4B are housed in a spectral chamber 7 maintained in a vacuum atmosphere. The first spectral element 4A is made of, for example, a LiF spectral crystal, and disperses an element to be measured, that is, a W-Lα ray B3, which is a hard X-ray of W, among the fluorescent X-rays B2 from the sample 1 to be measured. . On the other hand, the second spectral element 4B is made of, for example, an artificial lattice in which a large number of carbon and nickel layers are alternately stacked on a silicon substrate. The second spectroscopic element 4 </ b> B
Among the fluorescent X-rays B2 from
The x-ray B4 is split. The W-Lα rays B3 and W-N separated by the first and second light-splitting elements 4A and 4B.
The x-rays B4 are the first and second X-ray detectors 8, respectively.
A, 8B. The extraction angle β of the W-Nx line B4
2 is set smaller than the extraction angle β1 of the W-Lα line B3.

【0017】上記第1および第2のX線検出器8A,8
Bは、それぞれ、入射したW−Lα線B3およびW−N
x線B4を検出して、検出出力e1,e2を第1および
第2計数回路部9A,9Bに出力する。第1および第2
計数回路部9A,9Bは、それぞれ、検出出力e1,e
2をカウントして、W−Lα線B3およびW−Nx線B
4の強度を測定信号x1,x2として演算器6に出力す
る。演算器6は、上記測定信号x1,x2を受けて、W
−Lα線B3およびW−Nx線B4の測定強度のそれぞ
れに基づいて薄膜12の膜厚tおよびWの濃度との関係
を求め、これらの関係から、薄膜12の膜厚tおよびW
の濃度を求める。
The first and second X-ray detectors 8A and 8A
B is the incident W-Lα ray B3 and W-N, respectively.
The x-ray B4 is detected, and detection outputs e1 and e2 are output to the first and second counting circuits 9A and 9B. First and second
The counting circuits 9A and 9B respectively provide detection outputs e1 and e
2 is counted, and the W-Lα line B3 and the W-Nx line B
4 is output to the computing unit 6 as measurement signals x1 and x2. The computing unit 6 receives the measurement signals x1 and x2 and receives W
-Measured intensity of Lα line B3 and W-Nx line B4
Based on this, the relationship between the thickness t of the thin film 12 and the concentration of W
From these relationships, the film thicknesses t and W of the thin film 12 are calculated.
Find the concentration of

【0018】つぎに、ファンダメンタルパラメータ法を
用いた分析方法について簡単に説明する。まず、膜厚t
および濃度が既知の標準試料を複数種類用意し、これら
の標準試料について、図1の分析装置2を用いて、W−
Lα線B3およびW−Nx線B4の強度を両測定器5
A,5Bにより測定する。これらの測定強度と膜厚tお
よび濃度に基づいて、測定強度から理論強度への変換式
を求める。
Next, an analysis method using the fundamental parameter method will be briefly described. First, the film thickness t
And a plurality of standard samples of known concentrations were prepared. These standard samples were analyzed using the analyzer 2 of FIG.
The intensity of the Lα line B3 and the intensity of the W-Nx line B4 were measured with both measuring instruments 5.
A, 5B. A conversion formula from the measured intensity to the theoretical intensity is obtained based on the measured intensity, the film thickness t, and the concentration.

【0019】ついで、膜厚tおよび濃度が未知の被測定
試料1について、分析装置2を用いてW−Lα線B3お
よびW−Nx線B4の強度を測定する。この測定強度を
前述の変換式により理論強度に変換する。この後、膜厚
tと濃度によりX線強度が一義的に定まる理論強度式
に、適当な膜厚tと濃度とを与え、算出された理論強度
が、測定強度を変換した理論強度に合致するか否かを計
算する。合致しなければ、膜厚tを変えて再び濃度を与
えて計算を繰り返し、この計算を繰り返すことにより、
膜厚tおよび濃度を求める。なお、この演算は、膜厚t
および濃度を未知数とするW−Lα線B3の理論強度に
関する第1の方程式と、W−Nx線B4の理論強度に関
する第2の方程式からなる連立方程式を解き、膜厚tお
よび濃度を求める。
Next, the intensity of the W-Lα line B3 and the intensity of the W-Nx line B4 are measured using the analyzer 2 for the sample 1 whose thickness t and concentration are unknown. This measured intensity is converted into a theoretical intensity by the above-mentioned conversion formula. Thereafter, an appropriate film thickness t and concentration are given to a theoretical intensity formula in which the X-ray intensity is uniquely determined by the film thickness t and the concentration, and the calculated theoretical intensity matches the theoretical intensity obtained by converting the measured intensity. Calculate whether or not. If they do not match, the film thickness t is changed, the concentration is again given, the calculation is repeated, and this calculation is repeated,
The thickness t and the concentration are obtained. Note that this calculation is based on the film thickness t.
A simultaneous equation consisting of a first equation relating to the theoretical intensity of the W-Lα line B3 whose density is unknown and a second equation relating to the theoretical intensity of the W-Nx line B4 is solved to determine the film thickness t and the concentration.

【0020】つぎに、この分析方法において、蛍光X線
B2のうちW−Lα線B3とW−Nx線B4を用いてい
る理由を説明する。図2に示すように、W−Lα線B3
は比較的波長が短く(約1.48Å程度)、つまりエネ
ルギが大きいので、薄膜12の最深部12aから発生し
たものも薄膜12にあまり吸収されず、そのため、薄膜
12を透過して、薄膜12の全層から出射される。した
がって、W−Lα線B3の強度は、図3の実線で示すよ
うに、薄膜12の膜厚tが大きくなるに従い大きくな
り、膜厚tの変化に大きな影響を受ける。一方、図2の
W−Nx線B4は、波長が極めて長く(約55Å程
度)、つまりエネルギが極めて小さいので、薄膜12の
深いところで発生したものが薄膜12に吸収され、その
ため、薄膜12の表面層からのみ出射される。したがっ
て、W−Nx線B4の強度は、図3の破線で示すよう
に、薄膜12の膜厚tの影響がW−Lα線B3よりも極
めて小さく、図4に示すように、Wの濃度の影響を大き
く受ける。
Next, the reason why the W-Lα ray B3 and the W-Nx ray B4 among the fluorescent X-rays B2 are used in this analysis method will be described. As shown in FIG. 2, the W-Lα line B3
Has a relatively short wavelength (approximately 1.48 °), that is, has a large energy, so that the one generated from the deepest portion 12a of the thin film 12 is not so much absorbed by the thin film 12, so that it passes through the thin film 12, Are emitted from all the layers. Therefore, as shown by the solid line in FIG. 3, the intensity of the W-Lα line B3 increases as the thickness t of the thin film 12 increases, and is greatly affected by the change in the thickness t. On the other hand, the wavelength of the W-Nx line B4 in FIG. 2 is extremely long (about 55 °), that is, the energy is extremely small, so that the one generated at a deep part of the thin film 12 is absorbed by the thin film 12, so that the surface of the thin film 12 Emitted only from the layer. Therefore, as shown by the broken line in FIG. 3, the intensity of the W-Nx line B4 is much less affected by the thickness t of the thin film 12 than that of the W-Lα line B3, and as shown in FIG. Affected significantly.

【0021】このように、図3のW−Lα線B3の測定
強度は、膜厚tの影響が大きいので、膜厚tに関する確
かな情報を含んでおり、一方、W−Nx線B4の測定強
度は、膜厚tの影響が小さいので、濃度に関する確かな
情報を含んでいる。つまり、膜厚tの変化はW−Lα線
B3の測定強度の大きな変化となって現われ、一方、濃
度の変化はW−Nx線B4の測定強度の変化となって現
れる。したがって、W−Lα線B3およびW−Nx線B
4の強度を測定することにより、膜厚tおよび濃度を正
確に測定することができる。
As described above, since the measured intensity of the W-Lα line B3 in FIG. 3 is greatly influenced by the film thickness t, it contains reliable information on the film thickness t. Since the intensity has little influence on the film thickness t, the intensity includes reliable information on the concentration. That is, a change in the film thickness t appears as a large change in the measured intensity of the W-Lα line B3, while a change in the concentration appears as a change in the measured intensity of the W-Nx line B4. Therefore, the W-Lα line B3 and the W-Nx line B
By measuring the intensity of No. 4, the film thickness t and the concentration can be accurately measured.

【0022】ところで、この発明は、必ずしも、W−L
α線B3およびW−Nx線B4の強度を測定する必要は
なく、薄膜12を構成する元素の種類(組成)によっ
て、図1の基板11に含まれていない第2の元素(W)
についての膜厚の影響が大きい硬X線(B3)と、膜厚
の影響が小さい超軟X線(B4)の組合せとして、K線
とM線、K線とN線、L線とN線からなる組合せのいず
れかの各強度を測定し、これら2つの測定強度に基づい
て膜厚tおよび濃度を求めてもよい
Incidentally, the present invention is not necessarily limited to WL
It is not necessary to measure the intensity of the α ray B3 and the W-Nx ray B4, and it depends on the type (composition) of the element constituting the thin film 12.
Te, a second element that is not contained in the substrate 11 of FIG. 1 (W)
X-ray (B3), which is greatly affected by film thickness, and film thickness
As a combination of ultra-soft X-rays (B4) with little effect of
And M line, K line and N line, L line and N line
The respective intensities may be measured, and the film thickness t and the concentration may be obtained based on these two measured intensities .

【0023】しかし、この実施例のWSixの薄膜12
については、W−Mα線では、エネルギが大きすぎて、
その強度が膜厚tの影響を大きく受けるので、僅かな測
定誤差が濃度の大きな誤差となって現れる。したがっ
て、WSixの薄膜12については、W−Mα線を用い
るのは好ましくなく、一般に、N線を用いるのが好まし
い。
However, the WSix thin film 12 of this embodiment
For W-Mα ray, the energy is too large,
Since the intensity is greatly affected by the film thickness t, a slight measurement error appears as a large concentration error. Therefore, for the WSix thin film 12, it is not preferable to use the W-Mα line, but generally it is preferable to use the N line .

【0024】ところで、上記実施例では、W−Nx線B
4の取出角β2をW−Lα線B3の取出角β1よりも若
干小さく設定している。そのため、W−Nx線B4は、
より一層、WSixの薄膜12中に吸収され易い。した
がって、W−Nx線B4の強度は、膜厚tの影響をより
一層受けにくくなるので、より正確な分析結果を得るこ
とができる。
In the above embodiment, the W-Nx line B
4 is set slightly smaller than the extraction angle β1 of the W-Lα line B3. Therefore, the W-Nx line B4 is
It is more easily absorbed in the WSix thin film 12. Therefore, the intensity of the W-Nx line B4 is less affected by the film thickness t, so that a more accurate analysis result can be obtained.

【0025】また、上記実施例では、第1の蛍光X線の
強度として、蛍光X線B2のうち第2の元素(W)の硬
X線(たとえばW−Lα線)B3の強度を測定した。し
かし、この発明では、第1の蛍光X線として蛍光X線B
2のうち第1の元素(Si)の硬X線の強度を測定して
もよい。この原理を図5および図6に基づいて説明す
る。
In the above embodiment, as the intensity of the first fluorescent X-ray, the intensity of the hard X-ray (for example, W-Lα ray) B3 of the second element (W) among the fluorescent X-rays B2 was measured. . However, in the present invention, the fluorescent X-ray B
The intensity of the hard X-ray of the first element (Si) among the two may be measured. This principle will be described with reference to FIGS.

【0026】図5において、第1の元素Siについての
硬X線であるSi−Kα線B5には,薄膜12中のSi
から出射されるSi−Kα線B5sと、基板11中のS
iから出射されるSi−Kα線B5bとがある。上記薄
膜12からのSi−Kα線B5sは、図6(a)のよう
に、薄膜tが薄い範囲においては、膜厚tが厚くなるの
に従い、そのX線強度が大きくなり、薄膜tが所定値よ
りも厚くなると、そのX線強度が飽和して一定になる。
一方、図6(b)のように、基板11からのSi−Kα
線B5bは、薄膜12に吸収されるので、膜厚tが薄い
範囲においては、膜厚tが厚くなるのに従い、そのX線
強度が著しく小さくなり、膜厚tが所定値よりも厚くな
ると、そのX線強度が0になる。そのため、被測定試料
1全体から出射されるSi−Kα線B5は、図6(a)
と図6(b)を合成した図6(c)のように、膜厚tが
ごく薄い(たとえば、10Å〜 5,000Å)範囲において
は、薄膜tが厚くなるのに従って、そのX線強度が小さ
くなる。したがって、膜厚tが薄い場合、Si−Kα線
B5の測定強度には、膜厚tに関しての確かな情報が含
まれているので、W−Lα線B3(図1)に代えて、S
i−Kα線B5のX線強度を測定してもよい。
In FIG. 5, the Si—Kα ray B5, which is a hard X-ray for the first element Si,
Si—Kα ray B5s emitted from the substrate 11 and S
i-rays B5b emitted from i. As shown in FIG. 6A, the X-ray intensity of the Si-Kα ray B5s from the thin film 12 increases as the thickness t increases in a range where the thin film t is thin. When the thickness is larger than the value, the X-ray intensity is saturated and becomes constant.
On the other hand, as shown in FIG.
Since the line B5b is absorbed by the thin film 12, in a range where the film thickness t is small, as the film thickness t increases, the X-ray intensity becomes extremely small, and when the film thickness t becomes larger than a predetermined value, The X-ray intensity becomes zero. Therefore, the Si-Kα ray B5 emitted from the entire sample 1 to be measured is as shown in FIG.
As shown in FIG. 6C, which is a combination of FIG. 6B and FIG. 6B, when the film thickness t is extremely small (for example, 10 ° to 5,000 °), as the thin film t becomes thicker, the X-ray intensity becomes smaller. Become. Therefore, when the film thickness t is small, the measured intensity of the Si-Kα line B5 contains reliable information on the film thickness t, and therefore, instead of the W-Lα line B3 (FIG. 1), S
The X-ray intensity of the i-Kα ray B5 may be measured.

【0027】この図5の実施例の場合は、図1の第1の
分光素子4AがSi−Kα線B5(図5)を分光し、第
1のX線検出器8AがSi−Kα線B5(図5)を検出
する。その他の構成は、上記図1の実施例と同様であ
り、その詳しい説明および図示を省略する。
In the case of the embodiment shown in FIG. 5, the first spectral element 4A in FIG. 1 splits the Si-Kα ray B5 (FIG. 5), and the first X-ray detector 8A splits the Si-Kα ray B5. (FIG. 5) is detected. Other configurations are the same as those of the embodiment of FIG. 1, and detailed description and illustration thereof are omitted.

【0028】つぎに、図7に示すように、Si基板11
の上に、SiO2 の薄膜12AとWSixの薄膜12を
積層した被測定試料1の場合について説明する。
Next, as shown in FIG.
The case of the sample 1 to be measured in which the thin film 12A of SiO 2 and the thin film 12 of WSix are laminated on the above.

【0029】この場合において、図7(a)のように、
第1の蛍光X線としてSi−Kα線B5のX線強度を測
定すると、Si基板11からのSi−Kα線B5bは、
中間のSiO2 薄膜12Aにおいても吸収される。その
ため、SiO2 薄膜12Aの膜厚が変化すると、WSi
x薄膜12の厚さが一定でも、全体のSi−Kα線B5
のX線強度が変化する。したがって、図7(a)の方法
では、SiO2 薄膜12Aの厚さが既知の場合には、W
Six薄膜12の膜厚tとWの濃度を求め得るが、Si
2 薄膜12Aの厚さが未知である場合には、WSix
薄膜12の膜厚tとWの濃度を正確に求めることができ
ない。
In this case, as shown in FIG.
When the X-ray intensity of the Si-Kα ray B5 is measured as the first fluorescent X-ray, the Si-Kα ray B5b from the Si substrate 11 is
It is also absorbed in the intermediate SiO 2 thin film 12A. Therefore, when the thickness of the SiO 2 thin film 12A changes, WSi
x Even if the thickness of the thin film 12 is constant, the whole Si-Kα ray B5
X-ray intensity changes. Therefore, in the method of FIG. 7A, if the thickness of the SiO 2 thin film 12A is known, W
The thickness t of the Six thin film 12 and the concentration of W can be obtained.
If the thickness of the O 2 thin film 12A is unknown, WSix
The thickness t and the concentration of W of the thin film 12 cannot be determined accurately.

【0030】これに対し、第1の蛍光X線として図7
(b)のW−Lα線B3のX線強度を測定する場合(図
1の実施例の場合)は、W−Lα線B3がSiO2 薄膜
12Aよりも表面で発生するから、W−Lα線B3の強
度がSiO2 薄膜12Aの膜厚に影響されない。したが
って、この場合は、SiO2 薄膜12Aの厚さ等が未知
であっても、つまり、WSix薄膜12の下に他の薄膜
などがあっても、WSix薄膜12の膜厚tと濃度を正
確に測定することができる。
On the other hand, as the first fluorescent X-ray, FIG.
In the case (b) of measuring the X-ray intensity of the W-Lα ray B3 (in the case of the embodiment of FIG. 1), the W-Lα ray B3 is generated on the surface more than the SiO 2 thin film 12A, The strength of B3 is not affected by the thickness of the SiO 2 thin film 12A. Therefore, in this case, even if the thickness or the like of the SiO 2 thin film 12A is unknown, that is, even if there is another thin film under the WSix thin film 12, the thickness t and the concentration of the WSix thin film 12 can be accurately determined. Can be measured.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、薄膜中に含まれており、かつ、基板に含まれていな
い第2の元素についての蛍光X線のうち、膜厚の影響が
大きい硬X線の強度と、膜厚の影響が小さい超軟X線
強度を測定するので、2つの測定強度に基づいて、膜厚
と濃度を正確に測定することができる。同様に、第1の
元素の硬X線の強度と、第2の元素の超軟X線の強度に
基づいて、膜厚と濃度を求めた場合にも、これらを正確
に測定することができる。
As described above, according to the present invention, the influence of the film thickness of the fluorescent X-rays of the second element contained in the thin film and not contained in the substrate is obtained.
Since the intensity of the large hard X-ray and the intensity of the ultra-soft X-ray whose influence of the film thickness is small are measured, the film thickness and the concentration can be accurately measured based on the two measured intensities. Similarly, when the film thickness and the concentration are obtained based on the intensity of the hard X-ray of the first element and the intensity of the ultra-soft X-ray of the second element, these can be accurately measured. .

【0032】また、演算器により、公知のファンダメン
タルパラメータ法を用いて容易に計算することができる
から、従来のラザフォードバックスキャタによる測定と
異なり、短時間で分析ができる。さらに、取出角を極端
に小さくする必要もないから、分析装置の形状が特殊な
形状になることもないので、分析装置が著しくコストア
ップすることもない。
Further, since the calculation can be easily performed by the arithmetic unit using a known fundamental parameter method, the analysis can be performed in a short time, unlike the measurement by the conventional Rutherford backscatter. Furthermore, since the take-out angle does not need to be extremely small, the analyzer does not have a special shape, and the cost of the analyzer does not significantly increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す蛍光X線分析装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an X-ray fluorescence analyzer showing one embodiment of the present invention.

【図2】この発明の原理を示す被測定試料の拡大断面図
である。
FIG. 2 is an enlarged sectional view of a sample to be measured, showing the principle of the present invention.

【図3】蛍光X線の強度と、膜厚およびWの濃度との関
係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between the intensity of fluorescent X-rays, the film thickness, and the concentration of W.

【図4】W−Nx線の強度と、膜厚およびWの濃度との
関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between W-Nx line intensity, film thickness and W concentration.

【図5】他の実施例の原理を示す被測定試料の拡大断面
図である。
FIG. 5 is an enlarged sectional view of a sample to be measured, showing the principle of another embodiment.

【図6】Si−Kα線のX線強度と膜厚の関係を示す特
性図である。
FIG. 6 is a characteristic diagram showing a relationship between X-ray intensity of Si-Kα ray and film thickness.

【図7】WSix薄膜の下にSiO2 薄膜がある場合の
測定原理を示す拡大断面図である。
FIG. 7 is an enlarged cross-sectional view showing a measurement principle when a SiO 2 thin film is provided under a WSix thin film.

【図8】従来の分析方法を示す被測定試料の拡大断面図
である。
FIG. 8 is an enlarged sectional view of a sample to be measured showing a conventional analysis method.

【符号の説明】[Explanation of symbols]

1…被測定試料、3…X線源、4A…第1の分光素子、
4B…第2の分光素子、5A…第1の測定器、5B…第
2の測定器、11…基板、12…薄膜、B1…一次X
線、B2…蛍光X線、B3…硬X線(第1の蛍光X
線)、B4…超軟X線(第2の蛍光X線)。
Reference numeral 1 denotes a sample to be measured, 3 denotes an X-ray source, 4A denotes a first spectral element,
4B: second spectral element, 5A: first measuring instrument, 5B: second measuring instrument, 11: substrate, 12: thin film, B1: primary X
Line, B2: fluorescent X-ray, B3: hard X-ray (first fluorescent X-ray
Line), B4 ... Super soft X-ray (second fluorescent X-ray).

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板に含まれている元素と同一の
第1の元素と、上記基板に含まれていない第2の元素と
を含有する薄膜を上記基板の表面に設けた被測定試料に
一次X線を照射し、 上記被測定試料から出射される蛍光X線のうち上記第2
の元素の硬X線の強度と、上記第2の元素の超軟X線の
強度をそれぞれ測定し、これら2つの蛍光X線の測定強
のそれぞれに基づいて上記薄膜の膜厚および第2の元
素の濃度との関係を求め、これらの関係から、上記薄膜
の膜厚と第2の元素の濃度を求める蛍光X線分析方法で
あって、 上記硬X線と超軟X線の組合せが、K線とM線、K線と
N線、L線とN線からなる組合せのいずれかである蛍光
X線分析方法。
1. A test sample in which a thin film containing a first element identical to an element contained in a semiconductor substrate and a second element not contained in the substrate is provided on the surface of the substrate. Irradiating a primary X-ray, the second of the fluorescent X-rays emitted from the sample to be measured
The intensity of the hard X-ray of the element and the intensity of the ultra-soft X-ray of the second element are measured, and the thickness of the thin film and the second intensity are determined based on the measured intensity of the two fluorescent X-rays . Former
A fluorescent X-ray analysis method for determining the relationship between the concentration of the second element and the film thickness of the thin film and the concentration of the second element based on the relationship between the hard X-ray and the ultra-soft X-ray. An X-ray fluorescence analysis method, which is one of a combination of K-line and M-line, K-line and N-line, and L-line and N-line.
【請求項2】 半導体基板に含まれている元素と同一の
第1の元素と、上記基板に含まれていない第2の元素と
を含有する薄膜を上記基板の表面に設けた被測定試料に
一次X線を照射するX線源と、 上記一次X線を受けた被測定試料からの蛍光X線のうち
上記第2の元素の硬X線を分光する第1の分光素子と、 上記一次X線を受けた被測定試料からの蛍光X線のうち
上記第2の元素の超軟X線を分光する第2の分光素子
と、 上記硬X線の強度を測定する第1の測定器と、 上記超軟X線の強度を測定する第2の測定器と 上記第1の測定器で測定された硬X線の測定強度と、上
記第2の測定器で測定された超軟X線の測定強度のそれ
ぞれに基づいて上記薄膜の膜厚および第2の元素の濃度
との関係を求め、これらの関係から、上記薄膜の膜厚と
第2の元素の濃度を求める演算器と を備えた蛍光X線分
析装置であって、 上記硬X線と超軟X線の組合せが、K線とM線、K線と
N線、L線とN線からなる組合せのいずれかである蛍光
X線分析装置。
2. A test sample in which a thin film containing a first element identical to an element contained in a semiconductor substrate and a second element not contained in the substrate is provided on the surface of the substrate. An X-ray source for irradiating primary X-rays, a first spectral element for dispersing hard X-rays of the second element among fluorescent X-rays from the sample to be measured that has received the primary X-rays, A second spectroscopic element for splitting ultra-soft X-rays of the second element among the fluorescent X-rays from the sample to be measured that has received the X-rays, a first measuring device for measuring the intensity of the hard X-rays, the second measuring device for measuring the intensity of the ultrasonic soft X-rays, and measuring the intensity of the hard X-rays measured by the first measuring device, upper
The intensity of the ultra-soft X-ray measured by the second measuring instrument
The thickness of the thin film and the concentration of the second element based on each
From these relationships, and from these relationships, the thickness of the thin film and
An X-ray fluorescence analyzer comprising a calculator for determining the concentration of a second element, wherein the combination of the hard X-ray and the ultra-soft X-ray is K-line and M-line, K-line and N-line, and L-line X-ray fluorescence analyzer which is one of the combination consisting of
【請求項3】 半導体基板に含まれている元素と同一の
第1の元素と、上記基板に含まれていない第2の元素と
を含有する薄膜を上記基板の表面に設けた被測定試料
次X線を照射し、 上記被測定試料から出射される蛍光X線のうち上記第1
の元素の硬X線の強度と、上記第2の元素の超軟X線の
強度をそれぞれ測定し、これら2つの蛍光X線の測定強
度に基づいて上記薄膜の膜厚と第2の元素の濃度を求め
る蛍光X線分析方法であって、 上記硬X線と超軟X線の組合せが、K線とM線、K線と
N線、L線とN線からなる組合せのいずれかである蛍光
X線分析方法
3. A sample to be measured in which a thin film containing a first element identical to an element contained in a semiconductor substrate and a second element not contained in the substrate is provided on the surface of the substrate.
Irradiating primary X-rays, the first of fluorescent X-rays emitted from the sample to be measured
The intensity of the hard X-ray of the element and the intensity of the ultra- soft X-ray of the second element are measured, and the thickness of the thin film and the intensity of the second element are determined based on the measured intensity of the two fluorescent X-rays . A fluorescent X-ray analysis method for obtaining a concentration, wherein the combination of the hard X-ray and the ultra-soft X-ray is such that K-ray and M-ray and K-ray
Fluorescence that is one of N-line, a combination of L-line and N-line
X-ray analysis method .
【請求項4】 半導体基板に含まれている元素と同一の
第1の元素と、上記基板に含まれていない第2の元素と
を含有する薄膜を上記基板の表面に設けた被測定試料に
一次X線を照射するX線源と、 上記一次X線を受けた被測定試料からの蛍光X線のうち
上記第1の元素の硬X線を分光する第1の分光素子と、 上記一次X線を受けた被測定試料からの蛍光X線のうち
上記第2の元素の超軟X線を分光する第2の分光素子
と、 上記硬X線の強度を測定する第1の測定器と、 上記超軟X線の強度を測定する第2の測定器とを備えた
蛍光X線分析装置であって、 上記硬X線と超軟X線の組合せが、K線とM線、K線と
N線、L線とN線からなる組合せのいずれかである蛍光
X線分析装置
4. The same element as the element contained in the semiconductor substrate.
A first element and a second element not contained in the substrate
A thin film containing
An X-ray source for irradiating primary X-rays, and a fluorescent X-ray from a sample to be measured that has received the primary X-ray
A first spectroscopic element for dispersing hard X-rays of the first element; and a fluorescent X-ray from a sample to be measured that has received the primary X-rays.
A second spectroscopic element for splitting ultra- soft X-rays of the second element, a first measuring device for measuring the intensity of the hard X-rays, and a second measurement for measuring the intensity of the ultra-soft X-rays A fluorescent X-ray analyzer comprising a device , wherein the combination of the hard X-ray and the ultra-soft X-ray is
Fluorescence that is one of N-line, a combination of L-line and N-line
X-ray analyzer .
JP4257131A 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus Expired - Lifetime JP2706601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4257131A JP2706601B2 (en) 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-299926 1991-10-18
JP29992691 1991-10-18
JP4257131A JP2706601B2 (en) 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH05209847A JPH05209847A (en) 1993-08-20
JP2706601B2 true JP2706601B2 (en) 1998-01-28

Family

ID=26543070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4257131A Expired - Lifetime JP2706601B2 (en) 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP2706601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173037B1 (en) 1998-07-16 2001-01-09 U.S. Philips Corporation Method of and apparatus for X-ray fluorescent analysis of thin layers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076222A1 (en) * 1999-08-10 2001-02-14 Corus Aluminium Walzprodukte GmbH X-ray fluorescence measurement of aluminium sheet thickness
JP3784371B2 (en) 2003-01-08 2006-06-07 松下電器産業株式会社 Method for measuring silicide abundance ratio, method for measuring heat treatment temperature, method for manufacturing semiconductor device, and X-ray light receiving element
US7302034B2 (en) * 2005-10-04 2007-11-27 Thermoniton Analyzers Llc Analysis of elemental composition and thickness in multilayered materials
JP2011185881A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Ltd Layer thickness measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202339A (en) * 1984-03-27 1985-10-12 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method
JPS63292043A (en) * 1987-05-26 1988-11-29 D S Sukiyanaa:Kk Apparatus for analyzing film thickness and composition at the same time
JP2536019B2 (en) * 1988-02-17 1996-09-18 株式会社島津製作所 X-ray microanalyzer analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173037B1 (en) 1998-07-16 2001-01-09 U.S. Philips Corporation Method of and apparatus for X-ray fluorescent analysis of thin layers

Also Published As

Publication number Publication date
JPH05209847A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
CN101228609B (en) Determining layer thickness using photoelectron spectrum
US6907108B2 (en) Dual-wavelength x-ray monochromator
JP4796254B2 (en) X-ray array detector
US6381303B1 (en) X-ray microanalyzer for thin films
US20060153333A1 (en) X-ray reflectometry of thin film layers with enhanced accuracy
US20050036583A1 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
US6426993B1 (en) Energy dispersion-type X-ray detection system
Chakarian et al. Absolute helicity-dependent photoabsorption cross sections of Fe thin films and quantitative evaluation of magnetic-moment determination
WO2005005969A1 (en) Energy dispersion type x-ray diffraction/spectral device
Tran et al. Measurement of the x-ray mass attenuation coefficient and the imaginary part of the form factor of silicon using synchrotron radiation
JP2706601B2 (en) X-ray fluorescence analysis method and apparatus
US8011830B2 (en) Method and system for calibrating an X-ray photoelectron spectroscopy measurement
JP3889851B2 (en) Film thickness measurement method
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
US20030103596A1 (en) Device and method for analyzing atomic and/or molecular elements by means of wavelength dispersive X-ray spectrometric devices
JPH07128263A (en) X-ray analyzing device
JP6709377B2 (en) X-ray fluorescence analyzer and X-ray fluorescence analysis method
JP2001099792A (en) Method and device for fluorescent x-ray analysis of sample
US20060280285A1 (en) Fluorescent X-ray spectroscopic apparatus
US11852467B2 (en) Method and system for monitoring deposition process
Matyi et al. The international VAMAS project on X-ray reflectivity measurements for evaluation of thin films and multilayers—Preliminary results from the second round-robin
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JPH06222019A (en) Nondestructive quantitative analysis of multilayer thin film
JP2536019B2 (en) X-ray microanalyzer analysis method
JP3373698B2 (en) X-ray analysis method and X-ray analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 15

EXPY Cancellation because of completion of term