JPH05209847A - Fluorescent x-ray spectroscopy method and apparatus - Google Patents

Fluorescent x-ray spectroscopy method and apparatus

Info

Publication number
JPH05209847A
JPH05209847A JP4257131A JP25713192A JPH05209847A JP H05209847 A JPH05209847 A JP H05209847A JP 4257131 A JP4257131 A JP 4257131A JP 25713192 A JP25713192 A JP 25713192A JP H05209847 A JPH05209847 A JP H05209847A
Authority
JP
Japan
Prior art keywords
ray
rays
measured
fluorescent
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4257131A
Other languages
Japanese (ja)
Other versions
JP2706601B2 (en
Inventor
Hisamasa Kono
久征 河野
Hiroshi Kobayashi
寛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP4257131A priority Critical patent/JP2706601B2/en
Publication of JPH05209847A publication Critical patent/JPH05209847A/en
Application granted granted Critical
Publication of JP2706601B2 publication Critical patent/JP2706601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To perform an analysis in a short time accurately by an inexpensive analyzing apparatus in a fluorescent X-ray spectroscopy method and an apparatus therefor for measuring the thickness of a thin WSix film containing the same element Si as that included in a silicon substrate and concentration of W. CONSTITUTION:A primary X-ray B1 is irradiated to a measuring sample 1, and a fluorescent X-ray B2 from the measuring sample 1 is separated by a first and a second spectral elements 4A, 4B. The first spectral element 4A separates a W-Lalpha beam B3, while the second spectral element 4B separates a W-Nx beam B4. The intensity of the X-ray of the W-Lalpha beam B3 and W-Nx beam B4 are measured by a first and a second measuring instruments 5A, 5B, respectively. The film thickness (t) and the concentration of W are obtained by an operator 6 on the basis of the measured intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば、大型のウ
エハの表面に設けた薄膜の膜厚および測定しようとする
元素の濃度の測定に適した蛍光X線分析方法および装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent X-ray analysis method and apparatus suitable for measuring the film thickness of a thin film provided on the surface of a large wafer and the concentration of the element to be measured.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、タング
ステンシリサイド(以下、「WSix」と記す。)のよ
うなシリサイドが、ポリシリコン層よりも、抵抗値が小
さく、かつ、高速動作に優れていることから注目を集め
ている。このWSixの薄膜は、膜厚だけではなく、シ
リコン基板との密着性などの観点から組成比(x)を測
定し、組成比(タングステンの濃度)の厳密な管理を行
う必要がある。この膜厚と組成比を測定する蛍光X線分
析方法の一例を図8に示す。
2. Description of the Related Art In recent years, with the high integration of LSI, silicide such as tungsten silicide (hereinafter referred to as "WSix") has a smaller resistance value than a polysilicon layer and is excellent in high speed operation. It's getting a lot of attention. It is necessary to measure the composition ratio (x) of the thin film of WSix not only in terms of film thickness, but also in terms of adhesion to the silicon substrate, and strictly control the composition ratio (tungsten concentration). An example of the fluorescent X-ray analysis method for measuring the film thickness and the composition ratio is shown in FIG.

【0003】図8において、被測定試料1Aはモニタ
で、シリコン基板に代えてAl2 3のようなセラミッ
ク製の基板11Aの表面に、WSixの薄膜12を有し
ている。この被測定試料1Aに一次X線B1を照射し、
被測定試料1AからのW−Lα線B3およびSi−Kα
線B5の2種類の蛍光X線を測定する。ここで、上記両
蛍光X線B3,B5は、それぞれ、膜厚tとW(タング
ステン)の濃度により、その測定強度が変化するのであ
るが、W−Lα線B3の強度は膜厚tの影響が大きく、
一方、Si−Kα線B5の強度は濃度の影響が大きい。
そのため、公知のファンダメンタルパラメータ法によ
り、2つの測定強度から、膜厚tおよびWの濃度を比較
的正確に分析することができる。
In FIG. 8, a sample 1A to be measured is a monitor, and has a thin film 12 of WSix on the surface of a substrate 11A made of ceramic such as Al 2 O 3 instead of the silicon substrate. The sample 1A to be measured is irradiated with the primary X-ray B1,
W-Lα ray B3 and Si-Kα from the sample to be measured 1A
Two types of fluorescent X-rays of line B5 are measured. Here, the measured intensities of both the fluorescent X-rays B3 and B5 change depending on the film thickness t and the concentration of W (tungsten), but the intensity of the W-Lα line B3 is influenced by the film thickness t. Is large,
On the other hand, the intensity of the Si-Kα ray B5 is greatly influenced by the concentration.
Therefore, the concentrations of the film thicknesses t and W can be relatively accurately analyzed from the two measured intensities by the known fundamental parameter method.

【0004】[0004]

【発明が解決しようとする課題】しかし、最近、製造さ
れるウエハの直径が大きく(たとえば、8インチ)なっ
たのに伴い、セラミックであるAl2 3 の基板11A
が、コスト的に非常に高価になり、そのため、モニタを
使用しないで、膜厚tおよび濃度を測定する必要に迫ら
れている。上記モニタを使用しない場合は、シリコン基
板と薄膜の双方に同一の元素Siが含まれているので、
その分析が困難となる。上記モニタを用いないで分析す
る方法としては、ラザフォードバックスキャタと呼ばれ
るX線非破壊検査もなされているが、分析に要する時間
が長いなどの欠点がある。
However, recently, as the diameter of the wafer to be manufactured becomes larger (for example, 8 inches), the substrate 11A made of Al 2 O 3 which is a ceramic is used.
However, it becomes very expensive in cost, so that it is necessary to measure the film thickness t and the concentration without using a monitor. If the above monitor is not used, since the same element Si is contained in both the silicon substrate and the thin film,
The analysis becomes difficult. An X-ray non-destructive inspection called Rutherford backscatter is also performed as a method of analysis without using the above-mentioned monitor, but it has a drawback that the analysis takes a long time.

【0005】また、シリコン基板上にWSixの薄膜を
有する被測定試料に一次X線を照射し、大きな取出角と
極めて小さな取出角で、それぞれ、W−Lα線の強度を
測定することによっても、膜厚と濃度を測定することが
できる。しかし、膜厚の影響が極めて小さくなる程度ま
で、取出角を小さくすると、分析装置の構造が極めて特
殊なものになり、その結果、分析装置が高価なものにな
る。
Further, by irradiating a sample to be measured having a thin film of WSix on a silicon substrate with primary X-rays and measuring the intensities of W-Lα rays at a large extraction angle and an extremely small extraction angle, respectively. The film thickness and concentration can be measured. However, if the take-off angle is reduced to such an extent that the influence of the film thickness becomes extremely small, the structure of the analyzer becomes extremely special, and as a result, the analyzer becomes expensive.

【0006】この発明は上記従来の問題に鑑みてなされ
たもので、基板に含まれている元素と同一の元素を含有
する薄膜の膜厚と濃度を測定する蛍光X線分析方法およ
び装置において、安価な分析装置で、短時間で精度の良
い分析を可能にすることを目的とする。
The present invention has been made in view of the above conventional problems, and provides a fluorescent X-ray analysis method and apparatus for measuring the film thickness and concentration of a thin film containing the same element as that contained in a substrate, The purpose is to enable accurate analysis in a short time with an inexpensive analyzer.

【0007】[0007]

【課題を解決するための手段および作用】上記目的を達
成するために、請求項1の分析方法は、まず、基板に含
まれている元素と同一の第1の元素を含有する薄膜を上
記基板の表面に設けた被測定試料に一次X線を照射し、
上記薄膜中の基板に含まれていない第2の元素について
の膜厚の影響が大きい第1の蛍光X線の強度と、上記第
2の元素についての膜厚の影響が上記第1の蛍光X線よ
りも小さく、かつ、第1の蛍光X線とは系列の異なる第
2の蛍光X線の強度とを測定する。これら2つの蛍光X
線の測定強度に基づいて上記膜厚と濃度を求める。
In order to achieve the above object, in the analysis method of claim 1, first, a thin film containing the same first element as the element contained in the substrate is formed on the substrate. Irradiate the sample to be measured provided on the surface of
The intensity of the first fluorescent X-ray having a large influence of the thickness of the second element not contained in the substrate in the thin film, and the influence of the thickness of the second element having the influence of the film thickness on the first fluorescent X The intensity of the second fluorescent X-ray smaller than the line and having a different series from the first fluorescent X-ray is measured. These two fluorescent X
The film thickness and the concentration are obtained based on the measured intensity of the line.

【0008】請求項2の分析方法においては、上記第1
および第2の蛍光X線として、それぞれ、被測定試料か
ら出射される蛍光X線のうち上記第2の元素の硬X線お
よび超軟X線の強度を測定する。なお、この発明におい
て、超軟X線とは、M線およびM線よりも波長の長い
(エネルギの小さい)X線をいい、Wの場合には、波長
が4.4Å〜67.6Åの範囲のX線をいう。
In the analysis method of claim 2, the first
As the second fluorescent X-ray, the intensities of the hard X-ray and the super-soft X-ray of the second element of the fluorescent X-rays emitted from the sample to be measured are measured. In the present invention, super soft X-rays mean M-rays and X-rays having a longer wavelength (smaller energy) than M-rays, and in the case of W, the wavelength is in the range of 4.4Å to 67.6Å. X-ray.

【0009】一方、請求項3の分析装置は、一次X線を
受けた被測定試料からの蛍光X線のうち測定しようとす
る元素の硬X線および超軟X線をそれぞれ分光する第1
および第2の分光素子とを備えている。上記硬X線およ
び超軟X線は、それぞれ、第1および第2の測定器によ
り、そのX線強度が測定される。
On the other hand, the analyzer according to claim 3 separates the hard X-rays and the ultra-soft X-rays of the element to be measured from the fluorescent X-rays from the sample to be measured which have received the primary X-rays.
And a second spectroscopic element. The X-ray intensities of the hard X-ray and the super-soft X-ray are measured by the first and second measuring instruments, respectively.

【0010】これらの発明によれば、薄膜中に含まれて
おり、かつ、基板に含まれていない第2の元素について
の蛍光X線のうち、硬X線のような膜厚の影響が大きい
第1の蛍光X線の強度と、超軟X線のような膜厚の影響
が小さい第2の蛍光X線の強度を測定するから、これら
第1および第2の蛍光X線の測定強度は、それぞれ、膜
厚および濃度に関して敏感な情報を含んでいる。したが
って、この2つの測定強度に基づいて演算することで、
膜厚と第2の元素の濃度を比較的正確に測定することが
できる。
According to these inventions, among fluorescent X-rays of the second element contained in the thin film and not contained in the substrate, the influence of the film thickness such as hard X-rays is large. Since the intensity of the first fluorescent X-ray and the intensity of the second fluorescent X-ray, which is less affected by the film thickness like the ultra-soft X-ray, are measured, the measured intensity of these first and second fluorescent X-rays is , Respectively, containing sensitive information about film thickness and concentration. Therefore, by calculating based on these two measured intensities,
The film thickness and the concentration of the second element can be measured relatively accurately.

【0011】また、請求項4の分析方法においては、被
測定試料から出射される蛍光X線のうち、基板および薄
膜中の第1の元素の硬X線の強度と、薄膜中の第2の元
素の超軟X線の強度を測定し、これら2つの測定強度に
基づいて薄膜と濃度を求める。
Further, in the analysis method of claim 4, of the fluorescent X-rays emitted from the sample to be measured, the intensity of the hard X-ray of the first element in the substrate and the thin film and the intensity of the second hard X-ray in the thin film. The ultra-soft X-ray intensity of the element is measured, and the thin film and the concentration are obtained based on these two measured intensities.

【0012】請求項5の分析装置は、一次X線を受けた
被測定試料からの蛍光X線のうち第1の元素の硬X線を
分光する第1の分光素子と、上記一次X線を受けた被測
定試料からの蛍光X線のうち測定しようとする第2の元
素の超軟X線を分光する第2の分光素子とを備えてい
る。上記硬X線および超軟X線は、それぞれ、第1およ
び第2の測定器により、そのX線強度が測定される。
According to a fifth aspect of the analysis apparatus, the primary X-ray is separated from a first spectroscopic element that disperses the hard X-ray of the first element among the fluorescent X-rays from the sample to be measured that has received the primary X-ray. A second spectroscopic element that disperses the super-soft X-ray of the second element to be measured among the fluorescent X-rays from the measured sample received. The X-ray intensities of the hard X-ray and the super-soft X-ray are measured by the first and second measuring instruments, respectively.

【0013】請求項4もしくは5の発明では、基板およ
び薄膜中の第1の元素の硬X線の強度を測定するのであ
るが、この硬X線の強度は、硬X線が薄膜において吸収
されるので、薄膜の膜厚が薄い場合、膜厚が厚くなるに
従い小さくなる。したがって、上記硬X線の測定強度に
は、膜厚に関する敏感な情報を含んでいる。一方、第2
元素の超軟X線の測定強度は、エネルギの小さい超軟X
線が薄膜中で大きく吸収されるから、薄膜の厚さにかか
わらず薄膜のごく表面からのみ出射されるので、濃度に
関しての敏感な情報を含んでいる。したがって、この2
つの測定強度に基づいて演算することで、膜厚と第2の
元素の濃度を比較的正確に測定することができる。
According to the invention of claim 4 or 5, the intensity of the hard X-ray of the first element in the substrate and the thin film is measured. As for the intensity of this hard X-ray, the hard X-ray is absorbed in the thin film. Therefore, when the thickness of the thin film is thin, it becomes smaller as the film thickness increases. Therefore, the measurement intensity of the hard X-ray contains sensitive information about the film thickness. Meanwhile, the second
Ultra soft X-ray measurement intensity of the element is ultra soft X with small energy
Since the lines are strongly absorbed in the thin film, they are only emitted from the very surface of the thin film, regardless of the thickness of the thin film, and thus contain sensitive information about the concentration. Therefore, this 2
By calculating based on one measurement intensity, the film thickness and the concentration of the second element can be measured relatively accurately.

【0014】[0014]

【実施例】以下、この発明の一実施例を図面にしたがっ
て説明する。図1において、被測定試料1は、基板11
に含まれている元素と同一の第1の元素と、基板11に
含まれていない第2の元素とを含有する薄膜12を、基
板11の表面に設けたもので、たとえば、Siの基板1
1の表面にWSixの薄膜12を有してなるウエハであ
る。この被測定試料1は薄膜12の膜厚tと組成比
(x)つまりWの濃度が未知の試料である。なお、薄膜
12の膜厚tは、たとえば、400Å〜2500Å程度
の範囲である。蛍光X線分析装置2は、X線管(X線
源)3と、第1および第2の分光素子4A,4Bと、第
1および第2の測定器5A,5Bと、演算器6とを備え
ている。第1および第2の測定器5A,5Bは、それぞ
れ、第1および第2のX線検出器8A,8Bと、第1お
よび第2計数回路部9A,9Bとを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the sample to be measured 1 is a substrate 11
A thin film 12 containing a first element that is the same as the element contained in the substrate 11 and a second element that is not contained in the substrate 11 is provided on the surface of the substrate 11.
1 is a wafer having a thin film 12 of WSix on its surface. The sample 1 to be measured is a sample in which the film thickness t of the thin film 12 and the composition ratio (x), that is, the concentration of W are unknown. The film thickness t of the thin film 12 is, for example, in the range of 400 Å to 2500 Å. The fluorescent X-ray analyzer 2 includes an X-ray tube (X-ray source) 3, first and second spectroscopic elements 4A and 4B, first and second measuring instruments 5A and 5B, and a calculator 6. I have it. The first and second measuring instruments 5A and 5B respectively include first and second X-ray detectors 8A and 8B and first and second counting circuit sections 9A and 9B.

【0015】X線管3は、被測定試料1の薄膜12の表
面に向かって、一次X線B1を出射するものである。一
次X線B1を受けた被測定試料1は、原子が励起され
て、被測定試料1に含まれている元素固有の蛍光X線B
2を発生する。
The X-ray tube 3 emits a primary X-ray B1 toward the surface of the thin film 12 of the sample 1 to be measured. The sample to be measured 1 that has received the primary X-ray B1 is excited by atoms, and the fluorescent X-ray B unique to the element contained in the sample to be measured 1 is measured.
2 is generated.

【0016】上記両分光素子4A,4Bは、真空雰囲気
に保持された分光室7内に収納されている。第1の分光
素子4Aは、たとえばLiFの分光結晶からなり、被測
定試料1からの蛍光X線B2のうち、測定しようとする
元素つまりWの硬X線であるW−Lα線B3を分光す
る。一方、第2の分光素子4Bは、たとえば、シリコン
基板に炭素とニッケルの層を交互に多数積層した人工格
子からなる。この第2の分光素子4Bは、被測定試料1
からの蛍光X線B2のうち、Wの超軟X線であるW−N
x線B4を分光する。これら第1および第2の分光素子
4A,4Bで分光された、W−Lα線B3およびW−N
x線B4は、それぞれ、第1および第2のX線検出器8
A,8Bに入射する。なお、W−Nx線B4の取出角β
2は、W−Lα線B3の取出角β1よりも小さく設定さ
れている。
Both of the spectroscopic elements 4A and 4B are housed in a spectroscopic chamber 7 maintained in a vacuum atmosphere. The first spectroscopic element 4A is made of, for example, a LiF dispersive crystal, and disperses the element to be measured, that is, the W-Lα ray B3, which is a hard X-ray of W, from the fluorescent X-rays B2 from the measured sample 1. .. On the other hand, the second spectroscopic element 4B is made of, for example, an artificial lattice in which a large number of layers of carbon and nickel are alternately laminated on a silicon substrate. The second spectroscopic element 4B is the sample to be measured 1
Of the fluorescent X-rays B2 from
X-ray B4 is spectrally separated. The W-Lα rays B3 and W-N separated by the first and second spectroscopic elements 4A and 4B.
The x-ray B4 is the first and second x-ray detector 8 respectively.
It is incident on A and 8B. The take-off angle β of the W-Nx line B4
2 is set to be smaller than the take-out angle β1 of the W-Lα line B3.

【0017】上記第1および第2のX線検出器8A,8
Bは、それぞれ、入射したW−Lα線B3およびW−N
x線B4を検出して、検出出力e1,e2を第1および
第2計数回路部9A,9Bに出力する。第1および第2
計数回路部9A,9Bは、それぞれ、検出出力e1,e
2をカウントして、W−Lα線B3およびW−Nx線B
4の強度を測定信号x1,x2として演算器6に出力す
る。演算器6は、上記測定信号x1,x2を受けて、W
−Lα線B3およびW−Nx線B4の測定強度に基づい
て、薄膜12の膜厚tおよびWの濃度を求める。
The above-mentioned first and second X-ray detectors 8A, 8
B is the incident W-Lα ray B3 and W-N, respectively.
The x-ray B4 is detected and the detection outputs e1 and e2 are output to the first and second counting circuit units 9A and 9B. First and second
The counting circuit units 9A and 9B have detection outputs e1 and e, respectively.
2 is counted and the W-Lα line B3 and the W-Nx line B are
The intensity of 4 is output to the calculator 6 as the measurement signals x1 and x2. The calculator 6 receives the measurement signals x1 and x2, and outputs W
The concentrations of the film thickness t and W of the thin film 12 are obtained based on the measured intensities of the −Lα line B3 and the W—Nx line B4.

【0018】つぎに、ファンダメンタルパラメータ法を
用いた分析方法について簡単に説明する。まず、膜厚t
および濃度が既知の標準試料を複数種類用意し、これら
の標準試料について、図1の分析装置2を用いて、W−
Lα線B3およびW−Nx線B4の強度を両測定器5
A,5Bにより測定する。これらの測定強度と膜厚tお
よび濃度に基づいて、測定強度から理論強度への変換式
を求める。
Next, an analysis method using the fundamental parameter method will be briefly described. First, the film thickness t
And a plurality of types of standard samples having known concentrations are prepared, and W-
The intensities of the Lα line B3 and the W-Nx line B4 are measured by both measuring devices 5.
Measure with A and 5B. A conversion formula from the measured intensity to the theoretical intensity is obtained based on the measured intensity, the film thickness t, and the concentration.

【0019】ついで、膜厚tおよび濃度が未知の被測定
試料1について、分析装置2を用いてW−Lα線B3お
よびW−Nx線B4の強度を測定する。この測定強度を
前述の変換式により理論強度に変換する。この後、膜厚
tと濃度によりX線強度が一義的に定まる理論強度式
に、適当な膜厚tと濃度とを与え、算出された理論強度
が、測定強度を変換した理論強度に合致するか否かを計
算する。合致しなければ、膜厚tを変えて再び濃度を与
えて計算を繰り返し、この計算を繰り返すことにより、
膜厚tおよび濃度を求める。なお、この演算は、膜厚t
および濃度を未知数とするW−Lα線B3の理論強度に
関する第1の方程式と、W−Nx線B4の理論強度に関
する第2の方程式からなる連立方程式を解き、膜厚tお
よび濃度を求める。
Then, the intensity of the W-Lα ray B3 and the W-Nx ray B4 of the sample 1 whose film thickness t and concentration are unknown is measured using the analyzer 2. This measured intensity is converted into theoretical intensity by the above-mentioned conversion formula. After that, an appropriate film thickness t and concentration are given to the theoretical intensity formula in which the X-ray intensity is uniquely determined by the film thickness t and the concentration, and the calculated theoretical intensity matches the theoretical intensity obtained by converting the measured intensity. Calculate whether or not. If they do not match, the thickness t is changed, the concentration is given again, and the calculation is repeated. By repeating this calculation,
The film thickness t and the concentration are obtained. This calculation is based on the film thickness t
And the film thickness t and the concentration are obtained by solving a simultaneous equation consisting of the first equation regarding the theoretical intensity of the W-Lα line B3 and the second equation regarding the theoretical intensity of the W-Nx line B4 in which the concentration is an unknown number.

【0020】つぎに、この分析方法において、蛍光X線
B2のうちW−Lα線B3とW−Nx線B4を用いてい
る理由を説明する。図2に示すように、W−Lα線B3
は比較的波長が短く(約1.48Å程度)、つまりエネ
ルギが大きいので、薄膜12の最深部12aから発生し
たものも薄膜12にあまり吸収されず、そのため、薄膜
12を透過して、薄膜12の全層から出射される。した
がって、W−Lα線B3の強度は、図3の実線で示すよ
うに、薄膜12の膜厚tが大きくなるに従い大きくな
り、膜厚tの変化に大きな影響を受ける。一方、図2の
W−Nx線B4は、波長が極めて長く(約55Å程
度)、つまりエネルギが極めて小さいので、薄膜12の
深いところで発生したものが薄膜12に吸収され、その
ため、薄膜12の表面層からのみ出射される。したがっ
て、W−Nx線B4の強度は、図3の破線で示すよう
に、薄膜12の膜厚tの影響がW−Lα線B3よりも極
めて小さく、図4に示すように、Wの濃度の影響を大き
く受ける。
Next, the reason why the W-Lα ray B3 and the W-Nx ray B4 of the fluorescent X-rays B2 are used in this analysis method will be explained. As shown in FIG. 2, the W-Lα line B3
Has a relatively short wavelength (about 1.48Å), that is, a large amount of energy, so that even those generated from the deepest part 12a of the thin film 12 are not absorbed much by the thin film 12, and therefore, the thin film 12 passes through the thin film 12 and Is emitted from all layers. Therefore, the intensity of the W-Lα ray B3 increases as the film thickness t of the thin film 12 increases, as shown by the solid line in FIG. 3, and is greatly affected by the change in the film thickness t. On the other hand, the W-Nx ray B4 in FIG. 2 has an extremely long wavelength (about 55 Å), that is, energy is very small, so that what is generated in the deep portion of the thin film 12 is absorbed by the thin film 12, and therefore the surface of the thin film 12 is absorbed. Emitted only from the layer. Therefore, as for the intensity of the W-Nx line B4, the influence of the film thickness t of the thin film 12 is extremely smaller than that of the W-Lα line B3, as shown by the broken line in FIG. 3, and as shown in FIG. Greatly affected.

【0021】このように、図3のW−Lα線B3の測定
強度は、膜厚tの影響が大きいので、膜厚tに関する確
かな情報を含んでおり、一方、W−Nx線B4の測定強
度は、膜厚tの影響が小さいので、濃度に関する確かな
情報を含んでいる。つまり、膜厚tの変化はW−Lα線
B3の測定強度の大きな変化となって現われ、一方、濃
度の変化はW−Nx線B4の測定強度の変化となって現
れる。したがって、W−Lα線B3およびW−Nx線B
4の強度を測定することにより、膜厚tおよび濃度を正
確に測定することができる。
As described above, the measured intensity of the W-Lα ray B3 in FIG. 3 includes the reliable information about the film thickness t because the influence of the film thickness t is large, while the measurement intensity of the W-Nx ray B4 is measured. Since the strength is less affected by the film thickness t, it contains reliable information on the concentration. That is, the change in the film thickness t appears as a large change in the measured intensity of the W-Lα line B3, while the change in the concentration appears as a change in the measured intensity of the W-Nx line B4. Therefore, the W-Lα line B3 and the W-Nx line B
By measuring the intensity of No. 4, the film thickness t and the concentration can be accurately measured.

【0022】ところで、この発明は、必ずしも、W−L
α線B3およびW−Nx線B4の強度を測定する必要は
なく、図1の基板11に含まれていない第2の元素
(W)についての膜厚の影響が大きい第1の蛍光X線
(B3)の強度と、膜厚の影響が小さく、かつ、第1の
蛍光X線(B3)とは系列の異なる第2の蛍光X線(B
4)の強度とを測定し、これら2つの測定強度に基づい
て膜厚tおよび濃度を求めてもよい。たとえば、薄膜1
2を構成する元素の種類(組成)によっては、硬X線
(K線またはL線)および超軟X線(M線またはN線)
の強度を測定して、これら2つの測定強度に基づいて分
析してもよい。その一例として、薄膜12がMoSix
である場合には、Mo−Lα線およびMo−Mα線の強
度を測定し、これら2つの測定強度に基づいて分析して
もよい。
By the way, the present invention is not limited to W-L.
It is not necessary to measure the intensities of the α ray B3 and the W-Nx ray B4, and the first fluorescent X-ray (having a large influence of the film thickness of the second element (W) not included in the substrate 11 of FIG. 1 ( The intensity of B3) and the film thickness are small, and the second fluorescent X-ray (B3) is different in series from the first fluorescent X-ray (B3).
The intensity of 4) may be measured, and the film thickness t and the concentration may be determined based on these two measured intensities. For example, thin film 1
Hard X-rays (K-rays or L-rays) and ultra-soft X-rays (M-rays or N-rays) depending on the type (composition) of the elements that make up 2
May be measured and analyzed based on these two measured intensities. As an example, the thin film 12 is MoSix.
In such a case, the intensities of Mo-Lα ray and Mo-Mα ray may be measured, and analysis may be performed based on these two measured intensities.

【0023】しかし、この実施例のWSixの薄膜12
については、W−Mα線のような軟X線では、エネルギ
が大きすぎて、その強度が膜厚tの影響を大きく受ける
ので、僅かな測定誤差が濃度の大きな誤差となって現れ
る。したがって、WSixの薄膜12については、W−
Mα線を用いるのは好ましくなく、一般に、N線および
N線よりも波長の長い超軟X線を用いるのが好ましい。
However, the WSix thin film 12 of this embodiment is used.
With regard to, with soft X-rays such as W-Mα rays, the energy is too large and the intensity thereof is greatly affected by the film thickness t, so a slight measurement error appears as a large concentration error. Therefore, for the thin film 12 of WSix, W-
It is not preferable to use Mα rays, and it is generally preferable to use N rays and ultra-soft X rays having a longer wavelength than N rays.

【0024】ところで、上記実施例では、W−Nx線B
4の取出角β2をW−Lα線B3の取出角β1よりも若
干小さく設定している。そのため、W−Nx線B4は、
より一層、WSixの薄膜12中に吸収され易い。した
がって、W−Nx線B4の強度は、膜厚tの影響をより
一層受けにくくなるので、より正確な分析結果を得るこ
とができる。
By the way, in the above embodiment, the W-Nx line B
The extraction angle β2 of No. 4 is set to be slightly smaller than the extraction angle β1 of the W-Lα line B3. Therefore, the W-Nx line B4 is
It is more likely to be absorbed in the thin film 12 of WSix. Therefore, the intensity of the W-Nx ray B4 is much less affected by the film thickness t, and a more accurate analysis result can be obtained.

【0025】また、上記実施例では、第1の蛍光X線の
強度として、蛍光X線B2のうち第2の元素(W)の硬
X線(たとえばW−Lα線)B3の強度を測定した。し
かし、この発明では、第1の蛍光X線として蛍光X線B
2のうち第1の元素(Si)の硬X線の強度を測定して
もよい。この原理を図5および図6に基づいて説明す
る。
Further, in the above embodiment, the intensity of the hard X-ray (for example, W-Lα ray) B3 of the second element (W) of the fluorescent X-rays B2 was measured as the intensity of the first fluorescent X-ray. .. However, in the present invention, the fluorescent X-ray B is used as the first fluorescent X-ray.
Of the two, the intensity of the hard X-ray of the first element (Si) may be measured. This principle will be described with reference to FIGS.

【0026】図5において、第1の元素Siについての
硬X線であるSi−Kα線B5には,薄膜12中のSi
から出射されるSi−Kα線B5sと、基板11中のS
iから出射されるSi−Kα線B5bとがある。上記薄
膜12からのSi−Kα線B5sは、図6(a)のよう
に、薄膜tが薄い範囲においては、膜厚tが厚くなるの
に従い、そのX線強度が大きくなり、薄膜tが所定値よ
りも厚くなると、そのX線強度が飽和して一定になる。
一方、図6(b)のように、基板11からのSi−Kα
線B5bは、薄膜12に吸収されるので、膜厚tが薄い
範囲においては、膜厚tが厚くなるのに従い、そのX線
強度が著しく小さくなり、膜厚tが所定値よりも厚くな
ると、そのX線強度が0になる。そのため、被測定試料
1全体から出射されるSi−Kα線B5は、図6(a)
と図6(b)を合成した図6(c)のように、膜厚tが
ごく薄い(たとえば、10Å〜 5,000Å)範囲において
は、薄膜tが厚くなるのに従って、そのX線強度が小さ
くなる。したがって、膜厚tが薄い場合、Si−Kα線
B5の測定強度には、膜厚tに関しての確かな情報が含
まれているので、W−Lα線B3(図1)に代えて、S
i−Kα線B5のX線強度を測定してもよい。
In FIG. 5, the Si-Kα ray B5 which is a hard X-ray of the first element Si is the Si in the thin film 12.
From the Si-Kα ray B5s and S in the substrate 11
There is a Si-Kα ray B5b emitted from i. As shown in FIG. 6A, in the range where the thin film t is thin, the X-ray intensity of the Si-Kα ray B5s from the thin film 12 increases as the film thickness t increases, and the thin film t has a predetermined thickness. When the thickness is larger than the value, the X-ray intensity becomes saturated and becomes constant.
On the other hand, as shown in FIG. 6B, Si-Kα from the substrate 11
Since the line B5b is absorbed by the thin film 12, in the range where the film thickness t is thin, the X-ray intensity becomes significantly smaller as the film thickness t becomes thicker, and when the film thickness t becomes thicker than a predetermined value, The X-ray intensity becomes zero. Therefore, the Si-Kα ray B5 emitted from the entire measured sample 1 is as shown in FIG.
As shown in FIG. 6C, which is a combination of FIG. 6B and FIG. 6B, in the range where the film thickness t is extremely thin (for example, 10Å to 5,000Å), the X-ray intensity becomes smaller as the thin film t becomes thicker. Become. Therefore, when the film thickness t is thin, the measured intensity of the Si-Kα line B5 includes certain information regarding the film thickness t, so that instead of the W-Lα line B3 (FIG. 1), S
The X-ray intensity of i-Kα ray B5 may be measured.

【0027】この図5の実施例の場合は、図1の第1の
分光素子4AがSi−Kα線B5(図5)を分光し、第
1のX線検出器8AがSi−Kα線B5(図5)を検出
する。その他の構成は、上記図1の実施例と同様であ
り、その詳しい説明および図示を省略する。
In the case of the embodiment of FIG. 5, the first spectroscopic element 4A of FIG. 1 disperses the Si-Kα ray B5 (FIG. 5), and the first X-ray detector 8A disperses the Si-Kα ray B5. (FIG. 5) is detected. The other structure is similar to that of the embodiment shown in FIG. 1, and detailed description and illustration thereof will be omitted.

【0028】つぎに、図7に示すように、Si基板11
の上に、SiO2 の薄膜12AとWSixの薄膜12を
積層した被測定試料1の場合について説明する。
Next, as shown in FIG. 7, the Si substrate 11
The case of the sample to be measured 1 in which the thin film 12A of SiO 2 and the thin film 12 of WSix are laminated on the above will be described.

【0029】この場合において、図7(a)のように、
第1の蛍光X線としてSi−Kα線B5のX線強度を測
定すると、Si基板11からのSi−Kα線B5bは、
中間のSiO2 薄膜12Aにおいても吸収される。その
ため、SiO2 薄膜12Aの膜厚が変化すると、WSi
x薄膜12の厚さが一定でも、全体のSi−Kα線B5
のX線強度が変化する。したがって、図7(a)の方法
では、SiO2 薄膜12Aの厚さが既知の場合には、W
Six薄膜12の膜厚tとWの濃度を求め得るが、Si
2 薄膜12Aの厚さが未知である場合には、WSix
薄膜12の膜厚tとWの濃度を正確に求めることができ
ない。
In this case, as shown in FIG.
When the X-ray intensity of the Si-Kα ray B5 as the first fluorescent X-ray is measured, the Si-Kα ray B5b from the Si substrate 11 is
It is also absorbed in the intermediate SiO 2 thin film 12A. Therefore, if the thickness of the SiO 2 thin film 12A changes, WSi
x Even if the thickness of the thin film 12 is constant, the entire Si-Kα ray B5
X-ray intensity changes. Therefore, in the method of FIG. 7A, when the thickness of the SiO 2 thin film 12A is known, W
The thickness t and the concentration of W of the Six thin film 12 can be obtained.
If the thickness of the O 2 thin film 12A is unknown, WSix
The film thickness t of the thin film 12 and the concentration of W cannot be accurately obtained.

【0030】これに対し、第1の蛍光X線として図7
(b)のW−Lα線B3のX線強度を測定する場合(図
1の実施例の場合)は、W−Lα線B3がSiO2 薄膜
12Aよりも表面で発生するから、W−Lα線B3の強
度がSiO2 薄膜12Aの膜厚に影響されない。したが
って、この場合は、SiO2 薄膜12Aの厚さ等が未知
であっても、つまり、WSix薄膜12の下に他の薄膜
などがあっても、WSix薄膜12の膜厚tと濃度を正
確に測定することができる。
On the other hand, the first fluorescent X-ray shown in FIG.
In the case of measuring the X-ray intensity of the W-Lα line B3 in (b) (in the case of the embodiment of FIG. 1), the W-Lα line B3 is generated on the surface rather than the SiO 2 thin film 12A. The strength of B3 is not affected by the thickness of the SiO 2 thin film 12A. Therefore, in this case, even if the thickness or the like of the SiO 2 thin film 12A is unknown, that is, even if there is another thin film or the like under the WSix thin film 12, the thickness t and the concentration of the WSix thin film 12 can be accurately measured. Can be measured.

【0031】[0031]

【発明の効果】以上説明したように、この発明によれ
ば、薄膜中に含まれており、かつ、基板に含まれていな
い第2の元素についての蛍光X線のうち、硬X線のよう
な膜厚の影響が大きい第1の蛍光X線の強度と、M線ま
たはM線よりも波長の長い超軟X線のような膜厚の影響
が小さい第2の蛍光X線の強度を測定するので、2つの
測定強度に基づいて、膜厚と濃度を正確に測定すること
ができる。同様に、第1の元素の硬X線の強度と、第2
の元素の超軟X線の強度に基づいて、膜厚と濃度を求め
た場合にも、これらを正確に測定することができる。
As described above, according to the present invention, among the fluorescent X-rays of the second element contained in the thin film and not contained in the substrate, hard X-rays are preferable. Of the intensity of the first fluorescent X-ray, which is greatly affected by the film thickness, and the intensity of the second fluorescent X-ray, which is less affected by the film thickness, such as M-ray or ultra-soft X-ray having a longer wavelength than the M-line. Therefore, the film thickness and the concentration can be accurately measured based on the two measured intensities. Similarly, the intensity of the hard X-ray of the first element and the second
Even when the film thickness and the concentration are obtained based on the ultra-soft X-ray intensity of the element, these can be accurately measured.

【0032】また、演算器により、公知のファンダメン
タルパラメータ法を用いて容易に計算することができる
から、従来のラザフォードバックスキャタによる測定と
異なり、短時間で分析ができる。さらに、取出角を極端
に小さくする必要もないから、分析装置の形状が特殊な
形状になることもないので、分析装置が著しくコストア
ップすることもない。
Further, since the calculation can be easily performed using the well-known fundamental parameter method by the arithmetic unit, unlike the conventional measurement by the Rutherford backscatter, the analysis can be performed in a short time. Further, since it is not necessary to make the take-out angle extremely small, the shape of the analyzer does not become a special shape, and the cost of the analyzer does not increase significantly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す蛍光X線分析装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a fluorescent X-ray analyzer showing an embodiment of the present invention.

【図2】この発明の原理を示す被測定試料の拡大断面図
である。
FIG. 2 is an enlarged sectional view of a sample to be measured showing the principle of the present invention.

【図3】蛍光X線の強度と、膜厚およびWの濃度との関
係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the intensity of fluorescent X-rays and the film thickness and W concentration.

【図4】W−Nx線の強度と、膜厚およびWの濃度との
関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between W-Nx line intensity, film thickness and W concentration.

【図5】他の実施例の原理を示す被測定試料の拡大断面
図である。
FIG. 5 is an enlarged cross-sectional view of a sample to be measured showing the principle of another embodiment.

【図6】Si−Kα線のX線強度と膜厚の関係を示す特
性図である。
FIG. 6 is a characteristic diagram showing the relationship between the X-ray intensity of Si-Kα rays and the film thickness.

【図7】WSix薄膜の下にSiO2 薄膜がある場合の
測定原理を示す拡大断面図である。
FIG. 7 is an enlarged cross-sectional view showing the measurement principle when a SiO 2 thin film is below the WSix thin film.

【図8】従来の分析方法を示す被測定試料の拡大断面図
である。
FIG. 8 is an enlarged cross-sectional view of a sample to be measured showing a conventional analysis method.

【符号の説明】[Explanation of symbols]

1…被測定試料、3…X線源、4A…第1の分光素子、
4B…第2の分光素子、5A…第1の測定器、5B…第
2の測定器、11…基板、12…薄膜、B1…一次X
線、B2…蛍光X線、B3…硬X線(第1の蛍光X
線)、B4…超軟X線(第2の蛍光X線)。
1 ... Sample to be measured, 3 ... X-ray source, 4A ... First spectroscopic element,
4B ... Second spectroscopic element, 5A ... First measuring instrument, 5B ... Second measuring instrument, 11 ... Substrate, 12 ... Thin film, B1 ... Primary X
Line, B2 ... fluorescent X-ray, B3 ... hard X-ray (first fluorescent X-ray
Line), B4 ... Super soft X-ray (second fluorescent X-ray).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板に含まれている元素と同一の第1の
元素と、上記基板に含まれていない第2の元素とを含有
する薄膜を上記基板の表面に設けた被測定試料における
上記薄膜の膜厚と第2の元素の濃度を測定する蛍光X線
分析方法であって、 上記被測定試料に一次X線を照射し、上記第2の元素に
おける膜厚の影響を大きく受ける第1の蛍光X線の強度
と、上記第2の元素における膜厚の影響が上記第1の蛍
光X線よりも小さく、かつ、第1の蛍光X線とは系列の
異なる第2の蛍光X線の強度とをそれぞれ測定し、これ
ら2つの蛍光X線の測定強度に基づいて上記膜厚および
濃度を求める蛍光X線分析方法。
1. A measurement sample comprising a thin film containing a first element which is the same as the element contained in the substrate and a second element which is not contained in the substrate on the surface of the substrate. A fluorescent X-ray analysis method for measuring the thickness of a thin film and the concentration of a second element, the method comprising irradiating the sample to be measured with a primary X-ray and being greatly affected by the thickness of the second element. Of the intensity of the fluorescent X-rays and the film thickness of the second element are smaller than those of the first fluorescent X-rays, and the intensity of the second fluorescent X-rays different in series from the first fluorescent X-rays And a fluorescent X-ray analysis method for determining the film thickness and the concentration based on the measured intensities of these two fluorescent X-rays.
【請求項2】 基板に含まれている元素と同一の第1の
元素と、上記基板に含まれていない第2の元素とを含有
する薄膜を上記基板の表面に設けた被測定試料における
上記薄膜の膜厚と第2の元素の濃度を測定する蛍光X線
分析方法であって、 上記被測定試料に一次X線を照射し、上記被測定試料か
ら出射される蛍光X線のうち上記第2の元素の硬X線の
強度と、上記第2の元素のM線またはM線よりも波長の
長い超軟X線の強度をそれぞれ測定し、これら2つの蛍
光X線の測定強度に基づいて上記膜厚および濃度を求め
る蛍光X線分析方法。
2. A thin film containing a first element which is the same as the element contained in the substrate and a second element which is not contained in the substrate is provided on the surface of the substrate, A fluorescent X-ray analysis method for measuring the film thickness of a thin film and the concentration of a second element, the method comprising irradiating the sample to be measured with primary X-rays, and measuring the first of the fluorescent X-rays emitted from the sample to be measured. The intensity of the hard X-ray of the second element and the intensity of the M-ray of the second element or the super-soft X-ray having a longer wavelength than the M-ray are respectively measured, and based on the measured intensities of these two fluorescent X-rays. A fluorescent X-ray analysis method for obtaining the above-mentioned film thickness and concentration.
【請求項3】 一次X線を被測定試料に照射するX線源
と、上記一次X線を受けた被測定試料からの蛍光X線の
うち測定しようとする元素の硬X線を分光する第1の分
光素子と、上記一次X線を受けた被測定試料からの蛍光
X線のうち測定しようとする上記元素のM線またはM線
よりも波長の長い超軟X線を分光する第2の分光素子
と、上記硬X線の強度を測定する第1の測定器と、上記
超軟X線の強度を測定する第2の測定器とを備えた蛍光
X線分析装置。
3. An X-ray source for irradiating a sample to be measured with primary X-rays, and a method for separating hard X-rays of an element to be measured out of fluorescent X-rays from the sample to be measured which have received the primary X-rays. A second spectroscopic element for spectroscopically analyzing the super-soft X-rays having a wavelength longer than the M-rays of the element to be measured among the fluorescent X-rays from the sample to be measured which has received the primary X-rays. An X-ray fluorescence analyzer provided with a spectroscopic element, a first measuring instrument for measuring the intensity of the hard X-rays, and a second measuring instrument for measuring the intensity of the super-soft X-rays.
【請求項4】 基板に含まれている元素と同一の第1の
元素と、上記基板に含まれていない第2の元素とを含有
する薄膜を上記基板の表面に設けた被測定試料における
上記薄膜の膜厚と第2の元素の濃度を測定する蛍光X線
分析方法であって、 上記被測定試料に一次X線を照射し、上記被測定試料か
ら出射される蛍光X線のうち上記第1の元素の硬X線の
強度と、上記第2の元素のM線またはM線よりも波長の
長い超軟X線の強度をそれぞれ測定し、これら2つの蛍
光X線の測定強度に基づいて上記膜厚および濃度を求め
る蛍光X線分析方法。
4. A thin film containing a first element which is the same as the element contained in the substrate and a second element which is not contained in the substrate is provided on the surface of the substrate, A fluorescent X-ray analysis method for measuring the film thickness of a thin film and the concentration of a second element, the method comprising irradiating the sample to be measured with primary X-rays, and measuring the first of the fluorescent X-rays emitted from the sample to be measured. The intensity of the hard X-ray of the element 1 and the intensity of the M-ray of the second element or the super-soft X-ray having a longer wavelength than the M-ray are respectively measured, and based on the measured intensities of these two fluorescent X-rays. A fluorescent X-ray analysis method for obtaining the above-mentioned film thickness and concentration.
【請求項5】 一次X線を被測定試料に照射するX線源
と、上記一次X線を受けた被測定試料からの蛍光X線の
うち第1の元素の硬X線を分光する第1の分光素子と、
上記一次X線を受けた被測定試料からの蛍光X線のうち
測定しようとする第2の元素のM線またはM線よりも波
長の長い超軟X線を分光する第2の分光素子と、上記硬
X線の強度を測定する第1の測定器と、上記超軟X線の
強度を測定する第2の測定器とを備えた蛍光X線分析装
置。
5. An X-ray source for irradiating a sample to be measured with a primary X-ray, and a first X-ray for spectrally analyzing a hard X-ray of a first element of fluorescent X-rays from the sample to be measured which has received the primary X-ray. And the spectroscopic element of
A second spectroscopic element that disperses M-rays of the second element to be measured or ultra-soft X-rays having a longer wavelength than the M-rays, out of the fluorescent X-rays from the measurement sample that has received the primary X-rays; An X-ray fluorescence analyzer provided with a first measuring instrument for measuring the intensity of the hard X-ray and a second measuring instrument for measuring the intensity of the super-soft X-ray.
JP4257131A 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus Expired - Lifetime JP2706601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4257131A JP2706601B2 (en) 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29992691 1991-10-18
JP3-299926 1991-10-18
JP4257131A JP2706601B2 (en) 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH05209847A true JPH05209847A (en) 1993-08-20
JP2706601B2 JP2706601B2 (en) 1998-01-28

Family

ID=26543070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4257131A Expired - Lifetime JP2706601B2 (en) 1991-10-18 1992-08-31 X-ray fluorescence analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP2706601B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631177B1 (en) * 1999-08-10 2003-10-07 Corus Aluminium Walzprodukte Gmbh Device for measurement of metal sheet thickness and clad layer thickness and method of use thereof
NL1012490C2 (en) * 1998-07-16 2004-07-15 Panalytic B V Method and apparatus for analyzing thin layers with X-ray fluorescence.
US7202095B2 (en) 2003-01-08 2007-04-10 Matsushita Electric Industrial Co., Ltd. Method for measuring silicide proportion, method for measuring annealing temperature, method for fabricating semiconductor device and x-ray photo receiver
JP2009510479A (en) * 2005-10-04 2009-03-12 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Analysis of elemental composition and thickness of multilayer materials
JP2011185881A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Ltd Layer thickness measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202339A (en) * 1984-03-27 1985-10-12 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method
JPS63292043A (en) * 1987-05-26 1988-11-29 D S Sukiyanaa:Kk Apparatus for analyzing film thickness and composition at the same time
JPH01209648A (en) * 1988-02-17 1989-08-23 Shimadzu Corp X-ray microanalyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202339A (en) * 1984-03-27 1985-10-12 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method
JPS63292043A (en) * 1987-05-26 1988-11-29 D S Sukiyanaa:Kk Apparatus for analyzing film thickness and composition at the same time
JPH01209648A (en) * 1988-02-17 1989-08-23 Shimadzu Corp X-ray microanalyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012490C2 (en) * 1998-07-16 2004-07-15 Panalytic B V Method and apparatus for analyzing thin layers with X-ray fluorescence.
US6631177B1 (en) * 1999-08-10 2003-10-07 Corus Aluminium Walzprodukte Gmbh Device for measurement of metal sheet thickness and clad layer thickness and method of use thereof
US7202095B2 (en) 2003-01-08 2007-04-10 Matsushita Electric Industrial Co., Ltd. Method for measuring silicide proportion, method for measuring annealing temperature, method for fabricating semiconductor device and x-ray photo receiver
JP2009510479A (en) * 2005-10-04 2009-03-12 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Analysis of elemental composition and thickness of multilayer materials
JP2011185881A (en) * 2010-03-11 2011-09-22 Hitachi Maxell Ltd Layer thickness measuring device

Also Published As

Publication number Publication date
JP2706601B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US6381303B1 (en) X-ray microanalyzer for thin films
Cumpson The Thickogram: a method for easy film thickness measurement in XPS
CN101228609B (en) Determining layer thickness using photoelectron spectrum
Chakarian et al. Absolute helicity-dependent photoabsorption cross sections of Fe thin films and quantitative evaluation of magnetic-moment determination
JPH05240808A (en) Method for determining fluorescent x rays
US8011830B2 (en) Method and system for calibrating an X-ray photoelectron spectroscopy measurement
JP3889851B2 (en) Film thickness measurement method
US20240167814A1 (en) Method and system for monitoring deposition process
JP2706601B2 (en) X-ray fluorescence analysis method and apparatus
JP3160135B2 (en) X-ray analyzer
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
US20030103596A1 (en) Device and method for analyzing atomic and/or molecular elements by means of wavelength dispersive X-ray spectrometric devices
JP2001099792A (en) Method and device for fluorescent x-ray analysis of sample
US7424092B2 (en) Fluorescent X-ray spectroscopic apparatus
JP2589638B2 (en) X-ray fluorescence analysis method and apparatus
JPH06222019A (en) Nondestructive quantitative analysis of multilayer thin film
JP3729186B2 (en) X-ray fluorescence analyzer
JPH07229863A (en) Background correction method in fluorescence x-ray analysis
JP4279983B2 (en) X-ray fluorescence analyzer
USH922H (en) Method for analyzing materials using x-ray fluorescence
JPH08338819A (en) Method and apparatus for x ray analysis
JP2872926B2 (en) X-ray fluorescence analysis method
Arai Measurements of soft and ultrasoft X-rays with total reflection monochromator
Churms et al. Instrument-invariant method of film thickness determination by means of substrate-to-film X-ray peak intensity ratioing
JP3377328B2 (en) X-ray fluorescence analysis method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 15

EXPY Cancellation because of completion of term