JPS60237349A - Fluorescent x-ray structural analysis apparatus - Google Patents

Fluorescent x-ray structural analysis apparatus

Info

Publication number
JPS60237349A
JPS60237349A JP9284484A JP9284484A JPS60237349A JP S60237349 A JPS60237349 A JP S60237349A JP 9284484 A JP9284484 A JP 9284484A JP 9284484 A JP9284484 A JP 9284484A JP S60237349 A JPS60237349 A JP S60237349A
Authority
JP
Japan
Prior art keywords
ray
intensity
rays
incident
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9284484A
Other languages
Japanese (ja)
Inventor
Asao Nakano
朝雄 中野
Yoko Hayashi
洋子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9284484A priority Critical patent/JPS60237349A/en
Publication of JPS60237349A publication Critical patent/JPS60237349A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Abstract

PURPOSE:To measure fluorescent X-rays within a short time with good accuracy without requiring re-measurement and long-time measurement, by providing a variable filter for attenuating the intensity of X-rays incident on a specimen and measuring the intensity of X-rays incident on the specimen. CONSTITUTION:X-rays generated from an X-ray source 1 passes through an evacuated X-ray route 2 by a vacuum pump 12 and reflected by the crystal 7 arranged in a spectroscopic converging crystal chamber 3 and X-rays with desired energy are selected to irradiate the specimen 15 in a specimen chamber 19 through a filter selector 6 having an X-ray attenuating filter 6a arranged thereto and a slit 13. The position of the hole provided to the filter selector 6 is selected by an X-ray intensity adjusting mechanism 9 to select the proper intensity of X-rays. The intensity of X-rays irradiating the specimen is measured by an incident X-ray intensity measuring counter 14 and the intensity of fluorescent X-rays generated from the specimen 15 is measured by a fluorescent X-ray intensity measuring counter 16. The measured value is inputted to a data processing apparatus 18 where a fluorescent X-ray spectrum is analyzed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、物質の原子レベルの構造を解析するための螢
光X線構造解析装置に係り、特に基板上に形成されたア
モルファス薄膜の構造解析に好適な螢光X線構造解析装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fluorescent X-ray structure analysis device for analyzing the structure of a substance at the atomic level, and in particular, to a structure analysis of an amorphous thin film formed on a substrate. The present invention relates to a fluorescent X-ray structure analysis device suitable for.

〔発明の背景〕[Background of the invention]

螢光X線構造解析装置というのは、X線源からある範囲
で波長を変化させながら試料にX線を照射し、その照射
により発生する螢光X線を観測することによって、対象
物体の構造解析を行うものである。X線源としては電子
ビーム励起型X線発生装置がよく用いられるが、この場
合には主に電子ビームの対陰極内での制動輻射忙よる強
度の小さな連続スペクトルのX線をX線源として利用す
るため、高感度なX線光学系により装置を構成している
。ところが、電子ビ−ム励起型Xf5!発生装置からは
、上記の強度の小さい連続X線の他に強度が非常に大き
な特性X線(線スペクトル)も同蒔に発生しており、こ
のために特性X線波長に対しては、X線測定装置の入力
X線強度があまりに大きいために測定精度が著しく悪化
する。このため、従来は連続スペクトルによる測定を終
えたのち、X線発生装置への投入電力を低下させ再測定
するという方法をとっていた。また、従来の装置はX線
単色器により一定のエネルギー(あるいは波長)の間隔
でX線波長を変化させて走査を行っていたが、低エネル
ギー領域で十分な分解能が得られるようにエネルギー間
隔を設定すると、高エネルギー領域ではエネルギー間隔
が不必要に小さくなり、余分な測定点が多くなって測定
に長時間を要し、装置の安定性からデータの信頼性にも
問題を生じていた。
Fluorescent X-ray structure analysis equipment irradiates a sample with X-rays from an X-ray source while changing the wavelength within a certain range, and observes the fluorescent X-rays generated by the irradiation to determine the structure of the target object. It is for analysis. An electron beam excitation type X-ray generator is often used as an X-ray source. In order to utilize this technology, the device is constructed with a highly sensitive X-ray optical system. However, the electron beam excitation type Xf5! In addition to the low-intensity continuous X-rays mentioned above, the generator also generates very high-intensity characteristic X-rays (line spectrum). Since the input X-ray intensity of the radiation measuring device is too large, the measurement accuracy deteriorates significantly. For this reason, the conventional method has been to reduce the power input to the X-ray generator and perform the measurement again after completing the continuous spectrum measurement. In addition, conventional equipment scanned by changing the X-ray wavelength at fixed energy (or wavelength) intervals using an X-ray monochromator, but in order to obtain sufficient resolution in the low energy region, the energy interval was changed. If this setting is made, the energy interval becomes unnecessarily small in the high-energy region, the number of extra measurement points increases, the measurement takes a long time, and there are problems with the reliability of the data due to the stability of the device.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電子ビーム励起型X線虫発生装置を用
いながらも、再測定や長時間測定を必要とせず、短時間
で精度良く測定が行える螢光X線構造解析装置を提供す
ることにある。
An object of the present invention is to provide a fluorescent X-ray structure analysis device that uses an electron beam excitation type X-ray worm generator but can perform measurements with high accuracy in a short time without requiring remeasurements or long-term measurements. It is in.

〔発明の概要〕[Summary of the invention]

本発明は、試料への入射X線強度を減衰させる可変フィ
ルタを設け、試料へ入射するX線強度を計測しとその強
度がX線強度測定装置の測定精度が悪化しない範囲内に
入るように上記可変フィルタを自動調整する機構を設け
るとともに、試料から放射された螢光データの処理時に
は試料内部の散乱電子波の波数を単位としたスペクトル
に変換して解析が行われることに着目し、入射X線波長
の走査ステップ幅を従来の一定エネルギー幅ではなく、
一定波数幅ステップで行うよう圧したことを特徴とする
ものである。
The present invention provides a variable filter that attenuates the intensity of X-rays incident on the sample, and measures the intensity of X-rays incident on the sample so that the intensity falls within a range that does not deteriorate the measurement accuracy of the X-ray intensity measuring device. In addition to providing a mechanism to automatically adjust the variable filter mentioned above, we focused on the fact that when processing fluorescence data emitted from a sample, analysis is performed by converting it into a spectrum with the wave number of the scattered electron waves inside the sample as a unit. The scanning step width of the X-ray wavelength is not the conventional constant energy width,
It is characterized by being pressed to perform the wave number width steps at a constant wave number width.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を用いて説明する。第1
図は本実施例の螢光X線構造解析装置に用いた分光収束
型湾曲結晶の動作原理を示す。結晶によるX線の回折は
ブラッグの法則により、次式のように規定される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the operating principle of the spectral convergence type curved crystal used in the fluorescent X-ray structure analysis apparatus of this example. X-ray diffraction by a crystal is defined by Bragg's law as shown in the following equation.

2dIdflθ=nλ 曲間・曲・聞(1)ここで、d
は結晶面の面間隔、θは回折に寄与する結晶面と入射X
線の成す回折角、λは回折されるX線の波長、nは回折
の次数(整数)である。
2dIdflθ=nλ Song interval, song, listen (1) Here, d
is the spacing between the crystal planes, and θ is the crystal plane contributing to diffraction and the incident X
The diffraction angle formed by the line, λ is the wavelength of the diffracted X-ray, and n is the order (integer) of diffraction.

いま、第1図に示すように分光結晶Cの格子面を半径2
Rの円に沿うよう機械的に湾曲させ、結晶の内側を半径
Rに沿うように整形すると、X#源Sからの発散X11
!のうち、結晶Cに到達しかつ式(1)の条件を満たす
波長のX線のみが、半径Rの同一円周上にあるAPに収
束する。したがって、この点Pにスリットを設置すれば
、スリットを通過するX線のエネルギーEは電磁波の波
長とエネルギーの関係から次式に示す形で表わされる。
Now, as shown in Figure 1, the lattice plane of the spectroscopic crystal C has a radius of 2.
When the crystal is mechanically bent along the circle R and the inside of the crystal is shaped along the radius R, the divergence from X# source S becomes X11.
! Of these, only the X-rays with wavelengths that reach the crystal C and satisfy the condition of equation (1) converge on AP located on the same circumference with radius R. Therefore, if a slit is installed at this point P, the energy E of the X-rays passing through the slit can be expressed by the following equation from the relationship between the wavelength of the electromagnetic wave and the energy.

ここに、J 、cはそれぞれブランク定数、光速度であ
る。式(2)に於いて、n=1のものを基本波、n≧2
のものを高調波と呼ぶが、分光結晶の材質と結晶構造、
面指数を適当に選択することにより、n=1のときの回
折だけが強く起こり、n≧2の回折は微弱なように設定
することができ、単色のX線をPに収束させることが可
能であり、所望のX線を収束して用いることができる。
Here, J and c are a blank constant and the speed of light, respectively. In equation (2), n=1 is the fundamental wave, n≧2
These are called harmonics, but the material and crystal structure of the spectroscopic crystal,
By appropriately selecting the surface index, it is possible to set the diffraction to occur strongly only when n = 1, and to make the diffraction weak when n≧2, making it possible to converge monochromatic X-rays to P. Therefore, desired X-rays can be focused and used.

従って、d、θ等の異る分光結晶を種々とり換えてやれ
ば波長(エネルギー)を種々変えて螢光測定を行える。
Therefore, by changing various spectroscopic crystals with different d, θ, etc., it is possible to perform fluorescence measurements with various wavelengths (energy).

ところが、X線源Sに電子ビーム励起型X#発生装置を
用いると、前述のように強度が小さい連続X線の他に強
度(単位時間あたりのカウント数)の大きな特別なエネ
ルギー(波長)のX線が結晶Cに入射する。そのため、
第2図にタングステン(W)を対陰極材として用いた例
に示すように、スリットを通過するX線の強度も著しい
変動をし、このため従来装置でのべたようにX線発生装
置への投入電力を大幅に減じての再測定が必要であった
。なお、大きな強度を持つ特性X線(X線の線スペクト
ル)は、対陰極に用いる金属の材料により決まるもので
、対陰極の材料の原子番号に小さなものを選択すればあ
る程度この特性X線の強度を小さくすることも可能だが
、原子番号を小さくすると連続X線の強度まで小さくな
るため、本質的に回避することは不可能である。
However, when an electron beam excitation type X# generator is used as the X-ray source S, in addition to continuous X-rays with low intensity as mentioned above, special energy (wavelength) with high intensity (number of counts per unit time) is generated. X-rays are incident on crystal C. Therefore,
As shown in Figure 2, an example in which tungsten (W) is used as the anticathode material, the intensity of the X-rays passing through the slit also fluctuates significantly, and as a result, as described in the conventional equipment, the X-ray generator It was necessary to significantly reduce the input power and re-measure. Note that the characteristic X-rays (X-ray line spectrum) with high intensity are determined by the metal material used for the anticathode, and if the atomic number of the material for the anticathode is selected to be small, this characteristic X-ray can be suppressed to some extent. It is possible to reduce the intensity, but as the atomic number is reduced, the intensity decreases to that of continuous X-rays, so it is essentially impossible to avoid it.

そこで、本発明ではその実施例としての第3図に示すよ
うな装置構成によって、X線測定装置系の精度を落とす
ことなく、また再測定することなく全測定範囲を自動測
定できるようにし、また不要な測定点を除去して測定所
要時間を短縮したものである。第3図に於て、X線源1
で発生したX線は真空ポンプ12により真空排気された
X線経路2を通り分光収束結晶室3内に配置された結晶
7により反射され、第11図で説明したように所望のエ
ネルギー(波長)のX線が選択されてX線減衰用フィル
タ6aを設置したフィルタ選択機6、スリット13を通
して試料室19内の試料15を照射する。ここで、フィ
ルタ6aは所望の測定エネルギー(波長)範囲において
X線強度を一枚で約115にするものとし、フィルタ選
択機6の4個の穴に対して、それぞれ上記のフィルタを
0枚、1枚、2枚、6枚重ねて設定しておき、X線強度
調整機構9により上記穴の位置を選択し適切なX線強度
を選択できるようにしている。X線のエネルギー(波長
)は式(2)により決定されるが、本実施例では、回折
角θを結晶位置制御装置4、スリット及び試料位置制御
装置5により決定し、結晶の面間隔dは結晶交換機構8
により分光収束結晶7を選択することによって決定し、
これらθとdにより所望のX線エネルギー(波長)を得
ている。
Therefore, in the present invention, by using an apparatus configuration as shown in FIG. 3 as an embodiment, it is possible to automatically measure the entire measurement range without reducing the accuracy of the X-ray measurement system and without re-measuring. This method reduces the time required for measurement by removing unnecessary measurement points. In Figure 3, X-ray source 1
The X-rays generated at The X-rays are selected and irradiate the sample 15 in the sample chamber 19 through the filter selector 6 equipped with the X-ray attenuation filter 6a and the slit 13. Here, each filter 6a has an X-ray intensity of about 115 in the desired measurement energy (wavelength) range, and 0 filters are installed in each of the four holes of the filter selector 6. The X-ray intensity adjustment mechanism 9 selects the position of the hole and selects an appropriate X-ray intensity. The energy (wavelength) of the X-ray is determined by equation (2), but in this example, the diffraction angle θ is determined by the crystal position control device 4, slit and sample position control device 5, and the interplanar spacing d of the crystal is Crystal exchange mechanism 8
Determined by selecting the spectrally convergent crystal 7,
The desired X-ray energy (wavelength) is obtained by these θ and d.

試料15を照射するX線の強度は入射X線強度測定用カ
ウンタ14で測定され、試料15から発生する螢光X線
の強度は螢光X線強度測定用カウンタ16で測定される
。これら測定値はインターフェース17全通し、データ
処理装置18に伝送され螢光X線スペクトルが解析され
、また自動測定のための各部の制御が行われる。
The intensity of X-rays irradiating the sample 15 is measured by an incident X-ray intensity measuring counter 14, and the intensity of fluorescent X-rays generated from the sample 15 is measured by a fluorescent X-ray intensity measuring counter 16. These measured values are transmitted through the interface 17 to the data processing device 18, where the fluorescent X-ray spectrum is analyzed, and various parts are controlled for automatic measurement.

第4図は、上記の装置の制御方法を示すフローチャート
であって、まずステップ100ではX線のエネルギーE
(波長)を決定する。この決定方法は後に詳述すること
とし、ここではある値Eに設定されたとする。続いて、
ステップIQ1ではフィルタ選択機6を、フィルタの1
枚も入っていない穴をX線が通過する位置にセットする
。(この位置を初期状態としてリセットするという)。
FIG. 4 is a flowchart showing a method of controlling the above-mentioned apparatus. First, in step 100, the X-ray energy E
(wavelength). This determination method will be described in detail later, and here it is assumed that a certain value E is set. continue,
In step IQ1, the filter selector 6 is set to one of the filters.
Place the empty hole in a position where the X-rays will pass through. (This position is said to be reset as the initial state).

ステップ102では、各X線の強度を1/m秒間測定す
る。即ち、カウンタ14で入射X#強度Io1 を測定
し、カウンタ16で螢光X線強度1.を測定する。但し
、1/m秒というのは入射X線強度Io+の計数値が十
分な精度で得られる時間きする。続いてステップ103
では、今測定した入射X#強度I01が測定精度を悪化
させない最大X線強度をこえていないかどうかをしらべ
る。今X線強度測定用カウンタi4 、16としてガス
フロー型比例計数装置を用いるものとすると、上記の最
大X線強度は約2万カウント/秒であるから、17m秒
間のカウント数IoXが2万/mカウント以下なら測定
が可能なので、フィルター選択機6はそのままで次へ進
める。従ってX線源の連続スペクトル部分の強度とステ
ップ102の計数時間1/m秒はこの条件を満している
ように設定しておくと、X線源から大きな強度をもつ特
性X線(線スペクトル)が出ていないエネルギーEがス
テップ100で選択されている時はステップ104へ戻
ることはないが、線スペクトルのエネルギーが選択され
た時はステップ103の条件が通常は満されず、従って
ステップ104へ戻り、ここでフィルタ6aを1枚だけ
入射X線が通過するように調整機構9へ指令を出してフ
ィルタ選択機6を駆動する。これによって入射X線強度
は115倍になり、この状態でステップ102 、10
3を再び実行し、まだステップ103の条件が満されて
いない時は再びステップ104へ戻ってフィルタ6aを
2枚とする。このようにすると入射X線強度は最大(1
15)’ =1/625倍(4枚の時)にまで減衰させ
ることができるから、通常の特性X線の場合も確実にス
テップ103の条件を満す強度、つまり測定可能な強度
にして次のステップ105へ進むことができる。ステッ
プ105では、再度入射X線強度I02とその時の螢光
X線強度IIをカウンタ14 、16でIr/(mL+
 )秒間カウントする。
In step 102, the intensity of each X-ray is measured for 1/m second. That is, the counter 14 measures the incident X# intensity Io1, and the counter 16 measures the fluorescent X-ray intensity 1. Measure. However, 1/m second is the time at which the count value of the incident X-ray intensity Io+ can be obtained with sufficient accuracy. Then step 103
Now, it is determined whether the incident X# intensity I01 just measured does not exceed the maximum X-ray intensity that does not deteriorate the measurement accuracy. Assuming that gas flow type proportional counters are used as the X-ray intensity measurement counters i4 and 16, the maximum X-ray intensity mentioned above is approximately 20,000 counts/sec, so the number of counts IoX for 17 msec is 20,000/sec. Since measurement is possible if the count is less than m, the filter selector 6 is left as is and the process proceeds to the next step. Therefore, if the intensity of the continuous spectrum part of the X-ray source and the counting time of 1/msec in step 102 are set to satisfy these conditions, characteristic ) is selected in step 100, the process does not return to step 104, but when the energy of the line spectrum is selected, the condition of step 103 is usually not satisfied, and therefore, the process does not return to step 104. Then, a command is issued to the adjusting mechanism 9 to drive the filter selector 6 so that the incident X-rays pass through only one filter 6a. This increases the incident X-ray intensity by 115 times, and in this state steps 102 and 10
3 is executed again, and if the condition of step 103 is still not satisfied, the process returns to step 104 and the number of filters 6a is set to two. In this way, the incident X-ray intensity is maximum (1
15)' Since it is possible to attenuate up to 1/625 times (when using 4 sheets), even in the case of normal characteristic The process can proceed to step 105. In step 105, the incident X-ray intensity I02 and the fluorescence
) seconds.

ここでIrは十分な精度で螢光X線強度を測定するに必
要なカウンタ16のカウント数である。通常入射X線強
度より螢光X線強度の方が小さいから、ステップ102
で得たX線強度I、はトより小さく、従ってステップ1
05でIr / (mI 1)秒間(1/m秒より大)
更めて計測すると、計数値が計測時間に比例することか
らカウンタ16出力はIr以上となり螢光X線強度が十
分な精度で測定される。以上で結局カウンタ14は入射
X線強度をステップ102と105でて−(1+Ir/
x1)/m秒間カウントして合計Io+ + IO2な
る強度(カウント数)を得、カウンタ16は同時間1秒
間カウントして合計I++I2なる螢光X線強度(カウ
ント数)を得たことになる。そこでこの入射強度に対す
る螢光X線強度の比、即ち目的とするエネルギーEに於
る螢光X線収率X (E) =’(11+I2 ) /
 (IO1+IO2)をステップ106で算出する。続
いてステップ107では所要のエネルギー範囲での計測
が終了したか否かをしらべ、まだならステップ100へ
もどり、エネルギーEを変化させて9下のステップを実
行する。以上のように特性X線の強度をフィルタにより
高精度測定可能な値にまで自動的に減衰させてから測定
を行うので、各エネルギーに対する測定を−通り実行す
るだけで所要の螢光X線収率をめることができる。
Here, Ir is the count number of the counter 16 necessary to measure the fluorescent X-ray intensity with sufficient accuracy. Since the fluorescent X-ray intensity is smaller than the normal incident X-ray intensity, step 102
The X-ray intensity I obtained in step 1 is smaller than g, so step 1
Ir/(mI 1) seconds (greater than 1/m seconds) at 05
When a further measurement is performed, since the count value is proportional to the measurement time, the output of the counter 16 becomes Ir or more, and the fluorescent X-ray intensity is measured with sufficient accuracy. As a result, the counter 14 calculates the incident X-ray intensity at steps 102 and 105 by -(1+Ir/
x1)/m seconds to obtain a total intensity (count number) of Io+ + IO2, and the counter 16 counted for 1 second for the same time to obtain a total fluorescent X-ray intensity (count number) of I++I2. Therefore, the ratio of the fluorescent X-ray intensity to this incident intensity, that is, the fluorescent X-ray yield at the target energy E (E) = '(11+I2) /
(IO1+IO2) is calculated in step 106. Next, in step 107, it is checked whether the measurement in the required energy range has been completed, and if not, the process returns to step 100, the energy E is changed, and the step 9 below is executed. As described above, since the intensity of characteristic X-rays is automatically attenuated by a filter to a value that can be measured with high precision before measurement is performed, the required fluorescence You can increase the rate.

次に第4図のステップ100に於るX線のエネルギー(
波長)Eの選択方法について述べる。
Next, the X-ray energy (
The method for selecting wavelength) E will be described.

螢光X線構造解析は特定元素の螢光励起エネルギーより
高エネルギー制約1 keV間の螢光収率スペクトルX
 (E)を用いて行われる。これは、特定元素を中心と
して発生する物質内の低速電子球面波が周囲の元素によ
り散乱されることにより生ずる螢光収率の変化をフーリ
エ変換して動径分布をめることであり、実際の解析では
低速電子球面波の波数Rを単位として解析される。従っ
て螢光収率スペクトルX (E’lは、この波数Rを等
間隔で変化させながら測定すれは必要なデータが得られ
る。ところが波数Rは、特定元素の螢光励起エネルギー
をEO1電子の静止質量をmeとした時、エネルギーE
との間に次の関係がある。
Fluorescence X-ray structure analysis has a higher energy constraint than the fluorescence excitation energy of a specific element.The fluorescence yield spectrum X between 1 keV
(E). This is a method to calculate the radial distribution by Fourier transforming the change in fluorescence yield caused by the scattering of slow electron spherical waves in a material centered around a specific element by surrounding elements. In the analysis, the wave number R of the slow electron spherical wave is analyzed as a unit. Therefore, the required data can be obtained by measuring the fluorescence yield spectrum When me is the energy E
There is the following relationship between

したがって、波数RとエネルギーEとは比例関係ではな
く、Rを等間隔でR1,R2,・・・とした時エネルギ
ーEもEI+ E2・・・と変化するが、こちらの方は
等間隔にはならない。例えばEO= 1835eV(S
iの螢光X線励起エネルギー)とし、波数Rの間隔をΔ
R=0.03 とすると、R=2.8 (E =E。
Therefore, the wave number R and the energy E are not in a proportional relationship, and when R is set at equal intervals R1, R2, etc., the energy E also changes as EI + E2... No. For example, EO = 1835eV (S
i's fluorescence X-ray excitation energy), and the interval of wave numbers R is Δ
If R=0.03, then R=2.8 (E=E.

十30eV)付近でのΔEは07ev、R−16(E=
EO十1000 eV )付近でのΔEは4.1 eV
となる。したがってΔR=0.05の間隔を維持するに
は定エネルギー間隔で走査する従来装置の場合はΔE=
 0.7 eV程度で一定値としなければならない。と
ころがこれではR=16付近の高エネルギー領域では所
要間隔4.1 eVの約1/6の間隔で測定を行うこと
になる。これを測定点の数で言えはΔE == 0.7
6Vの定ΔE測定では測定点約1400に対し、ΔR=
0.03の定Δλ測定では測定点440で同等精度の測
定が出来ることを意味する。従って本発明では、第4図
のステップ100に於るエネルギEの設定値を次のよう
にして定める。即ち波数Rの値を等間隔でRII+ R
2r・・・+R1+・・・と定めておく。式(2)。
ΔE near 130eV is 07ev, R-16(E=
ΔE near EO (11000 eV) is 4.1 eV
becomes. Therefore, in order to maintain an interval of ΔR=0.05, in the case of a conventional device that scans at constant energy intervals, ΔE=
It must be kept constant at around 0.7 eV. However, in this case, in the high energy region around R=16, measurements are performed at intervals of about 1/6 of the required interval of 4.1 eV. Expressing this in terms of the number of measurement points is ΔE == 0.7
In constant ΔE measurement at 6V, for approximately 1400 measurement points, ΔR=
A constant Δλ measurement of 0.03 means that measurement at measurement point 440 can be performed with equivalent accuracy. Therefore, in the present invention, the setting value of the energy E in step 100 of FIG. 4 is determined as follows. In other words, the value of the wave number R is expressed as RII+R at equal intervals.
2r...+R1+... is defined. Formula (2).

(3)から、 E−暑シー(午)2+Eo・・・・・・・・(4)とな
るので、この式の右辺のRにR1+ 1 ”’ + 2
+・・を代入して得たエネルギーEiをめ(m、 、’
 * E。
From (3), we get: E - heat sea (morning) 2 + Eo (4), so R on the right side of this equation is R1 + 1 ''' + 2
The energy Ei obtained by substituting +... is (m, ,'
*E.

は定数で予め与えられている)、このエネルギEl +
 1−’ L2 、・・・が得られるように第6図の結
晶位置制御装置4、スリット及び試料位置制御装置5、
結晶交換機構8を制御して回折角θ、結晶の面間隔dを
設定する。このように波数Rが等間隔になるようにX線
エネルギーEを選択して走査することにより、測定点の
個数を上記の例では440 / 1400キ1/3に減
少させることができる。
is given in advance as a constant), and this energy El +
The crystal position control device 4, slit and sample position control device 5, shown in FIG.
The crystal exchange mechanism 8 is controlled to set the diffraction angle θ and the crystal spacing d. By selecting the X-ray energy E and scanning so that the wave numbers R are equally spaced in this manner, the number of measurement points can be reduced to 440/1400 x 1/3 in the above example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子ビーム励起型X線源を用いても、
特性X線に対する再測定を必要とせず、また所要の測定
精度に必要な最小限の測定点のみで螢光X線収率を測定
するから、測定時間を従来より大幅に減少させることが
できるという効果がある。
According to the present invention, even if an electron beam excitation type X-ray source is used,
Since there is no need to re-measure characteristic X-rays and the fluorescent X-ray yield is measured using only the minimum number of measurement points necessary for the required measurement accuracy, the measurement time can be significantly reduced compared to conventional methods. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発散X線を分光かつ収束させるだめの分光結晶
の説明図、第2図は電子ビーム励起型X線のスペクトル
例を示す図、第3図は本発明の一実施例を示す図、第4
図は第3図の実施例に於る入射Xi強度調整方法及び測
定方法を示すフローチャートである。 1・・・X線源、 4・・・結晶位置制御装置、5・・
・スリット及び試料位置制御装置、6・・・フィルタ選
択機、7・・・分光収束結晶、8・・・結晶交換機構、 9・・・X線強度調整機構、 13・・・スリット、 14・・・入射X線強度測定カウンタ、15・・・試料
、 16・・・螢光X線強度測定カウンタ、18・・・デー
タ処理装置。 第 1 図 7 揶 2 図 ブ友菱(Ao) 第 3 図 第4 図
Fig. 1 is an explanatory diagram of a spectroscopic crystal for separating and converging divergent X-rays, Fig. 2 is a diagram showing an example of the spectrum of electron beam-excited X-rays, and Fig. 3 is a diagram showing an embodiment of the present invention. , 4th
This figure is a flowchart showing a method of adjusting and measuring the incident Xi intensity in the embodiment of FIG. 1... X-ray source, 4... Crystal position control device, 5...
- Slit and sample position control device, 6... Filter selection machine, 7... Spectral focusing crystal, 8... Crystal exchange mechanism, 9... X-ray intensity adjustment mechanism, 13... Slit, 14. ... Incident X-ray intensity measurement counter, 15... Sample, 16... Fluorescent X-ray intensity measurement counter, 18... Data processing device. Figure 1 Figure 7 Figure 2 Figure 3 (Ao) Figure 4

Claims (1)

【特許請求の範囲】[Claims] X線が入射され九時忙試料内に発生する低速電子球面波
の波数が予め定められた一定ステップ幅で変化するよう
に入射X線の波長を一測定点毎に決定する入射X線波長
決定手段と、X線発生装置から出力されるX線のうち上
記入射X@波長決定手段により決定された波長のX、I
Jのみを選択入射X@として試料へ照射するように制御
する入射X線波長制御手段と、上記選択入射X線の強度
を計測する第1計測手段と、上記選択入射X線の強度を
減衰させるためのその減衰率が、可変設定可能なフィル
タと、上記第1計測手段の計測値が予め定められた基準
強度内の値になるように上記フィルタの減衰率を制御す
るX線強度制御手段と、上記選択入射X線対応に試料か
ら放射される螢光X線強度を計測する第2計測手段と、
上記第1及び第2計測手段によるX線強度計測値から試
料の螢光X線収率を算出する演算手段とを備えたことを
特徴とする螢光X線構造解析装置。
Incident X-ray wavelength determination in which the wavelength of the incident X-ray is determined for each measurement point so that the wave number of the slow electron spherical wave generated in the sample when the X-ray is incident changes in a predetermined constant step width. means, and X, I of the wavelength determined by the incident X@wavelength determination means among the X-rays output from the X-ray generator.
an incident X-ray wavelength control means for controlling only J to irradiate the sample as selectively incident X@; a first measuring means for measuring the intensity of the selectively incident X-ray; and attenuating the intensity of the selectively incident X-ray. a filter whose attenuation rate can be variably set; and X-ray intensity control means for controlling the attenuation rate of the filter so that the measured value of the first measuring means falls within a predetermined reference intensity. , a second measuring means for measuring the intensity of fluorescent X-rays emitted from the sample corresponding to the selected incident X-rays;
A fluorescent X-ray structure analysis apparatus comprising: calculation means for calculating the fluorescent X-ray yield of the sample from the X-ray intensity measurements by the first and second measuring means.
JP9284484A 1984-05-11 1984-05-11 Fluorescent x-ray structural analysis apparatus Pending JPS60237349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284484A JPS60237349A (en) 1984-05-11 1984-05-11 Fluorescent x-ray structural analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284484A JPS60237349A (en) 1984-05-11 1984-05-11 Fluorescent x-ray structural analysis apparatus

Publications (1)

Publication Number Publication Date
JPS60237349A true JPS60237349A (en) 1985-11-26

Family

ID=14065741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284484A Pending JPS60237349A (en) 1984-05-11 1984-05-11 Fluorescent x-ray structural analysis apparatus

Country Status (1)

Country Link
JP (1) JPS60237349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238350A (en) * 1985-08-14 1987-02-19 Hitachi Ltd High-accuracy measuring instrument for fluorescence yield
JPH08334480A (en) * 1995-06-07 1996-12-17 Sony Corp X-ray fluorescence analytical device
JPH10192265A (en) * 1997-01-10 1998-07-28 Aloka Co Ltd X-ray measurement unit
CN106093095A (en) * 2016-05-30 2016-11-09 中国工程物理研究院流体物理研究所 A kind of full filed XRF imaging system and formation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238350A (en) * 1985-08-14 1987-02-19 Hitachi Ltd High-accuracy measuring instrument for fluorescence yield
JPH08334480A (en) * 1995-06-07 1996-12-17 Sony Corp X-ray fluorescence analytical device
JPH10192265A (en) * 1997-01-10 1998-07-28 Aloka Co Ltd X-ray measurement unit
CN106093095A (en) * 2016-05-30 2016-11-09 中国工程物理研究院流体物理研究所 A kind of full filed XRF imaging system and formation method

Similar Documents

Publication Publication Date Title
US5497008A (en) Use of a Kumakhov lens in analytic instruments
US6041098A (en) X-ray reflectometer
EP0389774B1 (en) Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
EP0800647A1 (en) Apparatus for simultaneous x-ray diffraction and x-ray fluorescence measurements
WO2013061676A1 (en) X-ray spectrometry detector device
JPH0769477B2 (en) X-ray spectrometer
JP3284198B2 (en) X-ray fluorescence analyzer
Reinhardt et al. Reference-free quantification of particle-like surface contaminations by grazing incidence X-ray fluorescence analysis
Hayakawa et al. Fluorescence x‐ray absorption fine structure measurements using a synchrotron radiation x‐ray microprobe
Kulow et al. A new experimental setup for time-and laterally-resolved X-ray absorption fine structure spectroscopy in a ‘single shot’
Kuznetsov et al. Submicrometer fluorescence microprobe based on Bragg‐Fresnel optics
US5028778A (en) Surface analysis method and a device therefor
US2805341A (en) Diffractometer
JPS60237349A (en) Fluorescent x-ray structural analysis apparatus
Von Dreele Powder diffraction peak profiles
Perez et al. A new XRF spectrometer using a crystal monochromator and parallel plates beam guides
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
WO2022118585A1 (en) Total internal reflection fluorescent x-ray analyzer
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
JP3217871B2 (en) X-ray analyzer and total reflection X-ray fluorescence analyzer
JP3040962B2 (en) X-ray analyzer
EP0815437A1 (en) X-ray analysis apparatus including a rotatable primary collimator
JPH0933451A (en) Total reflection x-ray spectrometric apparatus of energy angle dispersion type
JPH04236348A (en) X-ray diffraction apparatus with wide range x-ray detector
JPH05346410A (en) Intensity measuring method of high-order x-ray