JPH071311B2 - Method for peak separation of fluorescent X-ray spectrum - Google Patents

Method for peak separation of fluorescent X-ray spectrum

Info

Publication number
JPH071311B2
JPH071311B2 JP10211791A JP10211791A JPH071311B2 JP H071311 B2 JPH071311 B2 JP H071311B2 JP 10211791 A JP10211791 A JP 10211791A JP 10211791 A JP10211791 A JP 10211791A JP H071311 B2 JPH071311 B2 JP H071311B2
Authority
JP
Japan
Prior art keywords
fluorescent
ray
waveform
sample
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10211791A
Other languages
Japanese (ja)
Other versions
JPH05107363A (en
Inventor
由行 片岡
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP10211791A priority Critical patent/JPH071311B2/en
Publication of JPH05107363A publication Critical patent/JPH05107363A/en
Publication of JPH071311B2 publication Critical patent/JPH071311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蛍光X線スペクトル
からピーク(波形)を分離する蛍光X線スペクトルのピ
ーク分離方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating peaks (waveforms) from a fluorescent X-ray spectrum for separating peaks in the fluorescent X-ray spectrum.

【0002】[0002]

【従来の技術】蛍光X線分析は、試料に放射線を照射し
て、試料から発生する蛍光X線をX線検出器で測定し、
このX線検出器での測定値に基づいて試料の元素分析を
行うものである。かかる分析に用いる測定器の一例を図
3に示す。
2. Description of the Related Art In fluorescent X-ray analysis, a sample is irradiated with radiation and the fluorescent X-ray generated from the sample is measured by an X-ray detector.
The elemental analysis of the sample is performed based on the measured value by the X-ray detector. An example of a measuring instrument used for such analysis is shown in FIG.

【0003】図3において、X線管50は、一次X線B1を
出射して、試料51に一次X線B1を照射する。照射された
一次X線B1は試料51の原子を励起して、その元素固有の
蛍光X線B2を発生させる。試料51からの蛍光X線B2は、
分光結晶52に入射角θで入射し、下記のブラッグの式を
満足する所定の波長の蛍光X線B2のみが、入射角θと同
一の角度の回折角θで回折される。 2dsin θ=nλ d:結晶の面間隔 λ:蛍光X線の波長 n:反射の次数
In FIG. 3, an X-ray tube 50 emits a primary X-ray B1 and irradiates a sample 51 with the primary X-ray B1. The irradiated primary X-ray B1 excites the atoms of the sample 51 to generate fluorescent X-ray B2 peculiar to the element. The fluorescent X-ray B2 from the sample 51 is
Only the fluorescent X-ray B2 having a predetermined wavelength that satisfies the Bragg equation below is incident on the dispersive crystal 52 and is diffracted at a diffraction angle θ that is the same as the incident angle θ. 2 dsin θ = nλ d: interplanar spacing of crystal λ: wavelength of fluorescent X-ray n: order of reflection

【0004】上記回折された蛍光X線B3は、X線検出器
53に入射して検出される。一方、図示しないゴニオメー
タを駆動して、分光結晶52およびX線検出器53を1:2
の角度比で矢印Aのように回転させて、所定の分光角度
2θごと(たとえば、0.02°ごと) に、蛍光X線B3のX
線強度を測定する。
The above-mentioned diffracted fluorescent X-ray B3 is an X-ray detector.
It is incident on 53 and detected. On the other hand, by driving a goniometer (not shown), the dispersive crystal 52 and the X-ray detector 53 are set to 1: 2.
At a predetermined spectral angle 2θ (for example, every 0.02 °) by rotating the fluorescent X-ray B3 at an X ratio of X.
Measure the line strength.

【0005】図4(a) は、分光角度2θの成分に分けて
測定して得られた蛍光X線スペクトルを示す。このスペ
クトルは、その分光角度2θから、ピークp1が CrKβ1
線で、ピークp2が MnKα線であることが分かる。
FIG. 4 (a) shows a fluorescent X-ray spectrum obtained by measuring the components at a spectral angle 2θ. In this spectrum, the peak p1 is CrKβ 1 from the spectral angle 2θ.
The line shows that peak p2 is the MnKα line.

【0006】しかし、2つのピークp1,p2は図4(b) に
示すように、重なっているため、図4(a) の蛍光X線ス
ペクトルから直ちに実際のピーク値 (X線強度) を正確
に把握することはできない。そのため、蛍光X線分析を
行うにあたり、図4(b) のように、ピーク(波形)p1, p2
を分離する必要がある。
However, since the two peaks p1 and p2 are overlapped as shown in FIG. 4 (b), the actual peak value (X-ray intensity) is immediately determined from the fluorescent X-ray spectrum of FIG. 4 (a). Can't figure out. Therefore, when performing X-ray fluorescence analysis, as shown in Fig. 4 (b), peaks (waveforms) p1 and p2
Need to be separated.

【0007】[0007]

【発明が解決しようとする課題】ここで、エネルギ分散
型の蛍光X線分析装置では、図3で示した波長分散型の
蛍光X線分析装置に較べ、その分解能が劣ることから、
2つのピークp1, p2を左右対称なガウス関数とみなし、
2つのガウス関数の総和を、測定した蛍光X線スペクト
ルの波形に、概そ合致させることにより、ピークの分離
を行うことができる。しかし、図4(a) のピークp1は多
重線で構成されており、ピークp1の裾の部分p11 に、 C
rKβ5 線が含まれていて、その形状が左右対称でない。
しかも、各線間の (たとえば、 CrKβ1 と CrKβ5
間) の強度比が正確に分かっていない。したがって、従
来の左右対称なガウス関数では、実際に測定した各ピー
クp1,p2に合致しにくく、ピーク分離を正確に行うこと
ができなかった。
The energy dispersive X-ray fluorescence analyzer is inferior in resolution to the wavelength dispersive X-ray fluorescence analyzer shown in FIG.
Considering the two peaks p1 and p2 as a symmetrical Gaussian function,
The peaks can be separated by roughly matching the sum of the two Gaussian functions with the waveform of the measured fluorescent X-ray spectrum. However, the peak p1 in Fig. 4 (a) is composed of multiple lines, and C is added to the bottom p11 of the peak p1.
The rKβ 5 line is included and its shape is not symmetrical.
Moreover, the intensity ratio between the lines (for example, between CrKβ 1 and CrKβ 5 ) is not known exactly. Therefore, it was difficult to match the actually measured peaks p1 and p2 with the conventional bilaterally symmetric Gaussian function, and the peaks could not be separated accurately.

【0008】特に、図3の波長分散型の測定器で測定し
た場合には、エネルギ分散型に比べ分解能が良く、多重
線によるピークの歪みが顕著に現れる。そのため、各ピ
ークp1, p2がガウス関数に合致しないので、正確なピー
ク分離が困難であった。
In particular, when measured with the wavelength dispersive measuring instrument of FIG. 3, the resolution is better than that of the energy dispersive type, and the distortion of the peak due to the multiple lines appears remarkably. Therefore, since each peak p1 and p2 does not match the Gaussian function, accurate peak separation was difficult.

【0009】この発明の目的は、蛍光X線分析におい
て、正確かつ簡単にピークの分離を行うことができる蛍
光X線スペクトルのピーク分離方法を提供することであ
る。
An object of the present invention is to provide a method for separating peaks in a fluorescent X-ray spectrum, which enables accurate and simple peak separation in fluorescent X-ray analysis.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、単一の元素または化合物からなる複数
種類の基準試料から、それぞれ、蛍光X線を測定して得
た複数種類の蛍光X線スペクトルを基準波形として用い
る。この各基準波形を分光角度のずれ量および強度比を
用いて修正した修正波形とバックグラウンド成分との合
成波形が、試料を測定して得られた蛍光X線スペクトル
の測定波形に合致するように、上記各基準波形に対する
分光角度のずれ量および強度比の修正値を演算して求め
る。上記各修正波形を各元素ごとのピークとして分離す
る。
In order to achieve the above object, the present invention provides a plurality of types of reference samples each made of a single element or compound, and a plurality of types of reference samples obtained by measuring fluorescent X-rays. The fluorescent X-ray spectrum is used as a reference waveform. The combined waveform of the corrected waveform and the background component obtained by correcting each of the reference waveforms using the shift amount of the spectral angle and the intensity ratio should match the measured waveform of the fluorescent X-ray spectrum obtained by measuring the sample. , And the correction value of the intensity ratio and the shift amount of the spectral angle with respect to each of the reference waveforms are calculated. The corrected waveforms are separated as peaks for each element.

【0011】[0011]

【作用】この発明によれば、基準試料から測定して得た
複数種類の蛍光X線スペクトルを基準波形として用いる
ので、この基準波形に強度比および分光角度のずれ量を
加味して修正した修正波形は、試料から測定した複雑な
形状の蛍光X線スペクトルの測定波形に合致し易い。
According to the present invention, since a plurality of types of fluorescent X-ray spectra obtained by measuring from the reference sample are used as the reference waveform, the reference waveform is corrected by taking into consideration the intensity ratio and the shift amount of the spectral angle. The waveform easily matches the measured waveform of the fluorescent X-ray spectrum having a complicated shape measured from the sample.

【0012】[0012]

【実施例】以下、この発明の一実施例を説明する。図1
(a) は、実際の試料を測定器(図3)で測定し、分光角
度2θ成分に分けた蛍光X線スペクトルを示す。このス
ペクトルには複数のピークp1,p2およびバックグラウン
ド成分Baが含まれており、このスペクトルの波形を測定
波形F(xi )とする。なお、xi i番目のデータ点の
分光角度2θである。上記試料には、元素A1, A2が含ま
れているとする。図1(b) の2つの基準波形G1
(xi )およびG2 (xi )は、それぞれ、単一の元素
A1およびA2の純物質で構成される2種類の基準試料か
ら、測定器(図3)を用いて蛍光X線を測定して得た蛍
光X線スペクトルを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. Figure 1
(a) shows a fluorescent X-ray spectrum obtained by measuring an actual sample with a measuring device (FIG. 3) and dividing it into spectral angle 2θ components. This spectrum includes a plurality of peaks p1 and p2 and a background component Ba, and the waveform of this spectrum is referred to as a measurement waveform F (x i ). Note that x i is the spectral angle 2θ of the i- th data point. It is assumed that the sample contains the elements A1 and A2. Two reference waveforms G 1 in FIG. 1 (b)
(X i ) and G 2 (x i ) are each a single element
The fluorescent X-ray spectra obtained by measuring fluorescent X-rays from two types of reference samples composed of pure substances A1 and A2 using a measuring instrument (FIG. 3) are shown.

【0013】つぎに、ピーク分離方法について説明す
る。予め、基準試料にX線を照射して、基準試料からの
蛍光X線を測定することにより、上記基準波形G1 (x
i ), G2 (xi )を得る。ついで、実際の試料につい
て、基準試料の測定に用いた測定器を用いて、蛍光X線
を測定し、図1(a)の測定波形F(xi )を得る。この
測定波形F(xi )は、つぎに示す(1) 式で近似するこ
とができる。
Next, the peak separation method will be described. By irradiating the reference sample with X-rays in advance and measuring fluorescent X-rays from the reference sample, the reference waveform G 1 (x
i ), G 2 (x i ) is obtained. Then, for the actual sample, the fluorescent X-ray is measured by using the measuring instrument used for the measurement of the reference sample, and the measurement waveform F (x i ) of FIG. 1 (a) is obtained. This measurement waveform F (x i ) can be approximated by the following equation (1).

【0014】[0014]

【数1】 [Equation 1]

【0015】上記シフト量βj は、図1(a), (b), (c)
に示すように、ピークp1 の基準波形Gj (xi )に対
する分光角度のずれ量に相当し、実際の試料に含まれる
元素A1, A2が化合物である場合に生じるケミカルシフト
や、装置に起因する角度ずれなどを修正する。つまり、
図1(c) の波形Gj (xi+βj ) は、基準波形G
j (xi )をシフト量βj で修正した波形を示す。図1
(d) の強度比αj は、図1(b), (d)に示すように、基準
波形Gj (xi )に対するピークの強度比である。つま
り、図1(d) の波形αj j (xi +βj ) は、上記シ
フト量βj で修正した波形Gj (xi +βj ) を、さら
に強度比αj で修正した波形を示す。図1(e) のバック
グラウンド成分Baの波形B(xi )は、関数とし、たと
えば、つぎの(2) 式に示す2次多項式を用いる。 B(xi )=axi 2 +bxi +c …(2)
The above-mentioned shift amount β j is shown in FIG. 1 (a), (b), (c)
As shown in (1), it corresponds to the shift amount of the spectral angle of the peak p1 with respect to the reference waveform G j (x i ), and is caused by the chemical shift that occurs when the elements A1 and A2 contained in the actual sample are compounds and the device. Correct the angle deviation. That is,
The waveform G j (x i + β j ) in FIG. 1C is the reference waveform G
A waveform in which j (x i ) is corrected by the shift amount β j is shown. Figure 1
The intensity ratio α j of (d) is the intensity ratio of the peak with respect to the reference waveform G j (x i ) as shown in FIGS. 1 (b) and 1 (d). In other words, the waveform α j G j (x i + β j) in FIG. 1 (d) the waveform modified by the shift amount beta j G j the (x i + β j), was modified by addition intensity ratio alpha j waveform Show. The waveform B (x i ) of the background component Ba in FIG. 1 (e) is a function, for example, a quadratic polynomial shown in the following equation (2) is used. B (x i ) = ax i 2 + bx i + c (2)

【0016】実際の試料による波形F(xi )と基準波
形Gj (xi )のデータを用い、周知の最小二乗法によ
り、上記(1), (2)式のαj ,βj ,a,b,cを演算す
る。つまり、上記基準波形Gj (xi )を強度比α1
よびシフト量β1 を用いて修正した図1(d) の各修正波
形αj j (xi +βj )とバックグラウンド成分の波
形B(xi )を合成した合成波形が、測定波形F
(xi )に合致するように、強度比αj 、シフト量βj
およびバックグラウンドの関数B(xi )を演算して求
める。この演算から、各修正波形αj j (xi
βj )を求め、これを、各元素Anごとのピークとして図
1(e) のように分離する。
Using the data of the waveform F (x i ) and the reference waveform G j (x i ) of the actual sample, the well-known least square method is used to obtain α j , β j , of the above equations (1) and (2), Calculate a, b, and c. That is, the reference waveform G j (x i ) is corrected using the intensity ratio α 1 and the shift amount β 1, and each corrected waveform α j G j (x i + β j ) in FIG. The synthesized waveform obtained by synthesizing the waveform B (x i ) is the measured waveform F.
Intensity ratio α j and shift amount β j so as to match (x i ).
And the background function B (x i ) are calculated. From this calculation, each modified waveform α j G j (x i +
β j ) is obtained, and this is separated as a peak for each element An as shown in Fig. 1 (e).

【0017】ここで、蛍光X線スペクトルのピーク (波
形) は、装置の光学的条件が一定であれば、試料の状態
や化学結合の状態に差程影響されず、類似した形状にな
る。したがって、上記のように基準波形Gj (xi )を
修正してなる修正波形αj ・Gj (xi +βj )の合成
波形は、複雑な形状の測定波形F(xi )に合致する。
よって、ピークの分離を簡単かつ正確に行うことができ
る。
Here, the peak (waveform) of the X-ray fluorescence spectrum has a similar shape without being significantly affected by the state of the sample and the state of chemical bond, provided that the optical conditions of the apparatus are constant. Therefore, the composite waveform of the corrected waveform α j · G j (x i + β j ) obtained by correcting the reference waveform G j (x i ) as described above matches the measured waveform F (x i ) having a complicated shape. To do.
Therefore, the peaks can be separated easily and accurately.

【0018】つぎに、実際に分析した具体例を示す。図
2(a) は、クロムCr, バナジウムV, チタンTiを含む低
合金鋼を分析した蛍光X線スペクトルを示す。図2(b)
は上記分離方法によりピーク分離した波形を示す。基準
波形を測定する基準試料としては、純クロム、V25
の粉末および純チタンを用いて、それぞれ、 CrKα線、
VKα線、VKβ線および TiKα線を予め測定した。
Next, a concrete example of actual analysis will be shown. FIG. 2 (a) shows a fluorescent X-ray spectrum obtained by analyzing a low alloy steel containing chromium Cr, vanadium V, and titanium Ti. Figure 2 (b)
Shows a waveform obtained by peak separation by the above separation method. As the reference sample for measuring the reference waveform, pure chromium, V 2 O 5
Cr powder and pure titanium, respectively,
VKα ray, VKβ ray and TiKα ray were measured in advance.

【0019】図2(a) のような測定波形において、1つ
のピークp11 には、図2(b) のように、 CrKα線だけで
なく、僅かにVKβ1 線が含まれている場合がある。この
ような同一分光角度領域でピークが重なる場合におい
て、1つのスペクトル線(VKβ1 線)の強度が、他の
スペクトル線(CrKα線)に比べ著しく小さいときには、
従来のガウス関数など関数を用いた方法では、強度の小
さいスペクトル線(VKβ1 線)を分離するのが困難で
あった。これに対し、このピーク分離方法では、元素ご
との基準波形を用いるので、図2(a) のピークp12, P13
から、図2(b) のVKα線を決定することにより、VKβ1
線の形状も自動的に定まる。つまり、VKβ1 線を単独の
ピークとして把握するのではなく、VKβ1 線およびVKα
線を一体のピークp12(図2(a))として把握するから、VK
α線のピーク強度などからVKβ1 線のピーク強度などが
定まる。したがって、ピークが重なっていてもピーク分
離が容易になる。
In the measured waveform as shown in FIG. 2 (a), one peak p11 may include not only the CrKα line but also a slight VKβ 1 line as shown in FIG. 2 (b). . In the case where the peaks overlap in the same spectral angle region, when the intensity of one spectrum line (VKβ 1 line) is significantly smaller than that of the other spectrum line (CrKα line),
With the conventional method using a function such as a Gaussian function, it is difficult to separate a spectrum line (VKβ 1 line) having a small intensity. On the other hand, in this peak separation method, since the reference waveform for each element is used, the peaks p12 and P13 in FIG.
Therefore, by determining the VKα line in Fig. 2 (b), VKβ 1
The line shape is also determined automatically. In other words, instead of grasping the VKβ 1 line as a single peak, the VKβ 1 line and VKα line
Since the line is grasped as an integral peak p12 (Fig. 2 (a)), VK
The peak intensity of VKβ 1 ray is determined from the peak intensity of α ray. Therefore, even if the peaks overlap, the peaks can be easily separated.

【0020】なお、化学結合による影響 (ケミカルシフ
ト) の大きい元素については、測定試料とほぼ同一の化
合物からなる基準試料を用いるのが好ましい。また、上
記実施例では、バックグラウンド成分を2次関数B(x
i )として同時に計算したが、バックグラウンド成分だ
けを予め除去した後に演算してもよい。
For elements having a large influence (chemical shift) due to chemical bonding, it is preferable to use a reference sample made of a compound almost the same as the measurement sample. Further, in the above embodiment, the background component is quadratic function B (x
Although i ) is calculated at the same time, it may be calculated after removing only the background component in advance.

【0021】[0021]

【発明の効果】以上説明したように、この発明によれ
ば、基準試料から測定して得た複雑な形状の基準波形を
用いるので、基準波形を修正した修正波形が、実際の試
料から測定した複雑な形状の測定波形に合致し易いの
で、分離能の良い波長分散型の蛍光X線分析装置におい
てもピーク分離が可能になる。また、各元素ごとにピー
ク分離を行うので、同一の波長領域に2以上のスペクト
ル線が重なっていてもピーク分離が容易になる。
As described above, according to the present invention, since the reference waveform having a complicated shape obtained by measuring from the reference sample is used, the corrected waveform obtained by correcting the reference waveform is measured from the actual sample. Since it is easy to match the measurement waveform with a complicated shape, peak separation can be performed even in a wavelength dispersive X-ray fluorescence analyzer having good resolution. Further, since the peaks are separated for each element, the peaks can be easily separated even if two or more spectral lines overlap in the same wavelength region.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すピーク分離方法の模
式図である。
FIG. 1 is a schematic diagram of a peak separation method showing an embodiment of the present invention.

【図2】蛍光X線スペクトルと分離した波形の具体例を
示す特性図である。
FIG. 2 is a characteristic diagram showing a specific example of a waveform separated from a fluorescent X-ray spectrum.

【図3】蛍光X線分析に用いる測定器の一例を示す概略
構成図である。
FIG. 3 is a schematic configuration diagram showing an example of a measuring device used for fluorescent X-ray analysis.

【図4】ピーク分離の例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of peak separation.

【符号の説明】 51…試料、B3…蛍光X線、Ba…バックグラウンド成分、
F(xi )…測定波形、Gj (xi )…基準波形、αj
…強度比、βj …波長のずれ量、αj j (xi +βj
…修正波形。
[Explanation of Codes] 51 ... Sample, B3 ... Fluorescent X-ray, Ba ... Background component,
F (x i ) ... measurement waveform, G j (x i ) ... reference waveform, α j
... intensity ratio, β j ... wavelength shift amount, α j G j (x i + β j )
… Corrected waveform.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料を測定して得られた蛍光X線スペク
トルを各元素ごとのピークに分離する蛍光X線スペクト
ルのピーク分離方法であって、 単一の元素または化合物からなる複数種類の基準試料か
ら、それぞれ、蛍光X線を測定して得た複数種類の蛍光
X線スペクトルを基準波形として用い、 この各基準波形を分光角度のずれ量および強度比を用い
て修正した修正波形とバックグラウンド成分との合成波
形が、試料を測定して得られた蛍光X線スペクトルの測
定波形に合致するように、上記各基準波形に対する分光
角度のずれ量および強度比の修正値を演算して求め、 上記各修正波形を各元素ごとのピークとして分離する蛍
光X線スペクトルのピーク分離方法。
1. A method for peak separation of a fluorescent X-ray spectrum for separating a fluorescent X-ray spectrum obtained by measuring a sample into peaks for each element, which comprises a plurality of types of standards consisting of a single element or compound. A plurality of types of fluorescent X-ray spectra obtained by measuring fluorescent X-rays from each sample are used as reference waveforms, and each of these reference waveforms is corrected using the shift amount and intensity ratio of the spectral angle and the background. The composite waveform with the components is calculated by calculating the deviation amount of the spectral angle and the correction value of the intensity ratio with respect to each of the reference waveforms so as to match the measured waveform of the fluorescent X-ray spectrum obtained by measuring the sample, A method for separating peaks of a fluorescent X-ray spectrum, in which each of the corrected waveforms is separated as a peak for each element.
JP10211791A 1991-04-05 1991-04-05 Method for peak separation of fluorescent X-ray spectrum Expired - Fee Related JPH071311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10211791A JPH071311B2 (en) 1991-04-05 1991-04-05 Method for peak separation of fluorescent X-ray spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10211791A JPH071311B2 (en) 1991-04-05 1991-04-05 Method for peak separation of fluorescent X-ray spectrum

Publications (2)

Publication Number Publication Date
JPH05107363A JPH05107363A (en) 1993-04-27
JPH071311B2 true JPH071311B2 (en) 1995-01-11

Family

ID=14318859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10211791A Expired - Fee Related JPH071311B2 (en) 1991-04-05 1991-04-05 Method for peak separation of fluorescent X-ray spectrum

Country Status (1)

Country Link
JP (1) JPH071311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148225A (en) * 2000-11-14 2002-05-22 Kazuo Taniguchi Apparatus and method for x-ray analysis

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192846B2 (en) * 1993-11-25 2001-07-30 株式会社東芝 Pollutant element concentration analysis method and analyzer
JP5084400B2 (en) * 2007-08-28 2012-11-28 日本電子株式会社 Waveform separation method
JP5817749B2 (en) * 2013-01-28 2015-11-18 東亜ディーケーケー株式会社 Energy dispersive X-ray fluorescence analyzer
JP5817750B2 (en) * 2013-01-28 2015-11-18 東亜ディーケーケー株式会社 Energy dispersive X-ray fluorescence analyzer
JP2018091691A (en) * 2016-12-01 2018-06-14 株式会社リガク X-ray fluorescence spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148225A (en) * 2000-11-14 2002-05-22 Kazuo Taniguchi Apparatus and method for x-ray analysis

Also Published As

Publication number Publication date
JPH05107363A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
EP3064931B1 (en) Quantitative x-ray analysis
JP3108660B2 (en) X-ray analysis method and apparatus
EP3239702B1 (en) X-ray fluorescence spectrometer
WO2005005969A1 (en) Energy dispersion type x-ray diffraction/spectral device
JPH071311B2 (en) Method for peak separation of fluorescent X-ray spectrum
JP3610256B2 (en) X-ray fluorescence analyzer
JP3160135B2 (en) X-ray analyzer
JPS5997044A (en) Simultaneous collector for diffraction data and spectral photograph data
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JP2645226B2 (en) X-ray fluorescence analysis method
JP2912127B2 (en) X-ray fluorescence analysis method
JP2003107020A (en) Fluorescent x-ray analysis method for thin film
JP3569734B2 (en) X-ray fluorescence analyzer
JP4279983B2 (en) X-ray fluorescence analyzer
JP2592723B2 (en) Apparatus and method for identifying and analyzing X-ray fluorescence spectrum
JP3377328B2 (en) X-ray fluorescence analysis method
Caldwell A practical method for the accurate analysis of high alloy steels by X‐ray emission
US4349738A (en) Method of measuring the content of given element in a sample by means of X-ray radiation
JP3312002B2 (en) X-ray fluorescence analyzer
JP2872926B2 (en) X-ray fluorescence analysis method
JP2645227B2 (en) X-ray fluorescence analysis method
JPH0769279B2 (en) X-ray fluorescence analysis method
JP2617251B2 (en) X-ray fluorescence analysis method
JPH08334481A (en) X-ray fluorescent analysis

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110111

LAPS Cancellation because of no payment of annual fees