JP3108660B2 - X-ray analysis method and apparatus - Google Patents

X-ray analysis method and apparatus

Info

Publication number
JP3108660B2
JP3108660B2 JP09229054A JP22905497A JP3108660B2 JP 3108660 B2 JP3108660 B2 JP 3108660B2 JP 09229054 A JP09229054 A JP 09229054A JP 22905497 A JP22905497 A JP 22905497A JP 3108660 B2 JP3108660 B2 JP 3108660B2
Authority
JP
Japan
Prior art keywords
intensity
sample
fluorescent
measured
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09229054A
Other languages
Japanese (ja)
Other versions
JPH10123071A (en
Inventor
智也 新井
由行 片岡
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP09229054A priority Critical patent/JP3108660B2/en
Publication of JPH10123071A publication Critical patent/JPH10123071A/en
Application granted granted Critical
Publication of JP3108660B2 publication Critical patent/JP3108660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分析対象試料から
の蛍光X線の測定強度に基づいて、分析対象試料におけ
る各成分の含有率等を求めるX線分析方法および装置に
おいて、より正確な重なり補正のできるX線分析方法お
よび装置に関するものである。
The present invention relates to an X-ray analysis method and apparatus for determining the content of each component in a sample to be analyzed based on the measured intensity of X-ray fluorescence from the sample to be analyzed. The present invention relates to an X-ray analysis method and apparatus capable of correction.

【0002】[0002]

【従来の技術】従来より、分析対象試料からの蛍光X線
の測定強度に基づいて、分析対象試料における各成分の
含有率を求めるX線分析方法のひとつに、いわゆる検量
線法がある。この検量線法では、組成が既知で相異なる
複数の標準試料に1次X線を照射して、標準試料中の各
成分から発生する蛍光X線の強度を測定し、それら測定
強度と標準試料における各成分の含有率との相関関係
を、各成分ごとに検量線としてあらかじめ求めておく。
そして、分析対象試料に1次X線を照射して、分析対象
試料中の各成分から発生する蛍光X線の強度を測定し、
各測定強度に前記検量線を適用して、分析対象試料にお
ける各成分の含有率を求める。
2. Description of the Related Art Conventionally, there is a so-called calibration curve method as one of X-ray analysis methods for obtaining the content of each component in a sample to be analyzed based on the measured intensity of fluorescent X-rays from the sample to be analyzed. In this calibration curve method, primary X-rays are radiated to a plurality of standard samples having different compositions, and the intensity of fluorescent X-rays generated from each component in the standard samples is measured. Is previously determined as a calibration curve for each component.
Then, the sample to be analyzed is irradiated with primary X-rays, and the intensity of fluorescent X-rays generated from each component in the sample to be analyzed is measured.
The calibration curve is applied to each measurement intensity to determine the content of each component in the sample to be analyzed.

【0003】ここで、例えば、測定されるべき蛍光X線
Cu −Kα線に対し、Ni −Kβ1線が妨害線として波
長の一部において重なる場合がある。そこで、妨害線の
影響を除去するために、妨害線を発生する各成分jの含
有率Wj に関する1次式γijj を用いて補正した次式
(1)に示す検量線を用いて、分析対象試料における各
成分iの含有率Wi を求めている。
Here, for example, there is a case where the Ni-Kβ1 line overlaps with the fluorescent X-ray Cu-Kα line to be measured at a part of the wavelength as an interference line. Then, in order to remove the influence of the interference line, a calibration curve shown in the following equation (1) corrected using the linear expression γ ij W j relating to the content W j of each component j that generates the interference line is used. , The content W i of each component i in the sample to be analyzed is determined.

【0004】 Wi =(ai i 2 +bi i +ci )(1+Σαijj )−Σγijj …(1)[0004] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σγ ij W j ... (1)

【0005】ここで、Ii は各蛍光X線として測定され
た強度、ai ,bi ,ci は検量線定数、Σαijj
共存元素についてのいわゆるマトリクス補正項、αij
マトリクス補正係数、γijは重なり補正係数である。a
i ,bi ,ci ,αij,γijは、組成が既知で相異なる
複数の標準試料についての測定から求められる。重なり
補正項をγijj としたのは、妨害成分jによる妨害線
の測定すべき蛍光X線への重なりの影響が、妨害成分j
の含有率Wj に比例するとの前提による。
Here, I i is the intensity measured as each fluorescent X-ray, a i , b i , and c i are calibration curve constants, Σα ij W j is a so-called matrix correction term for coexisting elements, and α ij is a matrix The correction coefficient, γ ij, is an overlap correction coefficient. a
i , b i , c i , α ij , γ ij are obtained from measurements on a plurality of different standard samples whose compositions are known. The reason why the overlap correction term is set to γ ij W j is that the influence of the interference of the interference component j on the fluorescent X-ray to be measured is determined by the interference component j.
On the assumption that it is proportional to the content ratio W j of.

【0006】[0006]

【発明が解決しようとする課題】ところが、この前提
は、必ずしも正しいとはいえず、重なり補正が十分正確
にできない。また、重なり補正項に妨害線の測定強度I
j を用いて、γijj とする方法もあるが、装置の構成
や、妨害線の測定すべき蛍光X線への重なり具合によっ
て、妨害線を測定しない場合や、測定できない場合に
は、重なり補正ができない。
However, this premise is not always correct, and the overlap correction cannot be made sufficiently accurately. In addition, the measured intensity I of the interference line is included in the overlap correction term.
with j, there is a method of the gamma ij I j, configuration and equipment, the degree of overlap to the fluorescent X-ray to be measured of the disturbing lines, and if not assayed interference line, if can not be measured, Overlap correction cannot be performed.

【0007】本発明は前記従来の問題に鑑みてなされた
もので、分析対象試料からの蛍光X線の測定強度に基づ
いて、分析対象試料における各成分の含有率等を求める
X線分析方法および装置において、より正確な重なり補
正のできるX線分析方法および装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned conventional problems, and an X-ray analysis method for determining the content of each component in a sample to be analyzed based on the measured intensity of X-ray fluorescence from the sample to be analyzed. It is an object of the present invention to provide an X-ray analysis method and apparatus capable of performing more accurate overlap correction.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【課題を解決するための手段】 前記目的を達成するため
に、 請求項の方法では、分析対象試料からの蛍光X線
の測定強度に基づいて、分析対象試料における厚さまた
は各成分の含有率の少なくとも一方を求めるX線分析方
法において、測定されるべき蛍光X線の波長帯域と少な
くとも一部が重複する波長帯域を有する蛍光X線を妨害
線とし、分析対象試料における厚さまたは各成分の含有
率の少なくとも一方を仮定して計算した前記妨害線の理
論強度を用いて、前記測定強度を補正する。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
According to the method of claim 1, the X-ray analysis method is for determining at least one of the thickness and the content of each component in the sample to be analyzed based on the measured intensity of the fluorescent X-rays from the sample to be analyzed. A fluorescent X-ray having a wavelength band that at least partially overlaps a wavelength band of the fluorescent X-ray to be used as the interference line, and the interference line calculated by assuming at least one of the thickness and the content of each component in the sample to be analyzed. The measured intensity is corrected using the theoretical intensity of

【0011】請求項の方法によれば、妨害線の理論強
度を用いて測定強度を補正するので、妨害線を測定でき
ない場合等にも、より正確な重なり補正ができる。
According to the method of the first aspect , since the measured intensity is corrected using the theoretical intensity of the interference line, more accurate overlap correction can be performed even when the interference line cannot be measured.

【0012】請求項の方法では、分析対象試料からの
蛍光X線の測定強度に基づいて、分析対象試料における
厚さまたは各成分の含有率の少なくとも一方を求めるX
線分析方法において、測定されるべき蛍光X線の波長帯
域と少なくとも一部が重複する波長帯域を有する蛍光X
線を妨害線とし、分析対象試料における厚さもしくは各
成分の含有率の少なくとも一方を仮定して計算した前記
妨害線の理論強度または前記妨害線と同一系列で波長の
近接する蛍光X線の理論強度を用いて、前記測定強度を
補正する。
[0012] In a second aspect of the method, the analysis based on the measured intensity of the fluorescent X-rays from the target sample, determine at least one of the content of the thickness of the or each component in the analysis sample X
In the X-ray analysis method, the fluorescent X-ray having a wavelength band at least partially overlapping the wavelength band of the fluorescent X-ray to be measured.
The theoretical intensity of the interference line calculated assuming at least one of the thickness and the content of each component in the sample to be analyzed or the theory of the fluorescent X-ray having the same series as the interference line and having a similar wavelength. The intensity is used to correct the measured intensity.

【0013】請求項の方法によれば、妨害線の理論強
度またはそれら妨害線と同一系列で波長の近接する蛍光
X線の理論強度を用いて測定強度を補正するので、妨害
線を測定できない場合等であって、さらに妨害線の理論
強度を算出できない場合にも、より正確な重なり補正が
できる。
According to the method of the second aspect, the measured intensity is corrected using the theoretical intensity of the disturbing line or the theoretical intensity of the fluorescent X-ray having the same system and a wavelength close to the disturbing line, so that the disturbing line cannot be measured. In some cases, for example, even when the theoretical strength of the disturbing line cannot be calculated, more accurate overlap correction can be performed.

【0014】[0014]

【0015】[0015]

【0016】請求項のX線分析装置は、まず、試料が
固定される試料台と、試料に1次X線を照射するX線源
と、試料から発生する蛍光X線の強度を測定する検出手
段とを備えている。また、分析対象試料に、前記X線源
から1次X線を照射させ、分析対象試料中の各成分から
発生する蛍光X線の強度を前記検出手段に測定させ、そ
れら測定強度を記憶する測定手段を備えている、さら
に、前記測定手段に記憶された測定強度に基づいて、分
析対象試料における厚さまたは各成分の含有率の少なく
とも一方を求める算出手段を備えている。ここで、前記
算出手段は、測定されるべき蛍光X線の波長帯域と少な
くとも一部が重複する波長帯域を有する蛍光X線を妨害
線とし、分析対象試料における厚さまたは各成分の含有
率の少なくとも一方を仮定して計算した前記妨害線の理
論強度を用いて前記測定強度を補正するものである。請
求項の装置によれば、前記請求項の方法と同様の作
用効果がある。
According to a third aspect of the present invention, first, a sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, and the intensity of fluorescent X-rays generated from the sample are measured. Detection means. Further, a primary X-ray is irradiated from the X-ray source to the sample to be analyzed, and the intensity of the fluorescent X-ray generated from each component in the sample to be analyzed is measured by the detecting means, and the measured intensity is stored. And calculating means for obtaining at least one of the thickness and the content of each component in the sample to be analyzed based on the measured intensity stored in the measuring means. Here, the calculating means sets the fluorescent X-ray having a wavelength band at least partially overlapping with the wavelength band of the fluorescent X-ray to be measured as the obstruction line, and calculates the thickness or the content of each component in the sample to be analyzed. The measured intensity is corrected using a theoretical intensity of the disturbing line calculated on the assumption of at least one. According to the device of the third aspect , the same operation and effect as those of the method of the first aspect are obtained.

【0017】請求項のX線分析装置は、まず、試料が
固定される試料台と、試料に1次X線を照射するX線源
と、試料から発生する蛍光X線の強度を測定する検出手
段とを備えている。また、分析対象試料に、前記X線源
から1次X線を照射させ、分析対象試料中の各成分から
発生する蛍光X線の強度を前記検出手段に測定させ、そ
れら測定強度を記憶する測定手段を備えている、さら
に、前記測定手段に記憶された測定強度に基づいて、分
析対象試料における厚さまたは各成分の含有率の少なく
とも一方を求める算出手段を備えている。ここで、前記
算出手段は、測定されるべき蛍光X線の波長帯域と少な
くとも一部が重複する波長帯域を有する蛍光X線を妨害
線とし、分析対象試料における厚さもしくは各成分の含
有率の少なくとも一方を仮定して計算した前記妨害線の
理論強度または前記妨害線と同一系列で波長の近接する
蛍光X線の理論強度を用いて前記測定強度を補正するも
のである。請求項の装置によれば、前記請求項の方
法と同様の作用効果がある。
According to a fourth aspect of the present invention, first, a sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, and the intensity of fluorescent X-rays generated from the sample are measured. Detection means. Further, a primary X-ray is irradiated from the X-ray source to the sample to be analyzed, and the intensity of the fluorescent X-ray generated from each component in the sample to be analyzed is measured by the detecting means, and the measured intensity is stored. And calculating means for obtaining at least one of the thickness and the content of each component in the sample to be analyzed based on the measured intensity stored in the measuring means. Here, the calculating means sets the fluorescent X-ray having a wavelength band at least partially overlapping with the wavelength band of the fluorescent X-ray to be measured as an obstruction line, and calculates the thickness or the content of each component in the sample to be analyzed. The measured intensity is corrected using the theoretical intensity of the disturbing line calculated on the assumption of at least one of the disturbing lines or the theoretical intensity of fluorescent X-rays having a wavelength close to the same series as the disturbing line. According to the device of the fourth aspect , the same operation and effect as those of the method of the second aspect are obtained.

【0018】[0018]

【発明の実施の形態】最初に、本発明の第1、第2実施
形態の方法と一部が共通する基本的な方法について説明
する。まず、この方法に用いる装置について、図1にし
たがって説明する。この装置は、まず、試料3,13が
固定される試料台8と、試料3,13に1次X線2を照
射するX線源1と、試料3,13から発生する蛍光X線
6の強度を測定する検出手段10とを備えている。検出
手段10は、試料3,13から発生した2次X線4を分
光する分光器5と、分光器5で分光された蛍光X線6ご
とにその強度を測定する検出器7からなる。また、この
装置は、以下の検量線記憶手段11、測定手段12およ
び検量線適用手段14を含む制御手段15を備えてい
る。
DETAILED DESCRIPTION OF THE INVENTION First, the first, second embodiment of the present invention
A basic method partially common to the method of the embodiment will be described. First, an apparatus used in this method will be described with reference to FIG. The apparatus first includes a sample stage 8 on which the samples 3 and 13 are fixed, an X-ray source 1 for irradiating the samples 3 and 13 with primary X-rays 2, and a fluorescent X-ray 6 generated from the samples 3 and 13. Detecting means 10 for measuring the intensity. The detection means 10 includes a spectroscope 5 for separating the secondary X-rays 4 generated from the samples 3 and 13 and a detector 7 for measuring the intensity of each fluorescent X-ray 6 separated by the spectrometer 5. Further, this apparatus is provided with a control means 15 including the following calibration curve storage means 11, measurement means 12, and calibration curve application means 14.

【0019】前記検量線記憶手段11は、組成が既知で
相異なる複数の標準試料3について、1次X線2を照射
したときに標準試料3中の各成分から発生する蛍光X線
6の強度からあらかじめ求められた、それら強度と標準
試料3における各成分の含有率との相関関係を、各成分
ごとに検量線として記憶する。前記測定手段12は、分
析対象試料13に、前記X線源1から1次X線2を照射
させ、分析対象試料13中の各成分から発生する蛍光X
線6の強度を前記検出手段10に測定させ、それら測定
強度を記憶する。前記検量線適用手段14は、前記測定
手段12に記憶された測定強度に、前記検量線記憶手段
11に記憶された検量線を適用し、分析対象試料13に
おける各成分の含有率を求める。ここで、前記検量線記
憶手段11に記憶された検量線は、測定されるべき蛍光
X線の波長帯域と少なくとも一部が重複する波長帯域を
有する蛍光X線を妨害線とし、それら妨害線を発生する
各成分の含有率に関する2次式を用いて補正されたもの
である。
The calibration curve storage means 11 stores the intensity of the fluorescent X-ray 6 generated from each component in the standard sample 3 when the primary X-ray 2 is irradiated for a plurality of standard samples 3 having different compositions. The correlation between the intensity and the content of each component in the standard sample 3, which is obtained in advance, is stored as a calibration curve for each component. The measurement means 12 irradiates the sample 13 to be analyzed with primary X-rays 2 from the X-ray source 1, and emits the fluorescent X-rays generated from each component in the sample 13.
The intensity of the line 6 is measured by the detecting means 10 and the measured intensity is stored. The calibration curve application unit 14 applies the calibration curve stored in the calibration curve storage unit 11 to the measurement intensity stored in the measurement unit 12 to determine the content of each component in the sample 13 to be analyzed. Here, the calibration curve stored in the calibration curve storage means 11 is a fluorescence X-ray having a wavelength band that at least partially overlaps the wavelength band of the fluorescent X-ray to be measured, and the interference lines are defined as the interference lines. This is corrected using a quadratic expression relating to the content of each component generated.

【0020】この装置を用いて、本基本的な方法では、
以下のように、分析対象試料13における各成分の含有
率を求める。分析対象試料13がNi −Cr −Fe 合金
で、銅の含有率を求める場合を例にとり、図面にしたが
って説明する。銅の分析には、Cu −Kα線を用いる
が、これにNi −Kβ1 線が妨害線として重なる。発明
者らは、このNi −Kβ1 線のCu −Kα線への重なり
の影響を銅の含有率で表したものΔCu と、ニッケルの
含有率の相関関係を詳細に調べ、図3に示す結果を得
た。これによると、妨害成分ニッケル(j)による妨害
線Ni −Kβ1 線の測定すべき蛍光X線Cu −Kα線へ
の重なりの影響ΔCu が、ニッケルの含有率(Wj )に
比例するとの従来技術における前提は、必ずしも正しい
とはいえず、特にニッケルの含有率が高い場合には成立
していない。したがって、この前提に基づいて重なり補
正項をγijj とする従来の技術では、重なり補正が十
分正確にできない。
Using this device, in this basic method:
The content of each component in the analysis target sample 13 is determined as follows. The case where the analysis target sample 13 is a Ni—Cr—Fe alloy and the content of copper is determined will be described with reference to the drawings. The Cu-Kα line is used for the analysis of copper, and the Ni-Kβ1 line overlaps with the Cu-Kα line as an interference line. The inventors examined in detail the correlation between ΔCu, which expresses the influence of the Ni-Kβ1 line on the Cu-Kα line in terms of the copper content, and the nickel content, and obtained the results shown in FIG. Obtained. According to the prior art, the influence ΔCu of the interference of the interference line Ni-Kβ1 with the fluorescent X-ray Cu-Kα line to be measured due to the interference component nickel ( j ) is proportional to the nickel content (W j ). Is not necessarily correct, and is not satisfied particularly when the nickel content is high. Therefore, with the conventional technique in which the overlap correction term is γ ij W j based on this premise, the overlap correction cannot be performed sufficiently accurately.

【0021】ここで、発明者らは、図3の相関関係が次
式(2)で表されることを見出した。
Here, the inventors have found that the correlation shown in FIG. 3 is expressed by the following equation (2).

【0022】 ΔCu =3.42×10-5Ni 2 −1.18WNi+0.0529 …(2)ΔCu = 3.42 × 10 −5 W Ni 2 −1.18 W Ni +0.0529 (2)

【0023】したがって、妨害成分jの含有率Wj に関
する2次式を用いて検量線を補正すれば、より正確な重
なり補正ができる。そこで、本基本的な方法では、図1
に示すように、組成が既知で相異なる複数の標準試料3
を試料台8に固定し、X線源1から1次X線2を照射し
て、標準試料3から発生した2次X線4を分光器5で分
光し、分光された標準試料3中の各成分からの蛍光X線
6の強度を検出器7で測定し、それら測定強度Ii と標
準試料3における各成分iの含有率Wi との相関関係
を、各成分iごとに検量線としてあらかじめ求め前記検
量線記憶手段11に記憶しておくが、この検量線とし
て、次式(3)を用いる。
[0023] Therefore, by correcting the calibration curve using a quadratic equation regarding content W j of interfering components j, it is more accurate overlap correction. Therefore, in this basic method, FIG.
As shown in FIG.
Is fixed to a sample stage 8, primary X-rays 2 are radiated from an X-ray source 1, and secondary X-rays 4 generated from a standard sample 3 are spectrally separated by a spectroscope 5. The intensity of the fluorescent X-rays 6 from each component is measured by the detector 7, and the correlation between the measured intensity I i and the content W i of each component i in the standard sample 3 is defined as a calibration curve for each component i. It is obtained in advance and stored in the calibration curve storage means 11, and the following equation (3) is used as the calibration curve.

【0024】 Wi =(ai i 2 +bi i +ci )(1+Σαijj ) −Σ(γ1ij j 2 +γ2ij j +γ3ij ) …(3)[0024] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σ (γ 1ij W j 2 + γ 2ij W j + γ 3ij) ... (3)

【0025】ここで、記号の意味は式(1)と同じで、
γ1ij ,γ2ij ,γ3ij が重なり補正係数であり、
i ,bi ,ci ,αijとともに、標準試料3について
の測定から回帰計算で求められる。すなわち、本基本的
方法では、測定されるべき蛍光X線6の波長帯域と少
なくとも一部が重複する波長帯域を有する蛍光X線6を
妨害線とし、それら妨害線を発生する各成分jの含有率
j に関する2次式を用いて、検量線を補正している。
次に、前記測定手段12により、分析対象試料13に1
次X線2を照射して、分析対象試料13中の各成分iか
ら発生する蛍光X線6の強度を測定し、記憶する。そし
て、前記検量線適用手段14により、各測定強度Ii
検量線(3)を適用して、分析対象試料13における各
成分iの含有率Wi を求める。
Here, the meanings of the symbols are the same as in the equation (1).
γ 1ij , γ 2ij , γ 3ij are overlap correction coefficients,
It is obtained by regression calculation from the measurement of the standard sample 3 together with a i , b i , c i , and α ij . That is, this basic
In this method, the fluorescent X-ray 6 having a wavelength band at least partially overlapping the wavelength band of the fluorescent X-ray 6 to be measured is regarded as an obstruction line, and the content W j of each component j that generates the obstructive line is determined. The calibration curve is corrected using the quadratic equation.
Next, the measuring means 12 assigns 1 to the sample 13 to be analyzed.
The next X-ray 2 is irradiated to measure and store the intensity of the fluorescent X-ray 6 generated from each component i in the sample 13 to be analyzed. Then, the a calibration curve application means 14 applies a calibration curve (3) to each measured intensity I i, determine the content of W i of each component i in the analysis sample 13.

【0026】本基本的な方法によれば、より現実に則し
て、妨害成分jの含有率Wj に関する2次式を用いて検
量線を補正するので、より正確な重なり補正ができる。
In accordance with the present basic method, with reference to the more practical, because to correct the calibration curve using a quadratic equation regarding content W j of interfering components j, it is more accurate overlap correction.

【0027】次に、本発明の第実施形態の方法につい
て説明する。まず、この方法に用いる装置について、図
2にしたがって説明する。この装置は、前記基本的な
法に用いる装置と比べ、制御手段17が、検量線記憶手
段11および検量線適用手段14を含まず、算出手段1
6を含み、その算出手段16は、測定されるべき蛍光X
線の波長帯域と少なくとも一部が重複する波長帯域を有
する蛍光X線を妨害線とし、分析対象試料における各成
分の含有率を仮定して計算した前記妨害線の理論強度ま
たは前記妨害線と同一系列で波長の近接する蛍光X線の
理論強度を用いて測定強度を補正するものである点で異
なり、他の点においては同様なので、同一部分に同一番
号を付して説明を省略する。第実施形態の方法に用い
る装置においては、算出手段16は、測定強度の補正の
仕方に違いはあるものの、前記基本的な方法に用いる装
置における検量線記憶手段11および検量線適用手段1
4に相当するものといえる。
Next, the method according to the first embodiment of the present invention will be described. First, an apparatus used in this method will be described with reference to FIG. This apparatus is different from the apparatus used in the basic method in that the control means 17 does not include the calibration curve storage means 11 and the calibration curve application means 14 and the calculation means 1
6 whose calculation means 16 determines the fluorescence X to be measured.
A fluorescent X-ray having a wavelength band that at least partially overlaps with the wavelength band of the line is defined as a disturbing line, and is the same as the theoretical intensity of the disturbing line calculated assuming the content of each component in the sample to be analyzed or the disturbing line. The difference is that the measurement intensity is corrected using the theoretical intensity of fluorescent X-rays having similar wavelengths in the series, and the other points are the same. In the apparatus used in the method of the first embodiment, the calculation means 16 has a difference in the method of correcting the measured intensity, but the calibration curve storage means 11 and the calibration curve application means 1 in the apparatus used in the basic method.
4 can be said to be equivalent.

【0028】この装置を用いて、第実施形態の方法で
は、以下のように、分析対象試料13における各成分の
含有率を求める。やはり、分析対象試料13がNi −C
r −Fe 合金で、銅の含有率を求める場合を例にとり、
従来技術と対比して説明する。まず、従来の検量線法と
して、重なり補正項に妨害線の測定強度Ij を用い、γ
ijj とし、次式(4)に示す検量線を用いる方法があ
る。
Using this apparatus, in the method of the first embodiment, the content of each component in the sample 13 to be analyzed is obtained as follows. Again, the sample 13 to be analyzed is Ni-C
In the case of obtaining the copper content in an r-Fe alloy,
This will be described in comparison with the related art. First, as a conventional calibration curve method, the measured intensity I j of the interference line is used for the overlap correction term, and γ
a ij I j, there is a method using a calibration curve shown in the following equation (4).

【0029】 Wi =(ai i 2 +bi i +ci )(1+Σαijj )−Σγijj …(4)[0029] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σγ ij I j ... (4)

【0030】式(4)に示す検量線は、Ni ,Cr ,F
e 等の全元素について用意し、式(4)の右辺に測定強
度Ii ,Ij を代入し、逐次繰り返し計算で、最終的な
分析値Wi を求める。ここで、前述したように銅の分析
には、Cu −Kα線を用いるが、これにNi −Kβ1 線
が妨害線として重なる。ところが、ニッケルの分析に
は、通常Ni −Kα線を用いるので、Ni −Kβ1 線の
強度Ij は測定されず、式(4)の検量線を用いること
ができない。妨害線の測定強度Ij としてNi −Kα線
の測定強度を代用することも考えられるが、Ni −Kα
線とNi −Kβ1線とのX線強度比は一定ではなく、特
に両線の波長の間に吸収端をもつコバルト等の元素を試
料が含有する場合には、この強度比は大きく変化する。
したがって、妨害線の測定強度Ij をNi −Kα線の測
定強度で代用しても、正確な重なり補正ができない。
The calibration curve shown in equation (4) is expressed as Ni, Cr, F
For all elements such as e, the measured intensities I i and I j are substituted into the right side of the equation (4), and the final analysis value W i is obtained by successive repetitive calculations. Here, as described above, the Cu-Kα line is used for the analysis of copper, and the Ni-Kβ1 line overlaps with the Cu-Kα line as an interference line. However, since Ni-Kα radiation is usually used for nickel analysis, the intensity I j of the Ni-Kβ1 radiation is not measured, and the calibration curve of the equation (4) cannot be used. It is conceivable to substitute the measured intensity of the Ni -Keiarufa line as the measured intensity I j of the disturbing lines, Ni -Kα
The X-ray intensity ratio between the X-ray and the Ni-Kβ1 line is not constant. In particular, when the sample contains an element such as cobalt having an absorption edge between the wavelengths of both lines, this intensity ratio greatly changes.
Therefore, it is substituted by the measured intensity I j of the disturbing lines in the measured intensity of Ni -Keiarufa line can not accurately overlap correction.

【0031】そこで、第実施形態の方法では、検量線
法において、測定されるべき蛍光X線例えばCu −Kα
線の波長帯域と少なくとも一部が重複する波長帯域を有
する蛍光X線例えばNi −Kβ1 線を妨害線とし、前記
逐次繰り返し計算ごとの組成(各成分の含有率)でそれ
ら妨害線の理論強度 Tj を計算し、その計算した妨害
線の理論強度 Tj を用いて、試料3,13から発生す
る蛍光X線6の測定強度Ii を補正する。すなわち、算
出手段16において、次式(5)および(6)に示す検
量線を用いる。
Therefore, in the method of the first embodiment, in the calibration curve method, the fluorescent X-ray to be measured, for example, Cu-Kα
Fluorescent X-rays having a wavelength band at least partially overlapping with the wavelength band of the X-rays, for example, Ni-Kβ1 rays, are regarded as disturbing lines, and the theoretical intensity T of the disturbing lines is determined by the composition (content of each component) for each of the above-described successive repetition calculations. I j is calculated, and the measured intensity I i of the fluorescent X-rays 6 generated from the samples 3 and 13 is corrected using the calculated theoretical intensity T I j of the interference line. That is, the calculation means 16 uses the calibration curves shown in the following equations (5) and (6).

【0032】 Wi =(ai ci 2 +bi ci +ci )(1+Σαijj ) …(5)W i = (a i c I i 2 + b i c I i + c i ) (1 + Σα ij W j ) (5)

【0033】 ci =Ii −Σγij Tj …(6) C I i = I i −Σγ ij T I j (6)

【0034】ここで、 ci は、妨害線の理論強度 T
j を用いて、測定強度Ii を補正した重なり補正強度で
ある。標準試料3についての測定および理論強度計算か
ら、Ii および Tj が得られ、式(6)を式(5)に
代入した式の多重回帰計算により、ai ,bi ,ci
αij,γijが求められる。組成に基づく理論強度の計算
はいわゆるファンダメンタルパラメータ法(詳細につい
ては、後述する)により行われる。つぎに、算出手段1
6が、測定手段12により測定、記憶した分析対象試料
13についての測定強度Ii 、および算出した理論計算
した強度 Tjに、検量線(5)および(6)を適用し
て、分析対象試料13における各成分iの含有率Wi
求める。試料3,13についての測定は、図1を用いて
基本的な方法で説明したのと同様に行う。
Here, c I i is the theoretical intensity T I of the disturbance line.
with j, a correction intensity overlap was corrected measured intensity I i. From the measurement and the theoretical intensity calculation for the standard sample 3, I i and T Ij are obtained, and a i , b i , c i , and c i are obtained by multiple regression calculation of the expression (6) substituted into the expression (5).
α ij and γ ij are obtained. The calculation of the theoretical strength based on the composition is performed by a so-called fundamental parameter method (the details will be described later). Next, calculation means 1
6 applies the calibration curves (5) and (6) to the measured intensity I i of the analysis target sample 13 measured and stored by the measuring means 12 and the calculated theoretically calculated intensity T I j , and The content W i of each component i in the sample 13 is determined. Measurements for samples 3 and 13 were made using FIG.
This is performed in the same manner as described in the basic method.

【0035】第実施形態の方法によれば、妨害線の理
論強度 Tj を用いて測定強度Iiを補正するので、前
述のNi −Kβ1 線のように妨害線を測定しない場合
や、妨害線が測定されるべき蛍光X線と完全に重なって
測定できない場合等にも、より正確な重なり補正ができ
る。
According to the method of the first embodiment, the measured intensity I i is corrected using the theoretical intensity T I j of the disturbing line. Therefore, when the disturbing line is not measured as in the case of the above-mentioned Ni-Kβ 1 line, Even when the interference line completely overlaps the fluorescent X-ray to be measured and cannot be measured, more accurate overlap correction can be performed.

【0036】なお、重なり補正項に妨害線の理論強度 T
j を用い、γij Tj とし、次式(7)に示す検量線
を用いる方法もある。
Note that the theoretical intensity T of the interference line is included in the overlap correction term.
Using I j, and γ ij T I j, there is a method of using a calibration curve shown in the following equation (7).

【0037】 Wi =(ai i 2 +bi i +ci )(1+Σαijj )−Σγij Tj …(7)[0037] W i = (a i I i 2 + b i I i + c i) (1 + Σα ij W j) -Σγ ij T I j ... (7)

【0038】次に、本発明の第実施形態の方法につい
て説明する。第実施形態の方法に用いる装置について
は、図2に示した前記第実施形態の方法に用いる装置
と比べ、以下に述べるように算出手段16における計算
の内容が異なるのみであるので、説明を省略する。第
実施形態の方法は、基本的な方法、第実施形態の方法
のように検量線を用いる検量線法ではなく、ファンダメ
ンタルパラメータ法(以下、FP法という)に属するも
のである。FP法とは、分析対象試料13に1次X線2
を照射して発生した各含有元素の蛍光X線6の測定強度
i を理論強度スケールに換算した強度 Si と、分析
対象試料13における元素の含有率Wiを仮定して計算
した各含有元素の蛍光X線の理論強度 Ti とを用い、
両強度が一致するように、前記仮定した元素の含有率W
i を逐次近似的に修正計算して、分析対象試料13にお
ける元素の含有率Wi を算出する蛍光X線分析方法であ
る。
Next, a method according to a second embodiment of the present invention will be described. The apparatus used in the method of the second embodiment differs from the apparatus used in the method of the first embodiment shown in FIG. 2 only in the content of the calculation in the calculating means 16 as described below. Is omitted. Second
The method according to the embodiment belongs to a fundamental parameter method (hereinafter, referred to as an FP method), not to a basic method , a calibration curve method using a calibration curve as in the method of the first embodiment. The FP method means that the primary X-ray 2
And intensity S I i obtained by converting the measured intensities I i of the fluorescent X-ray 6 theoretical strength scale for each content element generated by irradiating each were calculated assuming a content of W i from the elements of the analysis sample 13 using X-ray fluorescence of elements contained and theoretical strength T I i,
The content W of the assumed element is set so that the two intensities match.
This is a fluorescent X-ray analysis method in which i is successively and approximately corrected to calculate an element content W i in the sample 13 to be analyzed.

【0039】また、分析対象試料13が、いわゆる薄膜
試料、すなわち基板上に蒸着等で形成された薄膜である
場合には、含有率Wi を求めるのと同様に、各含有元素
の蛍光X線6の測定強度Ii を理論強度スケールに換算
した強度 S i と、分析対象試料13における厚さTを
仮定して計算した各含有元素の蛍光X線の理論強度T
i とを用いて、両強度が一致するように、前記仮定した
厚さTを逐次近似的に修正計算して、分析対象試料13
における厚さTを算出できる。さらに、薄膜試料である
分析対象試料13において厚さTと元素の含有率Wi
両方が未知である場合には、両方を仮定して計算した各
含有元素の蛍光X線の理論強度 Tiと、各含有元素の
蛍光X線6の測定強度Ii を理論強度スケールに換算し
た強度 S i とを用いて、両強度が一致するように、前
記仮定した厚さTおよび元素の含有率Wi を逐次近似的
に修正計算して、分析対象試料13における厚さTおよ
び元素の含有率Wi を算出できる。なお、薄膜でないい
わゆるバルク試料においては、厚さはX線的には無限大
であり、元素の含有率Wi のみが求められる。
Further, analysis sample 13, so-called thin film sample, that is, when a thin film formed by vapor deposition or the like on the substrate, similarly to determine the content of W i, X-ray fluorescence of the elements contained 6 in terms of the theoretical intensity scale the measured intensity I i of
Intensities S I i and the theoretical intensity of the fluorescent X-ray of the containing elements were calculated assuming a thickness T in the analysis sample 13 T I
i , the assumed thickness T is successively and approximately corrected and calculated so that the two intensities coincide with each other.
Can be calculated. Further, in the case where both the thickness T and the content W i of the element are unknown in the sample 13 to be analyzed, which is a thin film sample, the theoretical intensity T I of the fluorescent X-ray of each content element calculated on the assumption of both the thickness T and the content W i and i, the measured intensity I i of the fluorescent X-ray 6 of the elements contained in terms of the theoretical intensity scale
Strength by using the S I i, so that both strength match, the assumed thickness T and the element content ratio W i by successive approximation modified calculate the thickness T of the analysis sample 13 and The content W i of the element can be calculated. In the case of a so-called bulk sample which is not a thin film, the thickness is infinite in X-ray, and only the element content W i is required.

【0040】第実施形態の方法では、このFP法にお
いて、測定されるべき蛍光X線の波長帯域と少なくとも
一部が重複する波長帯域を有する蛍光X線を妨害線と
し、それら妨害線の理論強度 Tj を用いて、前記測定
強度Ii を補正する。すなわち、測定強度Ii に代え
て、第実施形態の方法で示した式(6)の重なり補正
強度 ci を用いる。第実施形態の方法では、以下の
ように重なり補正係数γij等を求める。まず、次式
(8)を想定する。
In the method of the second embodiment, in the FP method, fluorescent X-rays having a wavelength band at least partially overlapping the wavelength band of the fluorescent X-rays to be measured are regarded as interference lines, and the theory of the interference lines The measured intensity I i is corrected using the intensity T I j . That is, instead of the measurement intensity I i , the overlap correction intensity c I i of the equation (6) shown in the method of the first embodiment is used. In the method of the second embodiment, the overlap correction coefficient γ ij and the like are obtained as follows. First, the following equation (8) is assumed.

【0041】 Ti =ai ci 2 +bi ci +ci …(8) T I i = a i c I i 2 + b i c I i + c i (8)

【0042】そして、標準試料3についての測定および
理論強度計算から、Ii Ti T j が得られ、式
(6)を式(8)に代入した式の多重回帰計算により、
i,bi ,ci ,γijが求められる。
Then, the measurement of the standard sample 3 and
From the theoretical strength calculation, Ii,TIi, TIjAnd the expression
By the multiple regression calculation of the equation obtained by substituting (6) into the equation (8),
ai, Bi, Ci, ΓijIs required.

【0043】薄膜試料である分析対象試料13において
厚さTと元素の含有率Wi の両方を求める場合を例にと
り、第実施形態の方法の手順全体を、以下に説明す
る。まず、測定手段12により、分析対象試料13に1
次X線2を照射して、分析対象試料13中の各成分iか
ら発生する蛍光X線6の強度Ii を測定し、記憶する。
次に、算出手段16に、あらかじめ仮定された初期の厚
さT(0) と各成分の含有率Wi (0) が読み込まれ、算出
手段16は、それらから、厚さTと各成分の含有率Wi
が所定の範囲に収束するまで逐次近似的に修正計算をす
る。
The whole procedure of the method according to the second embodiment will be described below, taking as an example a case where both the thickness T and the content W i of the element are obtained in the sample 13 to be analyzed, which is a thin film sample. First, the measuring unit 12 assigns 1
The next X-ray 2 is irradiated to measure and store the intensity I i of the fluorescent X-ray 6 generated from each component i in the sample 13 to be analyzed.
Next, the initial thickness T (0) and the content W i (0) of each component, which are assumed in advance, are read by the calculating unit 16, and the calculating unit 16 calculates the thickness T and the component Content W i
Until it converges to a predetermined range.

【0044】n回目の計算について説明すると、まず、
n回目に仮定した厚さT(n) と各成分の含有率Wi (n)
を、周知の理論強度計算式に代入して、n回目の各含有
元素の蛍光X線の理論強度 Ti (n) を計算する。ここ
で、測定されるべき蛍光X線と少なくとも一部が重複す
る波長帯域を有する蛍光X線を妨害線とし、n回目の妨
害線の理論強度 Tj (n) も、同様に計算する。次に、
この妨害線の理論強度Tj (n) を用いて、前記測定強
度Ii を補正する。具体的には、式(6)に、測定強度
i と妨害線の理論強度 Tj (n) を代入して、n回目
の重なり補正強度 ci (n) を求める。そして、n回目
の重なり補正強度 ci (n) を理論強度スケールに換算
した強度 cS i (n) (換算は、式(8)の左辺を cS i
とおいて行う)と理論強度 Ti (n) とを比較し、n+
1回目の厚さT(n+1) と各成分の含有率Wi (n+1) を求
める。具体的には、次式(9),(10)から、それぞ
れΔT,ΔWi を求め、それぞれ次式(11),(1
2)に代入する。
To explain the n-th calculation, first,
The thickness T (n) assumed for the n-th time and the content W i (n) of each component
Is substituted into a well-known theoretical intensity calculation formula to calculate an n-th theoretical X-ray fluorescence intensity T I i (n) of each contained element. Here, a fluorescent X-ray having a wavelength band at least partially overlapping with the fluorescent X-ray to be measured is regarded as a disturbing line, and the theoretical intensity T I j (n) of the nth disturbing line is similarly calculated. next,
The measured intensity I i is corrected using the theoretical intensity T I j (n) of this disturbing line. Specifically, the measured intensity I i and the theoretical intensity T I j (n) of the interference line are substituted into the equation (6), and the n-th overlap correction intensity c I i (n) is obtained. Then, the n-th overlap correction intensity c I i (n) is converted into a theoretical intensity scale.
Intensities cS I i (n) (in terms of the left-hand side of cS I i of formula (8)
And the theoretical intensity T I i (n) is compared with n +
First thickness T (n + 1) and content W i (n + 1) of each component are obtained. Specifically, ΔT and ΔW i are obtained from the following equations (9) and (10), respectively, and the following equations (11) and (1) are respectively obtained.
Substitute in 2).

【0045】 cS i (n) Ti (n) +ΔT×(d Ti (n) /dT) …(9) CS I i (n) = T I i (n) + ΔT × (d T I i (n) / dT) (9)

【0046】 cS i (n) Ti (n) +ΔWi ×(d Ti (n) /dWi ) …(10) CS I i (n) = T I i (n) + ΔW i × (d T I i (n) / dW i ) (10)

【0047】 T(n+1) =T(n) +ΔT …(11)T (n + 1) = T (n) + ΔT (11)

【0048】 Wi (n+1) =Wi (n) +Δ i …(12)[0048] W i (n + 1) = W i (n) + Δ W i ... (12)

【0049】なお、式(9)の(d Ti (n) /dT)
は、厚さをdTだけ変化させたときの理論強度 Ti
(n) の変化量で、式(10)の(d Ti (n) /dWi
T)は、各成分の含有率Wi をdWi だけ変化させたと
きの理論強度 Ti (n) の変化量である。
Note that (d T I i (n) / dT) in equation (9)
Is the theoretical intensity T I i when the thickness is changed by dT.
The amount of change of (n) is expressed by (d T I i (n) / dW i in equation (10).
T) is the amount of change in the theoretical intensity T I i (n) when the content W i of each component is changed by dW i .

【0050】そして、次式(13),(14)が満たさ
れたときに、厚さT(n+1) と各成分の含有率Wi (n+1)
がそれぞれ収束したものとし、満たされないときには、
理論強度 Ti (n+1) の計算以降を繰り返す。なお、式
(13),(14)のαT ,αW は、所定の収束判定値
である。
When the following expressions (13) and (14) are satisfied, the thickness T (n + 1) and the content W i (n + 1) of each component are obtained.
Are converged, and if they are not satisfied,
The calculation after the calculation of the theoretical intensity T I i (n + 1) is repeated. Note that α T and α W in Expressions (13) and (14) are predetermined convergence determination values.

【0051】 |T(n+1) /T(n) −1.0|<αT …(13)| T (n + 1) / T (n) −1.0 | <α T (13)

【0052】 |Wi (n+1) /Wi (n) −1.0|<αW …(14)| W i (n + 1) / W i (n) −1.0 | <α W (14)

【0053】なお、分析対象が多層膜である場合等、複
数組の厚さと各成分の含有率を求める場合には、以上の
式が、複数組の連立方程式となる。
When a plurality of sets of thickness and the content of each component are to be obtained, for example, when the object to be analyzed is a multilayer film, the above equation becomes a plurality of sets of simultaneous equations.

【0054】第実施形態の方法によっても、妨害線の
理論強度 Tj を用いて、測定強度Ii を補正するの
で、やはり、妨害線を測定できない場合等にも、より正
確な重なり補正ができる。
According to the method of the second embodiment, the measured intensity I i is corrected using the theoretical intensity T I j of the disturbing line. Therefore, even when the disturbing line cannot be measured, the overlap correction can be performed more accurately. Can be.

【0055】なお、第、第実施形態の方法におい
て、例えば、測定されるべき蛍光X線がP−Kα線であ
り、妨害線Mo −Ll線について理論強度を計算するた
めの定数が用意されていない場合がある。このような場
合には、算出手段16により、妨害線Mo −Ll線と同
一系列で波長の近接する蛍光X線例えばMo −Lα線の
理論強度 Tj を用いて、測定強度Ii を補正する。こ
の場合には、妨害線の理論強度または妨害線と同一系列
で波長の近接する蛍光X線の理論強度を用いて測定強度
を補正するので、妨害線を測定できない場合等であっ
て、さらに妨害線の理論強度を算出できない場合にも、
より正確な重なり補正ができる。
In the methods of the first and second embodiments, for example, the fluorescent X-ray to be measured is a P-Kα ray, and a constant for calculating the theoretical intensity for the interference line Mo-Ll is prepared. May not be. In such a case, the calculating unit 16, using the theoretical strength T I j of the fluorescent X-ray for example Mo -Eruarufa lines adjacent in wavelength interference lines Mo -Ll line the same sequence, correct the measured intensity I i I do. In this case, the measurement intensity is corrected using the theoretical intensity of the interference line or the theoretical intensity of the fluorescent X-ray having the same wavelength as that of the interference line, so that the interference line cannot be measured. If the theoretical strength of the line cannot be calculated,
More accurate overlap correction can be performed.

【0056】[0056]

【0057】[0057]

【発明の効果】 以上詳細に説明したように 、請求項
たはの発明によれば、妨害線の理論強度を用いて測定
強度を補正するので、妨害線を測定できない場合等に
も、より正確な重なり補正ができる。
As described in detail above , according to the first or third aspect of the present invention, since the measured intensity is corrected using the theoretical intensity of the disturbing line, the disturbing line cannot be measured. In such cases, more accurate overlap correction can be performed.

【0058】また、請求項またはの発明によれば、
妨害線の理論強度またはそれら妨害線と同一系列で波長
の近接する蛍光X線の理論強度を用いて測定強度を補正
するので、妨害線を測定できない場合等であって、さら
に妨害線の理論強度を算出できない場合にも、より正確
な重なり補正ができる。
[0058] According to the invention of claim 2 or 4,
The measurement intensity is corrected using the theoretical intensity of the disturbing line or the theoretical intensity of fluorescent X-rays that are in the same series as the disturbing line and have a similar wavelength. Can not be calculated, more accurate overlap correction can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1、第2実施形態の方法と一部が共
通する基本的な方法に用いる装置を示す正面図である。
FIG. 1 is partially the same as the method of the first and second embodiments of the present invention.
It is a front view which shows the apparatus used for the basic method of passing .

【図2】本発明の第または第実施形態のX線分析方
法に用いる装置を示す正面図である。
FIG. 2 is a front view showing an apparatus used for the X-ray analysis method according to the first or second embodiment of the present invention.

【図3】妨害線Ni −Kβ1 線の測定線Cu −Kα線へ
の重なりの影響を銅の含有率で表したものΔCu と、ニ
ッケルの含有率の相関関係を示す図である。
FIG. 3 is a diagram showing the correlation between ΔCu, which represents the influence of the interference of the interference line Ni-Kβ1 on the measurement line Cu-Kα by the copper content, and the nickel content.

【符号の説明】[Explanation of symbols]

1…X線源、2…1次X線、3…標準試料、6…蛍光X
線、8…試料台、10…検出手段、11…検量線記憶手
段、12…測定手段、13…分析対象試料、14…検量
線適用手段、16…算出手段。
1: X-ray source, 2: primary X-ray, 3: standard sample, 6: fluorescent X
Line 8, sample stage, 10 detection means, 11 calibration curve storage means, 12 measurement means, 13 sample to be analyzed, 14 calibration curve application means, 16 calculation means.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 23/22 - 23/227 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 23/22-23/227

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分析対象試料に1次X線を照射して、分
析対象試料中の各成分から発生する蛍光X線の強度を測
定し、 それら測定強度に基づいて、分析対象試料における厚さ
または各成分の含有率の少なくとも一方を求めるX線分
析方法において、 測定されるべき蛍光X線の波長帯域と少なくとも一部が
重複する波長帯域を有する蛍光X線を妨害線とし、 分析対象試料における厚さまたは各成分の含有率の少な
くとも一方を仮定して計算した前記妨害線の理論強度を
用いて、前記測定強度を補正することを特徴とするX線
分析方法。
1. A sample to be analyzed is irradiated with primary X-rays, the intensity of fluorescent X-rays generated from each component in the sample to be analyzed is measured, and the thickness of the sample to be analyzed is determined based on the measured intensities. Alternatively, in the X-ray analysis method for determining at least one of the content rates of the respective components, a fluorescent X-ray having a wavelength band at least partially overlapping with the wavelength band of the fluorescent X-ray to be measured is regarded as an interference line, An X-ray analysis method, wherein the measured intensity is corrected using a theoretical intensity of the disturbing line calculated assuming at least one of a thickness and a content of each component.
【請求項2】 分析対象試料に1次X線を照射して、分
析対象試料中の各成分から発生する蛍光X線の強度を測
定し、 それら測定強度に基づいて、分析対象試料における厚さ
または各成分の含有率の少なくとも一方を求めるX線分
析方法において、 測定されるべき蛍光X線の波長帯域と少なくとも一部が
重複する波長帯域を有する蛍光X線を妨害線とし、 分析対象試料における厚さもしくは各成分の含有率の少
なくとも一方を仮定して計算した前記妨害線の理論強度
または前記妨害線と同一系列で波長の近接する蛍光X線
の理論強度を用いて、前記測定強度を補正することを特
徴とするX線分析方法。
2. A sample to be analyzed is irradiated with primary X-rays, the intensity of fluorescent X-rays generated from each component in the sample to be analyzed is measured, and the thickness of the sample to be analyzed is determined based on the measured intensities. Alternatively, in the X-ray analysis method for determining at least one of the content rates of the respective components, a fluorescent X-ray having a wavelength band at least partially overlapping with the wavelength band of the fluorescent X-ray to be measured is regarded as an interference line, The measured intensity is corrected using the theoretical intensity of the disturbing line calculated assuming at least one of the thickness and the content of each component or the theoretical intensity of the fluorescent X-ray having a wavelength close to the same series as the disturbing line. X-ray analysis method.
【請求項3】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 分析対象試料に、前記X線源から1次X線を照射させ、
分析対象試料中の各成分から発生する蛍光X線の強度を
前記検出手段に測定させ、それら測定強度を記憶する測
定手段と、 前記測定手段に記憶された測定強度に基づいて、分析対
象試料における厚さまたは各成分の含有率の少なくとも
一方を求める算出手段とを備え、 前記算出手段は、測定されるべき蛍光X線の波長帯域と
少なくとも一部が重複する波長帯域を有する蛍光X線を
妨害線とし、分析対象試料における厚さまたは各成分の
含有率の少なくとも一方を仮定して計算した前記妨害線
の理論強度を用いて前記測定強度を補正するものである
X線分析装置。
3. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays generated from the sample, Irradiating primary X-rays from an X-ray source,
A measuring means for causing the detecting means to measure the intensity of the fluorescent X-rays generated from each component in the sample to be analyzed, and storing the measured intensities, based on the measured intensity stored in the measuring means, Calculating means for determining at least one of the thickness and the content of each component, wherein the calculating means obstructs the fluorescent X-rays having a wavelength band at least partially overlapping the wavelength band of the fluorescent X-rays to be measured. An X-ray analyzer that corrects the measured intensity using a theoretical intensity of the disturbing line calculated assuming at least one of a thickness and a content of each component in a sample to be analyzed.
【請求項4】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料から発生する蛍光X線の強度を測定する検出手段
と、 分析対象試料に、前記X線源から1次X線を照射させ、
分析対象試料中の各成分から発生する蛍光X線の強度を
前記検出手段に測定させ、それら測定強度を記憶する測
定手段と、 前記測定手段に記憶された測定強度に基づいて、分析対
象試料における厚さまたは各成分の含有率の少なくとも
一方を求める算出手段とを備え、 前記算出手段は、測定されるべき蛍光X線の波長帯域と
少なくとも一部が重複する波長帯域を有する蛍光X線を
妨害線とし、分析対象試料における厚さもしくは各成分
の含有率の少なくとも一方を仮定して計算した前記妨害
線の理論強度または前記妨害線と同一系列で波長の近接
する蛍光X線の理論強度を用いて前記測定強度を補正す
るものであるX線分析装置。
4. A sample stage on which a sample is fixed, an X-ray source for irradiating the sample with primary X-rays, detection means for measuring the intensity of fluorescent X-rays generated from the sample, Irradiating primary X-rays from an X-ray source,
A measuring means for causing the detecting means to measure the intensity of the fluorescent X-rays generated from each component in the sample to be analyzed, and storing the measured intensities, based on the measured intensity stored in the measuring means, Calculating means for determining at least one of the thickness and the content of each component, wherein the calculating means obstructs the fluorescent X-rays having a wavelength band at least partially overlapping the wavelength band of the fluorescent X-rays to be measured. The theoretical intensity of the disturbing line calculated assuming at least one of the thickness and the content of each component in the sample to be analyzed or the theoretical intensity of the fluorescent X-ray having a wavelength close to the same series as the disturbing line is used. An X-ray analyzer for correcting the measured intensity by using the X-ray analyzer.
JP09229054A 1996-08-27 1997-08-26 X-ray analysis method and apparatus Expired - Fee Related JP3108660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09229054A JP3108660B2 (en) 1996-08-27 1997-08-26 X-ray analysis method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-245678 1996-08-27
JP24567896 1996-08-27
JP09229054A JP3108660B2 (en) 1996-08-27 1997-08-26 X-ray analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPH10123071A JPH10123071A (en) 1998-05-15
JP3108660B2 true JP3108660B2 (en) 2000-11-13

Family

ID=26528604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09229054A Expired - Fee Related JP3108660B2 (en) 1996-08-27 1997-08-26 X-ray analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3108660B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527956B2 (en) * 2000-03-06 2004-05-17 理学電機工業株式会社 X-ray fluorescence analysis method and apparatus
CN103512911A (en) * 2012-06-18 2014-01-15 上海梅山钢铁股份有限公司 Metallurgy miscellaneous material fast spectral analysis method
CN104198513A (en) * 2014-09-12 2014-12-10 江苏天瑞仪器股份有限公司 Quick determination method for cadmium element in grains with X-ray fluorescent spectrometry
CN104181182A (en) * 2014-09-12 2014-12-03 江苏天瑞仪器股份有限公司 Method for rapidly measuring arsenic element in grain by X fluorescent spectrometry
CN106168586A (en) * 2016-08-31 2016-11-30 吴俊逸 A kind of measure the method for iron content in fireworks and firecrackers iron powder
CN106404814A (en) * 2016-08-31 2017-02-15 吴俊逸 Method for measuring potassium content of black powder
CN106370685A (en) * 2016-08-31 2017-02-01 吴俊逸 Method for determining content of potassium in industrial potassium chloride
CN106168587A (en) * 2016-08-31 2016-11-30 吴俊逸 A kind of measure the method for iron content in fireworks and firecrackers firework medicament
CN106248709A (en) * 2016-08-31 2016-12-21 吴俊逸 A kind of measure the method for potassium content in fireworks and firecrackers firework medicament
CN106324005A (en) * 2016-08-31 2017-01-11 吴俊逸 Method for determining content of Ba in pyrotechnic composition for fireworks and firecrackers
CN106338533A (en) * 2016-08-31 2017-01-18 吴俊逸 Method for determining content of barium in barium carbonate for fireworks and crackers
CN106093096A (en) * 2016-08-31 2016-11-09 吴俊逸 A kind of measure the method for barium content in fireworks and firecrackers barium nitrate
CN106124546A (en) * 2016-08-31 2016-11-16 吴俊逸 A kind of measure the method for potassium content in industry potassium chlorate
CN106338532A (en) * 2016-08-31 2017-01-18 吴俊逸 Method for determining content of chromium in pyrotechnic composition for fireworks and crackers
CN106093098A (en) * 2016-08-31 2016-11-09 吴俊逸 A kind of measure the method for copper content in fireworks and firecrackers firework medicament
CN106404816A (en) * 2016-08-31 2017-02-15 吴俊逸 Method for measuring Sr (strontium) content in strontium nitrate for fireworks and crackers
CN106124547A (en) * 2016-08-31 2016-11-16 吴俊逸 A kind of measure the method for potassium content in industrial potassium nitrate
CN106370684A (en) * 2016-08-31 2017-02-01 吴俊逸 Method for measuring titanium content in titanium powder for fireworks and crackers
CN106404815A (en) * 2016-08-31 2017-02-15 吴俊逸 Method for determination of content of strontium in strontium carbonate for fireworks and firecrackers
CN106323930A (en) * 2016-08-31 2017-01-11 吴俊逸 Method for determining content of Cr in K2Cr2O7 for fireworks and firecrackers
CN106323929A (en) * 2016-08-31 2017-01-11 吴俊逸 Method for determining content of Cu in CuO for fireworks and firecrackers
CN106404817A (en) * 2016-08-31 2017-02-15 吴俊逸 Method for measuring content of titanium in pyrotechnic composition for fireworks and crackers
CN106093097A (en) * 2016-08-31 2016-11-09 吴俊逸 A kind of measure the method for content of strontium in fireworks and firecrackers firework medicament
CN106290437A (en) * 2016-08-31 2017-01-04 吴俊逸 A kind of measure the method for iron content in fireworks and firecrackers ferroso-ferric oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049251A (en) * 1983-08-29 1985-03-18 Shimadzu Corp Method for fluorescent x-ray analysis
JPH04204362A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Quantitative measurement of element
JPH07113770A (en) * 1993-10-20 1995-05-02 Shimadzu Corp Fluorescent x-ray analyzing method

Also Published As

Publication number Publication date
JPH10123071A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
JP3108660B2 (en) X-ray analysis method and apparatus
EP0389774B1 (en) Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
US10082475B2 (en) X-ray fluorescence spectrometer
WO2006112084A1 (en) Fluorescence x-ray spectroscope and program used therefore
CN113692533B (en) Fluorescent X-ray analyzer
US5430786A (en) Element analyzing method
JPS5862508A (en) Device and method of measuring thickness
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
JP5981545B2 (en) Radiation inspection method for objects
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
EP3064932B1 (en) Quantitative x-ray analysis
JP3331192B2 (en) X-ray fluorescence analysis method and apparatus
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
JP3569734B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
Urbański Principal component and partial least squares regressions in the calibration of nucleonic gauges
JPH0288952A (en) Method and device for analyzing tissue
JPH05107363A (en) Method for separating peak from fluorescent x-ray spectrum
JP4279983B2 (en) X-ray fluorescence analyzer
JP3377328B2 (en) X-ray fluorescence analysis method
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JP7497058B2 (en) X-ray fluorescence analyzer
JP2645226B2 (en) X-ray fluorescence analysis method
JP2872926B2 (en) X-ray fluorescence analysis method
JP3399861B2 (en) X-ray analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees