JPH04204362A - Quantitative measurement of element - Google Patents

Quantitative measurement of element

Info

Publication number
JPH04204362A
JPH04204362A JP33866590A JP33866590A JPH04204362A JP H04204362 A JPH04204362 A JP H04204362A JP 33866590 A JP33866590 A JP 33866590A JP 33866590 A JP33866590 A JP 33866590A JP H04204362 A JPH04204362 A JP H04204362A
Authority
JP
Japan
Prior art keywords
peak
concentration
value
measured
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33866590A
Other languages
Japanese (ja)
Inventor
Hirotomo Ochi
越智 寛友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33866590A priority Critical patent/JPH04204362A/en
Publication of JPH04204362A publication Critical patent/JPH04204362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a measured value without preliminary measurement by obtaining the wavelength of each element from the spectral peak height of the each element and, when there is an interfering element, subtracting the value obtained by multiplying the interfering element by a correction factor from the element subjected to the interference. CONSTITUTION:A sensitivity factor and a correction factor for each element, necessary in data processing, are first determined. The measuring points are then set at the positions, I, K, of wavelength centers of peaks D1, D2. At the respective measuring points, fluorescent X ray intensities BI, DK are measured. Temporary concentrations of elements a.b are thus obtained by fundamental parameter method (FP method), using BI, DK, so that a true concentration of the element 'a' is obtained. In the case when mutural interferences between the elements a.b are not ignorable, with the true concentration as a first approximate value, the value obtained by multiplying a correction factor for the element 'b' due to the element 'a' by the true concentration is subtracted from the concentration of the element 'b'. The resultant value is substituted in a predetermined formula, so that a second approximate value for the element 'a' is obtained. Similar successive approximate calculation is contitued.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蛍光X&を分析におけるファンダメンタルパラ
メータ法<FP法)による元素定量方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for quantifying elements using the fundamental parameter method (<FP method) in fluorescence X& analysis.

(従来の技術) 蛍光X線分析におけるFP法は標準試料として、被測定
試料と同種の試料でなく、定量しようとする元素を含ん
だ物質なら被測定試料とは全く別種の物質を用いること
ができる利点がある。FP法とは次のようなものである
。試料の元素組成から成分元素の蛍光X線強度を理論的
に計算することができるので、標準試料について、定量
しようとする元素の蛍光X&I強度工0を計算し、標準
試料のその元素の実測蛍光X線強度を1とす牟ると、I
o/Iは用いた蛍光X線分析装置のその元素についての
感度係数である。被測定試料ついて目的元素の蛍光X線
強度を測定し、その値に上記感度係数を掛けると、その
試料について目的元素の蛍光x4ilの理論強度が求ま
る。他方被測定試料において目的元素の定量値を仮定し
て蛍光X線強度の理論強度を計算して上記測定から求め
た理論強度と比較して、定量値を修正し、理論強度を再
計算し、実測理論強度と計算による理論強度が一致する
まで、同じ操作を繰り返す。これがFP法の概略である
(Prior art) In the FP method in fluorescent X-ray analysis, instead of using the same type of sample as the sample to be measured, it is possible to use a completely different type of substance from the sample to be measured as long as it contains the element to be quantified. There are advantages that can be achieved. The FP method is as follows. Since the fluorescent X-ray intensity of the component elements can be theoretically calculated from the elemental composition of the sample, the fluorescence Assuming that the X-ray intensity is 1, I
o/I is the sensitivity coefficient for the element of the X-ray fluorescence spectrometer used. By measuring the fluorescent X-ray intensity of the target element for a sample to be measured and multiplying that value by the above-mentioned sensitivity coefficient, the theoretical intensity of the fluorescence x4il of the target element for that sample is determined. On the other hand, assuming the quantitative value of the target element in the sample to be measured, calculate the theoretical intensity of the fluorescent X-ray intensity, compare it with the theoretical intensity obtained from the above measurement, correct the quantitative value, recalculate the theoretical intensity, The same operation is repeated until the measured theoretical strength and the calculated theoretical strength match. This is the outline of the FP method.

このような定量分析法において、蛍光X線スペクトル中
の定量しようとする一つの元素のピークと近接してピー
クを現す他の元素が試料中に共存していると、その元素
のピークの裾が定量しようとする元素のピークに重なっ
て、定量しようとする元素のピーク中心の高さが測定上
高くなり、FP法で求められるのは正味のピーク高であ
るからそのままでは実際より高い濃度と誤認してしまう
、このなめ近接ピークがある場合には補正を行う必要が
ある。
In such quantitative analysis methods, if other elements coexist in the sample that appear close to the peak of one element to be quantified in the fluorescent X-ray spectrum, the tail of the peak of that element may be distorted. The height of the center of the peak of the element to be quantified overlaps with the peak of the element to be quantified, and the height of the center of the peak of the element to be quantified becomes higher in the measurement, and since what is determined by the FP method is the net peak height, the concentration may be mistaken as being higher than the actual concentration. If there are peaks that are close to each other, it is necessary to perform correction.

蛍光X線分析において、蛍光X線スペクトルの全範囲を
走査して、スペクトルの全体像のデータを得る場合には
上述した補正は容易であるが、このような方法はスペク
トルの全範囲にわたって試料から放射される蛍光X線の
強度を測定するのて、測定を完了するのに長時間を要す
る。このため試料成分に応じてスペクトル上に適当に幾
つかの測定点を設定し、それらの点だけで試料から放射
される蛍光X線の強度を測定する方法が用いられる。こ
の方法はこれらの複数の測定点で゛の同時測定が可能で
測定所要時間は短縮されるが、スペクトル上の各成分元
素のピークプロファイルが不明なので、ピークの裾が重
なり合っている場合、重なりによる影響が直接的には分
からない。このため従来広のような補正方法が用いられ
ていた。
In fluorescent X-ray analysis, the above-mentioned correction is easy when scanning the entire range of the fluorescent X-ray spectrum to obtain data for the entire spectrum. Measuring the intensity of emitted fluorescent X-rays takes a long time to complete. For this reason, a method is used in which several measurement points are appropriately set on the spectrum depending on the sample components, and the intensity of fluorescent X-rays emitted from the sample is measured only at those points. This method enables simultaneous measurement of ゛ at these multiple measurement points and shortens the measurement time, but since the peak profile of each component element on the spectrum is unknown, if the tails of the peaks overlap, it may be due to overlap. The impact is not directly known. For this reason, conventional correction methods such as Hiro have been used.

定量分析に先だって定性分析により試料の成分構成が分
かつているので、各定量目的元素のピーク中心と、その
立上がり点とを測定点として設定する。試料のスペクト
ルを第3図のようであるとして、ピークP1を現してい
る元素を定量しようとする。二\でP2は他の元素すの
ピークでその裾がピークP1と重なっている。測定点と
してはピークP1の中心工と、立ち上がり点Hと、立ち
下がり点Jを設定しておく。直接測定されるのは図で高
さA)l、Bl、CJである。これらの測定値から、ピ
ークP1の真の高さを図でBPとして、これに前述した
感度係数を掛は定量しようとする元素aの濃度をFP法
で決定するのである。
Since the component composition of the sample is known by qualitative analysis prior to quantitative analysis, the peak center of each quantitative target element and its rising point are set as measurement points. Assuming that the spectrum of the sample is as shown in FIG. 3, an attempt is made to quantify the element exhibiting the peak P1. In 2\, P2 is the peak of another element, and its tail overlaps with peak P1. The center point of the peak P1, the rising point H, and the falling point J are set as measurement points. In the figure, heights A)l, Bl, and CJ are directly measured. From these measured values, the true height of peak P1 is designated as BP in the diagram, and by multiplying this by the sensitivity coefficient described above, the concentration of element a to be quantified is determined by the FP method.

この方法はピークP2の裾を直線CFAと仮定するもの
で、P2の裾の実際の形は点線で示すようなものである
から、BFをピークP1の真の高さとするときは、ピー
ク強度に間してFGだけの誤差を持ったものとなる。
This method assumes that the tail of peak P2 is a straight line CFA, and the actual shape of the tail of P2 is as shown by the dotted line, so when BF is the true height of peak P1, the peak intensity is After a while, it will have an error of only FG.

従来用いられていた他の方法は、第3図で定量しようと
する元素aのピークに重なる元素すの存在は定性分析等
により分かっているので、元素a−を含まず元素すを含
んでいる標準試料により元素すのピークプロファイルを
測定し、第3図の1点における元素すのピークP2の裾
部分の強度を元素すのピーク高さDKの関数として求め
ておく。
In other conventionally used methods, the presence of element S, which overlaps the peak of element a to be quantified in Figure 3, is known through qualitative analysis, etc., so the peak does not contain element a-, but contains element S. The peak profile of the element S is measured using a standard sample, and the intensity of the tail portion of the peak P2 of the element S at one point in FIG. 3 is determined as a function of the peak height DK of the element S.

この関数をα(DK)とし、分析しようとする試料につ
いて、I、に点でスペクトル強度を測定し、元素aの真
のピーク高さBGを、 BG=B I−α(DK)・DK によって求めるもので、この方法は正確であるが、予め
定量目的元素のピークに重なるピークを持つ元素につい
て上述したような測定を行っておく必要があって、特別
な標準試料が必要であり、標準試料の種類に拘束されな
いと云うFP法の利点が失われ、分析作業が繁雑となる
。  ″(発明が解決しよっとする課題) 本発明は上述したような面倒な予備測定なしに、しかも
正確に定量分析を行うことが可能なスペクトル分析によ
る元素定量法を提供しようとするものである。
Let this function be α(DK), measure the spectral intensity at point I for the sample to be analyzed, and calculate the true peak height BG of element a by BG=B I−α(DK)・DK Although this method is accurate, it is necessary to perform the above-mentioned measurement on elements with peaks that overlap with the peaks of the target element for quantification, and a special standard sample is required. The advantage of the FP method, which is that it is not restricted by the type of data, is lost, and the analysis work becomes complicated. ``(Problem to be solved by the invention) The present invention aims to provide an elemental determination method using spectral analysis that allows accurate quantitative analysis without the troublesome preliminary measurements as described above. .

(課題を解決するための手段) 定量しようとする元素aの蛍光X線ピークの中心におけ
るピーク高さと、裾の部分が上記元素εtのピーク中心
と重なるピークを表す元素すのピーク中心高さを測定し
、上記測定結果をそのま・用いてFP法により元素a、
bの仮の濃度X、Yを求め、元素すの上記定量値Yに係
数”7:を掛けて、元素aの真の定量値Wを w=x−ノ・Y・・・・・・・・・(1)として求める
ようにした。
(Means for solving the problem) Determine the peak height at the center of the fluorescent X-ray peak of element a to be quantified and the peak center height of element A whose tail portion overlaps with the peak center of element εt. element a, by the FP method using the above measurement results as is.
Find the provisional concentrations X and Y of element b, multiply the above quantitative value Y of element S by a coefficient of 7:, and calculate the true quantitative value W of element a as w = x - Y... ...I decided to find it as (1).

(作用) 前記(1)式にける係数″:、:は元素すの蛍光X線ス
ペクトルピークの裾の元素aのスペクトルと−ク中心に
おける強度と元素すのスペクトルピーク中心の強度との
比であって、元素相互間め特性として予め測定され、そ
のデータは既知資料として蓄積されている(例えば、J
IS  G1256)から、それらのデータからノを求
めて用り)ることができる。従って被測定試料について
各元素のピークプロファイルを実測する必要がなく、波
長走査を行わないで、他元素の影響を補正した定量がで
きることになる。
(Function) The coefficient ":, : in the above formula (1) is the ratio of the intensity at the center of the spectrum of element a at the tail of the fluorescence X-ray spectrum peak of element A to the intensity at the center of the spectrum peak of element A. Therefore, the characteristics between the elements have been measured in advance, and the data has been accumulated as known data (for example, J
IS G1256), it is possible to determine and use the data from these data. Therefore, it is not necessary to actually measure the peak profile of each element in the sample to be measured, and quantification can be performed while correcting the influence of other elements without performing wavelength scanning.

(実施例) 第1図および第2図を用いて本発明の一実施例を説明す
る。第1図は蛍光X線スペクトルを示し、ピークP1は
元素aのピーク、P2.P3は元素すのピークである。
(Example) An example of the present invention will be described using FIGS. 1 and 2. FIG. 1 shows a fluorescent X-ray spectrum, where peak P1 is the peak of element a, P2. P3 is the peak of element S.

元素aに対してbが妨害元素であるが、定量目的元素は
aだけでもa、b両方ともであってもよい。元素aにつ
いては測定波長範囲でピークがPILかないので、定量
にはピークP1の高さを測るしかないが、元素すについ
ては、P2.P3の二つのピークが測定波長範囲内にあ
るので、定量に当たってはどちらのピークを用いてもよ
い。
Although element b is an interfering element with respect to element a, the target element for quantification may be only a or both a and b. For element a, there is no PIL peak in the measurement wavelength range, so the only way to quantify it is to measure the height of peak P1, but for element A, PIL does not have a peak in the measurement wavelength range. Since the two peaks of P3 are within the measurement wavelength range, either peak may be used for quantitative determination.

ピークP2の中心位置でピークP1の裾の部分の重なり
が無視できないときはピークP3を用いて定量を行えば
よく、そのときは元素aの定量におけるP2の裾の部分
の影響の補正はP3の測定値を用いて行うことができる
If the overlap of the tail portion of peak P1 at the center position of peak P2 cannot be ignored, it is sufficient to perform quantification using peak P3. In that case, the influence of the tail portion of P2 on the quantification of element a can be corrected by This can be done using measured values.

埜ずピークPL、P2を用いて元素a、bの定量を行う
場合について説明する。第2図はこの場合の測定動作の
フローチャートである。まずデータ処理に必要な各元素
についての感度係数および補正係数′::を設定(イ)
し、測定点を第1図のピークPL、P2の中心波長値I
I、Kに設定(ロ)し、夫々の測定点での蛍光X線強度
B1.DKを測定(ハ)し、Bl、DKを用いFP法に
よって元素a−bの仮の濃度を求め(ニ)、元素aの真
の濃度Wを W = X a−尤Y・・・・・・・(2)で決定(ホ
)し、元素すについては上idYを真濃度として定量結
果を表示(へ)して分析動作を終わる。二1では元素す
については元素aの妨害作用は無視できるものとして扱
っている。元素a。
A case will be described in which the elements a and b are quantified using the Nozu peaks PL and P2. FIG. 2 is a flowchart of the measurement operation in this case. First, set the sensitivity coefficient and correction coefficient ′:: for each element necessary for data processing (a)
Then, the measurement points are set at the peak PL in Fig. 1, and the center wavelength value I of P2.
I, K (b), and the fluorescent X-ray intensity B1 at each measurement point. Measure DK (c), find the tentative concentration of elements a-b by the FP method using Bl and DK (d), and find the true concentration W of element a as W = X a-Y... . . . (2) is determined (e), and for the element, the upper idY is used as the true concentration and the quantitative result is displayed (go) to end the analysis operation. In 21, regarding element A, the interfering effect of element a is treated as negligible. Element a.

b相互に妨害作用が無視できないとき(ま、上記(ホ)
までのステップで、Wを第1近似として元素aの元素す
への補正係数y′により、元素すの濃度を Y′=Y−ズ′W で求め、このY′を前言己(3)式のYの所に入れて元
素aの第2近似値を求め、以下同様の逐次近似計算を行
えばよいが、今の例の場合は元素すについては他元素の
妨害作用を受けていないピークP3があるので、P2の
代わりにP3の中心位置を測定点に選べば、上述したよ
うな逐次近似計算の必要なしに元素a、bの濃度を決定
することができる。この場合測定点として、第1図の1
.L点を選び元素すについてはL点の測定値によって検
量線を作っておく。L点の測定値ELから検量線によっ
て元素すの濃度Yが求まる。このYを前記(2)式に入
れて元素aの濃度を求める。この場合の補正係数′″′
:は云うまでもなく、ピークP3による補正係数である
b When mutual interference cannot be ignored (well, above (e))
In the steps up to, using W as a first approximation, and using the correction coefficient y' for element a of element a, the concentration of element a is determined as Y'=Y-Z'W, and this Y' is calculated using equation (3) You can calculate the second approximation value of element a by inserting it in place of Y in Therefore, if the center position of P3 is selected as the measurement point instead of P2, the concentrations of elements a and b can be determined without the need for successive approximation calculations as described above. In this case, the measurement point is 1 in Figure 1.
.. Select the L point and create a calibration curve for each element using the measured values at the L point. The concentration Y of the element is determined from the measured value EL at point L using a calibration curve. Inserting this Y into the equation (2) above, the concentration of element a is determined. Correction coefficient′″′ in this case
: is, needless to say, a correction coefficient based on the peak P3.

(発明の効果) 本発明はスペクトルの測定値を元素の濃度値に変換した
後、妨害元素についての補正演算を行うことにより、予
備的測定なしに、公知データを利用して補正を行うこと
が可能となり蛍光X&1分析作業が簡単化される。
(Effects of the Invention) The present invention converts the measured value of the spectrum into the concentration value of the element and then performs a correction calculation for the interfering element, thereby making it possible to perform correction using known data without preliminary measurements. This makes it possible to simplify the fluorescence X&1 analysis work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の説明図、第2図は本発明方法の一
実施例のフローチャート、第3図は従来例の説明図であ
る。 代理人 弁理士  縣  浩 介
FIG. 1 is an explanatory diagram of the method of the present invention, FIG. 2 is a flowchart of an embodiment of the method of the present invention, and FIG. 3 is an explanatory diagram of a conventional example. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims]  蛍光X線分析法において、その蛍光X線スペクトル上
の各元素のスペクトルピーク中心を測定点として、各ピ
ークの高さを測定し、各ピークの高さからFP法によっ
て各元素の濃度を求め、或る元素についてそのスペクト
ルに重なるピークを現す妨害元素があるとき、上記によ
つて求められた妨害を受ける元素の濃度を仮の濃度とし
て、妨害する元素の濃度に補正係数を掛けた値をその仮
濃度から引算して妨害を受ける元素の真濃度とすること
を特徴とする元素定量法。
In the fluorescent X-ray analysis method, the height of each peak is measured using the spectral peak center of each element on the fluorescent X-ray spectrum as the measurement point, and the concentration of each element is determined from the height of each peak by the FP method, When there is an interfering element that exhibits a peak that overlaps with the spectrum of a certain element, the concentration of the interfering element obtained above is used as the provisional concentration, and the value obtained by multiplying the concentration of the interfering element by the correction coefficient is calculated as the concentration of the interfering element. An elemental determination method characterized by subtracting from the provisional concentration to obtain the true concentration of the element that is being interfered with.
JP33866590A 1990-11-30 1990-11-30 Quantitative measurement of element Pending JPH04204362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33866590A JPH04204362A (en) 1990-11-30 1990-11-30 Quantitative measurement of element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33866590A JPH04204362A (en) 1990-11-30 1990-11-30 Quantitative measurement of element

Publications (1)

Publication Number Publication Date
JPH04204362A true JPH04204362A (en) 1992-07-24

Family

ID=18320310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33866590A Pending JPH04204362A (en) 1990-11-30 1990-11-30 Quantitative measurement of element

Country Status (1)

Country Link
JP (1) JPH04204362A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123071A (en) * 1996-08-27 1998-05-15 Rigaku Ind Co Method and equipment for x ray analysis
JPH1194775A (en) * 1997-09-12 1999-04-09 Shimadzu Corp Fluoresent x-ray analyzing method
JP2000002671A (en) * 1998-06-17 2000-01-07 Nittetsu Mining Co Ltd Quantitative determination method for quartz
JP2001050918A (en) * 1999-08-09 2001-02-23 Rigaku Industrial Co Method and apparatus for x-ray fluorescence analysis
JP2001249089A (en) * 2000-03-06 2001-09-14 Rigaku Industrial Co Method and apparatus for fluorescence x-ray analysis
JP2018151179A (en) * 2017-03-10 2018-09-27 日本電子株式会社 Analyzing apparatus and analyzing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123071A (en) * 1996-08-27 1998-05-15 Rigaku Ind Co Method and equipment for x ray analysis
JPH1194775A (en) * 1997-09-12 1999-04-09 Shimadzu Corp Fluoresent x-ray analyzing method
JP2000002671A (en) * 1998-06-17 2000-01-07 Nittetsu Mining Co Ltd Quantitative determination method for quartz
JP2001050918A (en) * 1999-08-09 2001-02-23 Rigaku Industrial Co Method and apparatus for x-ray fluorescence analysis
JP2001249089A (en) * 2000-03-06 2001-09-14 Rigaku Industrial Co Method and apparatus for fluorescence x-ray analysis
JP2018151179A (en) * 2017-03-10 2018-09-27 日本電子株式会社 Analyzing apparatus and analyzing method

Similar Documents

Publication Publication Date Title
US11210366B2 (en) Analysis of X-ray spectra using fitting
US10161889B2 (en) X-ray fluorescence spectrometer
CN101750401A (en) Method for automatically correcting laser induced plasma emission spectrum continuous background interference
US7847934B2 (en) Method for correcting spectral interference in ICP emission spectroscopy (OES)
JPH04204362A (en) Quantitative measurement of element
CN102103079B (en) Spectrum analysis method
US8119415B2 (en) X-ray fluorescence method for a composition analysis of a sample containing at least two elements
JP5874108B2 (en) X-ray fluorescence analyzer
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP3569734B2 (en) X-ray fluorescence analyzer
JP3249253B2 (en) Quantitative calculation method using spectrum and apparatus therefor
JPH07128260A (en) Fluorescent x-ray analyzing device
JP3141803B2 (en) Method for calculating spectral line intensity of fluorescent X-ray
JPH07113770A (en) Fluorescent x-ray analyzing method
JPH0484743A (en) Quantitative analysis method by x-ray spectroscopy
JP4279983B2 (en) X-ray fluorescence analyzer
JPH0743323A (en) Background correcting method in x-ray spectral analysis
JP3488918B2 (en) X-ray fluorescence analyzer
JPH03172743A (en) Peak searching method in spectrochemical analysis apparatus
JPH0798287A (en) Deriving method for correlation expression between intensity of fluorescent x-ray and content of element
JPH08145891A (en) Emission spectrophotometer
JPH03285153A (en) Quantitative analyser with x-rays
JP3312002B2 (en) X-ray fluorescence analyzer
JPS63236951A (en) Automatic qualitative analysis instrument