JP3488918B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer

Info

Publication number
JP3488918B2
JP3488918B2 JP32800497A JP32800497A JP3488918B2 JP 3488918 B2 JP3488918 B2 JP 3488918B2 JP 32800497 A JP32800497 A JP 32800497A JP 32800497 A JP32800497 A JP 32800497A JP 3488918 B2 JP3488918 B2 JP 3488918B2
Authority
JP
Japan
Prior art keywords
sample
fluorescent
intensity
spectrum
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32800497A
Other languages
Japanese (ja)
Other versions
JPH11160255A (en
Inventor
紀生 川田
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP32800497A priority Critical patent/JP3488918B2/en
Publication of JPH11160255A publication Critical patent/JPH11160255A/en
Application granted granted Critical
Publication of JP3488918B2 publication Critical patent/JP3488918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、試料に1次X線を
照射して発生した蛍光X線の強度分布を測定する蛍光X
線分析において、理論予測に適合する分析ができる蛍光
X線分析装置に関するものである。
TECHNICAL FIELD The present invention relates to fluorescent X-rays for measuring the intensity distribution of fluorescent X-rays generated by irradiating a sample with primary X-rays.
The present invention relates to a fluorescent X-ray analyzer capable of performing an analysis suitable for theoretical prediction in a line analysis.

【0002】[0002]

【従来の技術】蛍光X線分析の一種である全反射蛍光X
線分析では、1次X線を試料の表面に例えば0.08度
程度の微小な入射角で入射させ、全反射したX線を試料
の直上に位置するSSD等の検出器に入射させないよう
に逃がしつつ、試料から発生した蛍光X線を検出器に入
射させている。そして、エネルギーについての蛍光X線
の強度分布をデータとして得て、そのデータを、スムー
ジング、バックグラウンド作成、ピークサーチ、ピーク
元素同定、ペアピーク追加、カーブフィッティングとい
った手順で処理して、最終的に試料中の各元素から発生
した主たるスペクトル(各元素を代表するスペクトル)
の強度を算出し、各元素の濃度等について分析してい
る。このデータ処理において、例えばいわゆるガウス・
ニュートン法では、試料中の各元素から発生すべき蛍光
X線の各スペクトルをガウス関数で近似し、各スペクト
ルの強度は、同一元素から発生するものも含めて特に関
連がないもの(独立して変化しうるもの)としている。
2. Description of the Related Art Total reflection fluorescence X, which is a type of X-ray fluorescence analysis
In the line analysis, the primary X-ray is made incident on the surface of the sample at a small incident angle of, for example, about 0.08 degrees, and the totally reflected X-ray is prevented from being incident on the detector such as SSD located directly above the sample. While escaping, the fluorescent X-ray generated from the sample is made incident on the detector. Then, the intensity distribution of the fluorescent X-ray with respect to energy is obtained as data, and the data is processed by procedures such as smoothing, background creation, peak search, peak element identification, pair peak addition, and curve fitting, and finally the sample is processed. Main spectrum generated from each element inside (spectrum representing each element)
Is calculated and the concentration of each element is analyzed. In this data processing, for example, so-called Gauss
In Newton's method, each spectrum of fluorescent X-rays that should be generated from each element in a sample is approximated by a Gaussian function, and the intensity of each spectrum is not particularly related, including that generated from the same element (independently Things that can change).

【0003】[0003]

【発明が解決しようとする課題】このような分析による
と、例えば、Cr−Kβ線とMn−Kα線とのエネルギ
ー値が近接してスペクトルが重なることが原因となっ
て、Cr−Kα線の強度が0.08cpsであるのに対
しCr−Kβ線の強度が0.06cpsとなるような分
析結果が得られることがある。この場合、両者の強度比
は1:0.75となる。一方、全反射蛍光X線分析にお
いては、シリコンウエハ等の基板の表面に微量の汚染物
質等が付着したものが試料であるから、試料内部で発生
した蛍光X線の多重励起の効果はないものと考えられ
る。そうすると、試料中の同一元素から発生する蛍光X
線の各スペクトル間の強度比は、各元素が単独で存在す
る場合の理論強度比に一致するはずである。しかし、前
記分析結果におけるCr−Kα線とCr−Kβ線との強
度比1:0.75は、理論強度比からかけ離れたもので
あり、したがって分析結果全体も理論的にあり得ないも
ので、正確な分析がなされたとはいえない。
According to such an analysis, for example, due to the energy values of the Cr-Kβ ray and the Mn-Kα ray being close to each other and the spectra being overlapped with each other, the Cr-Kα ray of An analysis result may be obtained in which the intensity of Cr-Kβ rays is 0.06 cps while the intensity is 0.08 cps. In this case, the intensity ratio between the two is 1: 0.75. On the other hand, in the total reflection X-ray fluorescence analysis, since the sample has a trace amount of contaminants attached to the surface of a substrate such as a silicon wafer, there is no effect of multiple excitation of the fluorescent X-ray generated inside the sample. it is conceivable that. Then, fluorescence X generated from the same element in the sample
The intensity ratio between each spectrum of the line should match the theoretical intensity ratio when each element is present alone. However, the intensity ratio of Cr-Kα rays to Cr-Kβ rays of 1: 0.75 in the above analysis results is far from the theoretical intensity ratio, and therefore the entire analysis results are theoretically impossible. It cannot be said that an accurate analysis was done.

【0004】本発明は前記従来の問題に鑑みてなされた
もので、試料に1次X線を照射して発生した蛍光X線の
強度分布を測定する蛍光X線分析において、理論予測に
適合する分析ができる蛍光X線分析装置を提供すること
を目的とする。
The present invention has been made in view of the above conventional problems, and is suitable for theoretical prediction in fluorescent X-ray analysis for measuring the intensity distribution of fluorescent X-rays generated by irradiating a sample with primary X-rays. It is an object to provide a fluorescent X-ray analyzer capable of analysis.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析装置は、試料に1次X線を
照射して、試料から発生した蛍光X線の強度分布を検出
手段により測定する蛍光X線分析装置において、以下の
演算手段を備えたことを特徴とする。演算手段は、試料
中の各元素から発生すべき蛍光X線の各スペクトルを所
定の関数で近似し、同一元素から発生する主たるスペク
トルと他のスペクトルとの強度比がそれらの理論強度比
に一致するとの前提で、試料中の各元素から発生すべき
蛍光X線の強度分布の総和が、前記検出手段で測定した
蛍光X線の強度分布に合致するように、試料中の各元素
から発生した主たるスペクトルのピーク強度を算出す
る。
In order to achieve the above object, an X-ray fluorescence analyzer according to claim 1 irradiates a sample with primary X-rays to obtain an intensity distribution of fluorescent X-rays generated from the sample. The fluorescent X-ray analyzer for measuring by the detecting means is characterized by including the following calculating means. The calculation means approximates each spectrum of the fluorescent X-rays to be generated from each element in the sample by a predetermined function, and the intensity ratio between the main spectrum generated from the same element and another spectrum matches their theoretical intensity ratio. Under the assumption, the total intensity distribution of the fluorescent X-rays to be generated from each element in the sample is generated from each element in the sample so that the total intensity distribution of the fluorescent X-rays matches the intensity distribution of the fluorescent X-ray measured by the detecting means. Calculate the peak intensity of the main spectrum.

【0006】請求項1の装置によれば、演算手段によ
り、試料中の同一元素から発生する主たるスペクトルと
他のスペクトルとの強度比がそれらの理論強度比に一致
するとの前提で、検出手段で測定した蛍光X線の強度分
布を各スペクトルに分解するので、理論予測に適合する
分析ができる。
According to the first aspect of the invention, the detecting means is provided on the premise that the intensity ratio between the main spectrum generated from the same element in the sample and the other spectrum matches the theoretical intensity ratio by the calculating means. Since the intensity distribution of the measured fluorescent X-rays is decomposed into each spectrum, an analysis suitable for theoretical prediction can be performed.

【0007】請求項2の装置は、請求項1の装置におい
て、前記所定の関数をガウス関数としたものである。請
求項2の装置によれば、特に全反射蛍光X線分析におい
て、試料中の各元素から発生すべき蛍光X線の各スペク
トルを、より適切に近似できる。
The apparatus of claim 2 is the apparatus of claim 1, wherein the predetermined function is a Gaussian function. According to the apparatus of claim 2, particularly in total reflection fluorescent X-ray analysis, each spectrum of fluorescent X-rays to be generated from each element in the sample can be approximated more appropriately.

【0008】請求項3の装置は、請求項1または2の装
置において、前記演算手段が、試料中の各元素から発生
した主たるスペクトルのピーク強度を算出するための連
立方程式を解くにあたり、その連立方程式中に現れる、
試料中の各元素から発生すべき蛍光X線の強度分布の形
状を示す関数同士の積の積分を解析的に計算してその
値を用いる。請求項3の装置によれば、演算手段におけ
る計算量が減少するので、短時間に分析ができる。
[0008] The apparatus of claim 3, The apparatus of claim 1 or 2, communication of said computing means, for calculating the peak intensity of the principal spectral generated from each of the elements in the sample
When solving a system of equations, it appears in the simultaneous equations,
The integral of the product of functions between showing the shape of the intensity distribution of the fluorescent X-ray to be generated from each of the elements in the sample, analytically calculated using the values. According to the apparatus of claim 3, the amount of calculation in the calculation means is reduced, so that analysis can be performed in a short time.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態の装置
を、全反射蛍光X線分析装置である場合を例にとって説
明する。まず、図1に示すように、この装置は、いわゆ
る全反射蛍光X線分析装置であり、試料台8に固定され
た試料4に、例えば0.08度程度の微小な入射角θで
X線源1から1次X線5を照射し、全反射したX線9を
試料4の直上に位置するSSD等の検出器(検出手段)
6に入射させないように逃がしつつ、試料4から発生し
た蛍光X線7を検出器6で検出し、エネルギーについて
の蛍光X線の強度分布をデータとして得る。ここで、試
料4は、平滑な表面を有する基板2、例えばシリコンウ
エハと、その表面に付着した点状の被測定物3、例えば
点滴痕とからなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an apparatus according to an embodiment of the present invention will be described by taking a case of a total reflection X-ray fluorescence analyzer as an example. First, as shown in FIG. 1, this device is a so-called total reflection X-ray fluorescence analyzer, which is used for a sample 4 fixed to a sample stage 8 at an incident angle θ of about 0.08 degrees. A detector (detection means) such as SSD that is irradiated with the primary X-ray 5 from the source 1 and totally reflects the X-ray 9 directly above the sample 4.
The fluorescent X-rays 7 generated from the sample 4 are detected by the detector 6 while escaping so as not to be incident on the detector 6, and the intensity distribution of the fluorescent X-rays with respect to energy is obtained as data. Here, the sample 4 is composed of a substrate 2 having a smooth surface, for example, a silicon wafer, and a point-like DUT 3 attached to the surface, for example, a drip mark.

【0010】この装置は、以下の演算手段11を備えた
ことを特徴とする。演算手段11は、試料4中の各元素
から発生すべき蛍光X線の各スペクトルをガウス関数で
近似し、同一元素から発生する主たるスペクトル(その
元素を代表するスペクトル)と他のスペクトルとの強度
比がそれらの理論強度比に一致するとの前提で、試料4
中の各元素から発生すべき蛍光X線の強度分布の総和
(試料4に含まれるべき全元素についての総和)が、検
出器6で測定した蛍光X線7の強度分布に合致するよう
に、試料4中の各元素から発生した主たるスペクトルの
ピーク強度を算出し、これを用いて同スペクトルの強度
(積分強度)を算出する。ここで、演算手段11は、試
料4中の各元素から発生した主たるスペクトルのピーク
強度を算出するにあたり、試料4中の各元素から発生す
べき蛍光X線の強度分布の形状を示す関数同士の積の積
分を解析的に計算してその値を用いる。
This apparatus is characterized by including the following computing means 11. The calculating means 11 approximates each spectrum of the fluorescent X-rays to be generated from each element in the sample 4 with a Gaussian function, and intensifies the main spectrum generated from the same element (the spectrum representing the element) and another spectrum. Assuming that the ratio matches their theoretical intensity ratio, sample 4
So that the sum of the intensity distributions of the fluorescent X-rays to be generated from the respective elements (the sum of all the elements to be included in the sample 4) matches the intensity distribution of the fluorescent X-rays 7 measured by the detector 6. The peak intensity of the main spectrum generated from each element in sample 4 is calculated, and this is used to calculate the intensity (integrated intensity) of the same spectrum. Here, in calculating the peak intensity of the main spectrum generated from each element in the sample 4, the calculating means 11 calculates the intensity of the fluorescent X-ray intensity distribution from each element in the sample 4 among the functions indicating the shape. Calculate the integral of the product analytically and use that value.

【0011】なお、本明細書においては、エネルギー方
向(波長方向等の場合もある)に広がりをもつスペクト
ルについて、単に強度というときはいわゆる積分強度を
意味し、ピーク強度というときはスペクトルの最高点
(通常はスペクトルのエネルギー方向の中心)の強度
(高さ)を意味する。また、蛍光X線の強度分布という
ときは、各エネルギー値ごとの各スペクトルの強度(高
さ)の総和の、エネルギー方向についての分布を意味す
る。蛍光X線の強度分布は、元素ごとにも考えられる
し、さらにその総和として試料全体についても考えられ
る。
In the present specification, with respect to a spectrum having a spread in the energy direction (which may be in the wavelength direction, etc.), simply the intensity means so-called integrated intensity, and the peak intensity means the highest point of the spectrum. It means the intensity (height) of (usually the center of the spectrum in the energy direction). Further, the term “intensity distribution of fluorescent X-rays” means the distribution in the energy direction of the total sum of the intensities (heights) of each spectrum for each energy value. The intensity distribution of fluorescent X-rays can be considered for each element, and also for the entire sample as a sum of them.

【0012】次に、この装置の動作について説明する。
まず、試料台8に試料4を固定し、X線源1から微小な
入射角θで1次X線5を照射させ、試料4から発生した
2次X線7を検出器6に検出させると、エネルギーにつ
いての2次X線7の強度分布がデータとして得られる。
そして、このデータを、演算手段11が、以下のように
処理する。
Next, the operation of this device will be described.
First, when the sample 4 is fixed to the sample table 8 and the primary X-ray 5 is emitted from the X-ray source 1 at a small incident angle θ, the secondary X-ray 7 generated from the sample 4 is detected by the detector 6. , The intensity distribution of the secondary X-ray 7 with respect to energy is obtained as data.
Then, the arithmetic means 11 processes this data as follows.

【0013】まず、この検出器6から得られた2次X線
7の強度分布には、いわゆるバックグラウンドによる分
b(ch)も含まれているので、その分を差し引いて蛍光
X線7の強度分布y(ch)を算出する。ここで、chは、
例えば10eVごとのエネルギー値で、xでも表す。そ
して、次のようにして、試料4中に存在する元素を推定
する。すなわち、次式(1)、(2)により、各元素に
ついて、y(ch)、b(ch)を、それぞれ各スペクトル
(各元素のKα線、Lα線等)の中心ctr 近傍で、その
エネルギーでの検出器6の分解能σを用いて±2σの範
囲で、積算したもの net,bkg を算出し、これらにつき
式(3)が成立するとき、その元素が試料4中に存在す
るものとする。なお、式(3)において、kは3程度の
定数とする。ただし、試料4中に存在する元素の推定
は、この手法に限らず、従来のいわゆるピークサーチを
用いてもよいし、作業者が手入力してもよい。
First, since the intensity distribution of the secondary X-rays 7 obtained from the detector 6 includes a so-called background component b (ch), the intensity distribution of the fluorescent X-rays 7 is subtracted. The intensity distribution y (ch) is calculated. Where ch is
For example, it is an energy value for each 10 eV and is also represented by x. Then, the elements present in the sample 4 are estimated as follows. That is, y (ch) and b (ch) of each element are calculated by the following equations (1) and (2) in the vicinity of the center ctr of each spectrum (Kα line, Lα line of each element, etc.), respectively. The integrated net, bkg is calculated within the range of ± 2σ using the resolution σ of the detector 6 in 1. and the element is present in the sample 4 when the formula (3) is satisfied. . In the equation (3), k is a constant of about 3. However, the estimation of the elements existing in the sample 4 is not limited to this method, and a conventional so-called peak search may be used, or an operator may manually input.

【0014】[0014]

【数1】 [Equation 1]

【0015】[0015]

【数2】 [Equation 2]

【0016】[0016]

【数3】 [Equation 3]

【0017】次に、演算手段11は、存在すると推定さ
れたある元素mから発生すべき蛍光X線の強度分布の形
状F(m) (ch)を、次式(4)で表現する。なお、式
(4)において、ri (m) は、元素mから発生すべき蛍
光X線のi番目のスペクトルの相対感度係数であり、主
たるスペクトル(その元素mを代表するスペクトル)に
おいて1とする。また、 ctri (m) は、そのi番目のス
ペクトルの中心のエネルギーである。さらに、 hi (m)
は、そのi番目のスペクトルのエネルギー位置での半値
半幅(HWHM)であり、分析装置の検出器6ごとに、あら
かじめ求められる。
Next, the calculating means 11 expresses the shape F (m) (ch) of the intensity distribution of the fluorescent X-ray to be generated from the certain element m, which is estimated to exist, by the following equation (4). In the formula (4), r i (m) is a relative sensitivity coefficient of the i-th spectrum of the fluorescent X-ray to be generated from the element m, and is 1 in the main spectrum (the spectrum that represents the element m). To do. Also, ctr i (m) is the energy at the center of the i-th spectrum. Furthermore, h i (m)
Is the full width at half maximum (HWHM) at the energy position of the i-th spectrum, which is obtained in advance for each detector 6 of the analyzer.

【0018】[0018]

【数4】 [Equation 4]

【0019】ここで、式(4)のΣの中の形から明らか
なように、元素mから発生すべき蛍光X線の各スペクト
ルの形状を、ガウス関数で近似している。かかる近似に
よれば、特に、バックグウラウンドから突出した形で各
スペクトルの形状が純粋に表れやすい全反射蛍光X線分
析において、各スペクトルを適切に近似でき、さらに、
後述するように、演算手段11による計算の一部を解析
的に計算して計算量を減少させることが容易になる。ま
た、同一元素mから発生する主たるスペクトルと他のス
ペクトルとの強度比が、各元素が単独で存在する場合の
理論強度比に一致するように、ri (m) を定める。かか
る前提でri (m) を定めて、検出器6で測定した蛍光X
線7の強度分布y(ch)を各スペクトルに分解すれば、
理論予測に適合する分析結果が得られる。なお、かかる
前提でri (m) を定めれば、後に算出すべき未知数の数
が存在が推定される元素の数になり、スペクトルの数だ
け未知数がある従来のガウス・ニュートン法(各スペク
トルの強度がすべて独立に変化しうるものとする)より
も減少し、計算量が減少するという効果もある。
Here, as is clear from the shape of Σ in equation (4), the shape of each spectrum of the fluorescent X-rays to be generated from the element m is approximated by the Gaussian function. According to such an approximation, particularly in the total reflection X-ray fluorescence analysis in which the shape of each spectrum is likely to appear purely in a form protruding from the background, each spectrum can be appropriately approximated, and further,
As will be described later, it becomes easy to reduce a calculation amount by analytically calculating a part of the calculation by the calculation means 11. In addition, r i (m) is determined so that the intensity ratio between the main spectrum generated from the same element m and another spectrum matches the theoretical intensity ratio when each element exists alone. Fluorescence X measured by the detector 6 by determining r i (m) based on this assumption
Decomposing the intensity distribution y (ch) of line 7 into each spectrum,
Analysis results that match the theoretical predictions are obtained. If r i (m) is determined based on such a premise, the number of unknowns to be calculated later becomes the number of elements whose existence is estimated, and the conventional Gauss-Newton method (for each spectrum The intensity of each of them can be changed independently) and the amount of calculation is also reduced.

【0020】そして、試料4中の各元素から発生すべき
蛍光X線7の強度分布の総和(試料4中に存在が推定さ
れた全元素についての総和)が、前記検出器6で測定し
た蛍光X線7の強度分布y(ch)に合致するように、試
料4中の各元素mから発生した主たるスペクトルのピー
ク強度Cm を算出する。すなわち、次式(5)における
m を算出する。
Then, the sum of the intensity distributions of the fluorescent X-rays 7 to be generated from each element in the sample 4 (sum of all the elements estimated to be present in the sample 4) is measured by the detector 6. The peak intensity C m of the main spectrum generated from each element m in the sample 4 is calculated so as to match the intensity distribution y (ch) of the X-ray 7. That is, C m in the following equation (5) is calculated.

【0021】[0021]

【数5】 [Equation 5]

【0022】具体的には、以下のようにCm を算出す
る。まず、区間(ch1, ch2)の範囲で、式(5)の左辺
すなわち測定された強度分布y(ch)と、右辺すなわち
推定された強度分布との差の二乗を、残差E{Cm }と
して、次式(6)のように定義する。
Specifically, C m is calculated as follows. First, in the range of the interval (ch1, ch2), the square of the difference between the left side of Expression (5), that is, the measured intensity distribution y (ch) and the right side, that is, the estimated intensity distribution, is calculated as the residual E {C m } Is defined as the following expression (6).

【0023】[0023]

【数6】 [Equation 6]

【0024】この残差E{Cm }を最小にすべく、すべ
てのmについて成立するように次式(7)で表される連
立方程式を解く。
In order to minimize the residual E {C m }, the simultaneous equations represented by the following equation (7) are solved so that all m are satisfied.

【0025】[0025]

【数7】 [Equation 7]

【0026】ここで、式(6)を用いて、式(7)の左
辺を展開すると、式(8)が得られる。
When the left side of the equation (7) is expanded using the equation (6), the equation (8) is obtained.

【0027】[0027]

【数8】 [Equation 8]

【0028】この式(8)の右辺の第1項(これを簡単
のために−<yF(m) > と表すことにする)は数値的
に計算する必要があるが、第2項における、試料4中の
各元素m,nから発生すべき蛍光X線7の強度分布の形
状を示す関数F(m) ,F(n)同士の積の積分(これを簡
単のために<F(m) (n) > と表すことにする)は、
積分区間(ch1, ch2)が、個々のピークが有効に存在す
る範囲に比べて十分に広いと考えられるため、その区間
を(−∞, +∞)に変更しても、積分結果に影響を与え
ないと考えられ、その結果、次式(9)のように解析的
に計算できる。すなわち、式(9)の最下の式は、xす
なわちchを含んでおらず、この計算は、chごとに行う必
要がない。
The first term on the right side of the equation (8) (which will be expressed as − <yF (m) > for simplicity) needs to be calculated numerically, but in the second term, The integral of the product of the functions F (m) and F (n) showing the shape of the intensity distribution of the fluorescent X-ray 7 to be generated from each element m and n in the sample 4 (for simplicity, <F (m ) F (n) >)
The integration interval (ch1, ch2) is considered to be sufficiently wider than the range in which the individual peaks effectively exist, so changing the interval to (-∞, + ∞) does not affect the integration result. It is considered not to be given, and as a result, it can be calculated analytically as in the following equation (9). That is, the lowermost expression of Expression (9) does not include x, that is, ch, and this calculation need not be performed for each ch.

【0029】[0029]

【数9】 [Equation 9]

【0030】結局、式(7)を解くことは、すべてのm
について成立するように次式(10)で表される連立方
程式を解くことになる。
In the end, solving equation (7) requires all m
The simultaneous equations expressed by the following equation (10) are solved so that

【0031】[0031]

【数10】 [Equation 10]

【0032】式(10)は、存在が推定された元素の数
だけのCn を未知数とし、式の数も同じ数だけある連立
一次方程式であるから解くことができ、しかも、各Cn
の係数である<F(m) (n) >は、式(9)に示したよ
うに解析的に計算でき、演算手段11における計算量が
減少するので、短時間に分析ができる。このように算出
した試料4中の各元素から発生した主たるスペクトルの
ピーク強度Cn (Cmでもある)を用いて、同スペクト
ルの強度(積分強度)を算出し、検量線を適用すること
等により各元素の濃度等に換算する。
Equation (10) is a simultaneous linear equation in which C n is the unknown number of elements whose existence is estimated and the number of equations is the same, and can be solved, and each C n can be solved.
<F (m) F (n) > which is the coefficient of can be analytically calculated as shown in the equation (9), and the calculation amount in the calculation means 11 is reduced, so that the analysis can be performed in a short time. By using the peak intensity C n (also C m ) of the main spectrum generated from each element in the sample 4 thus calculated, the intensity (integrated intensity) of the same spectrum is calculated, and the calibration curve is applied, etc. Convert to the concentration of each element by.

【0033】本実施形態の装置によれば、前述したよう
に、演算手段11において、同一元素mから発生する主
たるスペクトルと他のスペクトルとの強度比が、各元素
が単独で存在する場合の理論強度比に一致するように、
式(4)のri (m) を定める。かかる前提でri (m)
定めて、検出器6で測定した蛍光X線7の強度分布y
(ch)を各スペクトルに分解するので、理論予測に適合
する分析結果が得られる。例えば、前述した従来の技術
による分析結果と対比するためにCr−Kα線とCr−
Kβ線についてみると、Cr−Kα線の強度が0.20
cpsであるのに対しCr−Kβ線の強度が0.03c
psとなるような分析結果が得られている。この場合、
両者の強度比は1:0.15となるが、この強度比は、
クロムが単独で存在する場合の理論強度比に適合するも
のであり、同時に他の元素についても同様に理論強度比
に適合する分析結果となっていた。したがって分析結果
全体についても理論予測に適合し、従来より正確な分析
がなされたといえる。また、ある元素の主たるスペクト
ルに他の元素のサブスペクトル(主たるスペクトルでな
いスペクトル)が重なっていても、そのサブスペクトル
の影響は、理論通りに差し引かれているために、主スペ
クトルの強度がより正確に算出され、分析精度が向上す
る。
According to the apparatus of the present embodiment, as described above, in the calculation means 11, the intensity ratio between the main spectrum generated from the same element m and the other spectrum is the theory when each element exists alone. To match the intensity ratio,
Determine r i (m) in equation (4). Based on this assumption, r i (m) is determined, and the intensity distribution y of the fluorescent X-ray 7 measured by the detector 6 is determined.
Since (ch) is decomposed into each spectrum, an analysis result that fits the theoretical prediction can be obtained. For example, in order to compare with the analysis result by the above-mentioned conventional technique, Cr-Kα ray and Cr-
As for Kβ rays, the intensity of Cr-Kα rays is 0.20.
cps, but the intensity of Cr-Kβ rays is 0.03c
An analysis result that gives ps is obtained. in this case,
The intensity ratio of both is 1: 0.15, but this intensity ratio is
The result was an analysis result that was compatible with the theoretical strength ratio when chromium was present alone, and was also compatible with the theoretical strength ratio for other elements at the same time. Therefore, it can be said that the analysis results as a whole conformed to the theoretical prediction, and that the analysis was more accurate than before. Moreover, even if the main spectrum of one element overlaps with the sub-spectrum of another element (the spectrum that is not the main spectrum), the effect of the sub-spectrum is subtracted according to the theory, so the intensity of the main spectrum is more accurate. The analysis accuracy is improved.

【0034】なお、一般的な蛍光X線分析においては、
試料中の元素間の多重励起によって、同一元素から発生
する蛍光X線の各スペクトルの強度比は、その元素が単
独で存在する場合の理論強度比とは異なってくる。した
がって、上述した実施形態の全反射蛍光X線分析装置の
演算手段11におけるデータ処理手法を、そのまま適用
することはできない。しかし、いわゆるFP法等によ
り、試料の主成分量を特定した後に、元素が単独で存在
する場合の理論強度比を修正して用いることで、本発明
を適用することができ、分析精度を向上させることがで
きる。
In general fluorescent X-ray analysis,
Due to the multiple excitation between the elements in the sample, the intensity ratio of each spectrum of the fluorescent X-rays generated from the same element is different from the theoretical intensity ratio when the element exists alone. Therefore, the data processing method in the calculation means 11 of the total reflection X-ray fluorescence analyzer of the above-described embodiment cannot be applied as it is. However, the present invention can be applied by improving the analysis accuracy by correcting the theoretical intensity ratio when the element exists alone after specifying the main component amount of the sample by the so-called FP method or the like. Can be made.

【0035】[0035]

【発明の効果】以上に説明したように、本発明によれ
ば、演算手段により、試料中の同一元素から発生する主
たるスペクトルと他のスペクトルとの強度比がそれらの
理論強度比に一致するとの前提で、検出手段で測定した
蛍光X線の強度分布を各スペクトルに分解するので、理
論予測に適合する分析ができる。また、ある元素の主ス
ペクトルに他の元素のサブスペクトルが重なっていて
も、そのサブスペクトルの影響は、理論通りに差し引か
れているために、主スペクトルの強度がより正確に算出
され、分析精度が向上する。
As described above, according to the present invention, the intensity ratio between the main spectrum generated from the same element in the sample and the other spectrum is matched with the theoretical intensity ratio by the calculation means. Since the intensity distribution of the fluorescent X-ray measured by the detecting means is decomposed into each spectrum on the premise, an analysis suitable for theoretical prediction can be performed. Even if the main spectrum of one element overlaps with the sub-spectrum of another element, the influence of the sub-spectrum is subtracted according to the theory, so the intensity of the main spectrum is calculated more accurately, and the analysis accuracy is improved. Is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である蛍光X線分析装置を
示す概略図である。
FIG. 1 is a schematic view showing an X-ray fluorescence analyzer as one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4…試料、5…1次X線、6…検出手段(検出器)、7
…蛍光X線、11…演算手段。
4 ... sample, 5 ... primary X-ray, 6 ... detection means (detector), 7
... fluorescent X-ray, 11 ... computing means.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 23/00 - 23/227 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 23/00-23/227 JISST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料に1次X線を照射して、試料から発
生した蛍光X線の強度分布を検出手段により測定する蛍
光X線分析装置において、 試料中の各元素から発生すべき蛍光X線の各スペクトル
を所定の関数で近似し、同一元素から発生する主たるス
ペクトルと他のスペクトルとの強度比がそれらの理論強
度比に一致するとの前提で、試料中の各元素から発生す
べき蛍光X線の強度分布の総和が、前記検出手段で測定
した蛍光X線の強度分布に合致するように、試料中の各
元素から発生した主たるスペクトルのピーク強度を算出
する演算手段を備えたことを特徴とする蛍光X線分析装
置。
1. A fluorescent X-ray analyzer for irradiating a sample with primary X-rays and measuring the intensity distribution of fluorescent X-rays generated from the sample by a detection means, wherein the fluorescent X to be generated from each element in the sample Approximate each spectrum of the line by a predetermined function, assuming that the intensity ratio between the main spectrum generated from the same element and other spectra matches their theoretical intensity ratio, the fluorescence that should be emitted from each element in the sample An arithmetic means for calculating the peak intensity of the main spectrum generated from each element in the sample is provided so that the total of the intensity distribution of the X-rays matches the intensity distribution of the fluorescent X-rays measured by the detection means. A characteristic X-ray fluorescence analyzer.
【請求項2】 請求項1において、 前記所定の関数が、ガウス関数である蛍光X線分析装
置。
2. The X-ray fluorescence analyzer according to claim 1, wherein the predetermined function is a Gaussian function.
【請求項3】 請求項1または2において、 前記演算手段が、試料中の各元素から発生した主たるス
ペクトルのピーク強度を算出するための連立方程式を解
くにあたり、その連立方程式中に現れる、試料中の各元
素から発生すべき蛍光X線の強度分布の形状を示す関数
同士の積の積分を解析的に計算してその値を用いる蛍
光X線分析装置。
3. The method according to claim 1, wherein the arithmetic means solves a simultaneous equation for calculating the peak intensity of the main spectrum generated from each element in the sample.
In X-ray fluorescence X-ray, the product of the functions showing the shape of the intensity distribution of X-ray fluorescence generated from each element in the sample , which appears in the simultaneous equations , is analytically calculated and the calculated value is used. Analysis equipment.
JP32800497A 1997-11-28 1997-11-28 X-ray fluorescence analyzer Expired - Fee Related JP3488918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32800497A JP3488918B2 (en) 1997-11-28 1997-11-28 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32800497A JP3488918B2 (en) 1997-11-28 1997-11-28 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH11160255A JPH11160255A (en) 1999-06-18
JP3488918B2 true JP3488918B2 (en) 2004-01-19

Family

ID=18205443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32800497A Expired - Fee Related JP3488918B2 (en) 1997-11-28 1997-11-28 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3488918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930478A (en) * 2019-09-20 2021-06-08 株式会社理学 Quantitative analysis method, quantitative analysis program, and fluorescent X-ray analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091691A (en) * 2016-12-01 2018-06-14 株式会社リガク X-ray fluorescence spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930478A (en) * 2019-09-20 2021-06-08 株式会社理学 Quantitative analysis method, quantitative analysis program, and fluorescent X-ray analyzer
US11585769B2 (en) 2019-09-20 2023-02-21 Rigaku Corporation Quantitative analysis method, quantitative analysis program, and X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JPH11160255A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US11210366B2 (en) Analysis of X-ray spectra using fitting
US5497407A (en) Contaminating-element analyzing method
JP2848751B2 (en) Elemental analysis method
JPH05240808A (en) Method for determining fluorescent x rays
JP4725350B2 (en) Transmission X-ray measurement method
JP4994225B2 (en) Two-parameter spectrum processing method and apparatus
US20150025847A1 (en) Quantitative elemental profiling in optical emission spectroscopy
JP2928688B2 (en) Pollution element analysis method and device
JP3488918B2 (en) X-ray fluorescence analyzer
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
US20140126693A1 (en) Method and device for identifying a material by the spectral analysis of electromagnetic radiation passing through said material
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JP2001091481A (en) Background correction method for fluorescent x-ray analyzer
JP5874108B2 (en) X-ray fluorescence analyzer
JP2009074954A (en) Fluorescent x-ray analyzer and program used therein
JP2000283933A (en) Fluorescent x-ray analyzer
JP3192846B2 (en) Pollutant element concentration analysis method and analyzer
JP2713120B2 (en) X-ray fluorescence analyzer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP4279983B2 (en) X-ray fluorescence analyzer
JP3301729B2 (en) X-ray fluorescence analysis method and apparatus by quantitative analysis
JP2000074857A (en) Fluorescence x-ray analyzer
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JP3399861B2 (en) X-ray analyzer
JP2645226B2 (en) X-ray fluorescence analysis method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees