JP3965173B2 - X-ray fluorescence analyzer and program used therefor - Google Patents

X-ray fluorescence analyzer and program used therefor Download PDF

Info

Publication number
JP3965173B2
JP3965173B2 JP2004251785A JP2004251785A JP3965173B2 JP 3965173 B2 JP3965173 B2 JP 3965173B2 JP 2004251785 A JP2004251785 A JP 2004251785A JP 2004251785 A JP2004251785 A JP 2004251785A JP 3965173 B2 JP3965173 B2 JP 3965173B2
Authority
JP
Japan
Prior art keywords
intensity
ray
fluorescent
sample
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004251785A
Other languages
Japanese (ja)
Other versions
JP2006071311A (en
Inventor
由行 片岡
真也 原
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP2004251785A priority Critical patent/JP3965173B2/en
Publication of JP2006071311A publication Critical patent/JP2006071311A/en
Application granted granted Critical
Publication of JP3965173B2 publication Critical patent/JP3965173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、FP法で試料の組成や面積密度を分析する蛍光X線分析装置およびそれに用いるプログラムに関する。   The present invention relates to a fluorescent X-ray analyzer that analyzes the composition and area density of a sample by the FP method and a program used therefor.

従来、ファンダメンタルパラメータ法(以下、FP法という)を利用して、試料の組成や面積密度を分析する蛍光X線分析装置がある。FP法では、仮定した元素の濃度に基づいて、試料中の各元素から発生する2次X線の理論強度を計算し、その理論強度と検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した元素の濃度を逐次近似的に修正計算して、試料における元素の濃度を算出する。ここで、酸素、炭素など蛍光X線を測定しない元素(強度が小さく吸収による減衰も大きいために事実上蛍光X線を測定できない元素で、以下、非測定元素という)は、通常は残分として扱われるが、汚泥、焼却灰、生体試料などのように、非測定元素を多く含み、その原子番号を特定できない試料が問題となる。これに関連し、以下のような従来技術がある。   Conventionally, there is an X-ray fluorescence analyzer that analyzes a composition and an area density of a sample using a fundamental parameter method (hereinafter referred to as FP method). In the FP method, the theoretical intensity of secondary X-rays generated from each element in a sample is calculated based on the assumed element concentration, and the theoretical intensity and the measured intensity measured by the detection means are converted into a theoretical intensity scale. The concentration of the element in the sample is calculated by successively correcting the assumed element concentration so that the converted measurement intensity matches. Here, elements that do not measure fluorescent X-rays, such as oxygen and carbon (elements that cannot measure fluorescent X-rays due to their small intensity and large attenuation due to absorption, hereinafter referred to as non-measuring elements) are usually used as the remainder Although handled, samples that contain many non-measuring elements and whose atomic numbers cannot be specified, such as sludge, incinerated ash, and biological samples, are problematic. Related to this, there are the following conventional techniques.

特許文献1に記載の技術では、実施例として、炭素、酸素および水素のみからなることが既知である試料において、炭素および酸素は測定元素としてそれぞれの蛍光X線の強度を対応させ、水素のみを非測定元素として、蛍光X線強度に代えて、コンプトン散乱線とトムソン(レーリー)散乱線の強度比を対応させている。   In the technique described in Patent Document 1, as an example, in a sample that is known to be composed only of carbon, oxygen, and hydrogen, carbon and oxygen correspond to the intensity of each fluorescent X-ray as a measurement element, and only hydrogen is used. As a non-measuring element, the intensity ratio of Compton scattered rays and Thomson (Rayleigh) scattered rays is made to correspond to the fluorescent X-ray intensity.

非特許文献1に記載の技術では、コンプトン散乱線とトムソン散乱線の強度比に基づいて、試料全体の平均原子番号を求め、試料の重量を得ている。   In the technique described in Non-Patent Document 1, the average atomic number of the entire sample is obtained based on the intensity ratio between Compton scattered rays and Thomson scattered rays, and the weight of the sample is obtained.

非特許文献2に記載の技術では、非測定元素について、平均原子番号を仮定し、対応する2次X線として散乱線を用いている。
特開2001−255289号公報 P. Van Espen et.al, Effective Sample Weight from Scatter Peaks in Energy-Dispersive X-Ray Fluorescence, “ANALYTICAL CHEMISTRY”, (USA), 1979, VOL.51, NO.7, p.961-967 K. K. Nielson et.al, COMPARISON OF X-RAY BACKSCATTER PARAMETERS FOR COMPLETE SAMPLE MATRIX DEFINITION, “Advances in X-ray Analysis”, (USA), 1984, Vol.27, p.449-457
In the technique described in Non-Patent Document 2, an average atomic number is assumed for non-measurement elements, and scattered radiation is used as the corresponding secondary X-ray.
JP 2001-255289 A P. Van Espen et.al, Effective Sample Weight from Scatter Peaks in Energy-Dispersive X-Ray Fluorescence, “ANALYTICAL CHEMISTRY”, (USA), 1979, VOL.51, NO.7, p.961-967 KK Nielson et.al, COMPARISON OF X-RAY BACKSCATTER PARAMETERS FOR COMPLETE SAMPLE MATRIX DEFINITION, “Advances in X-ray Analysis”, (USA), 1984, Vol.27, p.449-457

しかし、特許文献1に記載の技術のように、酸素、炭素を測定できるのは、真空中またにおいて試料保護膜なしで分析できる試料に限られ、液体試料や試料保護膜を使用する粉体試料では、酸素も炭素も非測定元素となるため、分析することができない。また、特許文献1の技術では、非測定元素として扱う元素が既知である試料に限られ、非測定元素が特定できない試料は分析できない。非特許文献1に記載の技術では、試料全体の平均原子番号を用いるので、平均原子番号よりも原子番号の小さい元素については正確な質量吸収係数を求めることができず、したがって、正確な分析ができない。非特許文献2に記載の技術では、散乱断面積から非測定元素の平均原子番号を求めていると解されるが、コンプトン散乱線/トムソン散乱線の強度比が使用できないため、水素、炭素、酸素を主成分とするポリマーや液体などの試料には適用できず、非測定元素の濃度が低い岩石などの試料にしか適用できない。つまり、いずれの従来技術によっても、非測定元素を多く含み、その原子番号を特定できない種々の試料について十分正確に分析できない。   However, as in the technique described in Patent Document 1, oxygen and carbon can be measured only for a sample that can be analyzed in a vacuum or without a sample protective film, and a powder sample using a liquid sample or a sample protective film. Then, since oxygen and carbon are non-measuring elements, they cannot be analyzed. In addition, the technique disclosed in Patent Document 1 is limited to a sample in which an element handled as a non-measurement element is known, and a sample in which the non-measurement element cannot be specified cannot be analyzed. In the technique described in Non-Patent Document 1, since the average atomic number of the entire sample is used, an accurate mass absorption coefficient cannot be obtained for an element having an atomic number smaller than the average atomic number. Can not. In the technique described in Non-Patent Document 2, it is understood that the average atomic number of the non-measurement element is obtained from the scattering cross section, but since the intensity ratio of Compton scattered radiation / Thomson scattered radiation cannot be used, hydrogen, carbon, It cannot be applied to samples such as polymers and liquids mainly composed of oxygen, and can only be applied to samples such as rocks where the concentration of non-measuring elements is low. In other words, any of the conventional techniques cannot sufficiently analyze various samples that contain many non-measurement elements and whose atomic numbers cannot be specified.

本発明は前記従来の問題に鑑みてなされたもので、FP法で試料の組成や面積密度を分析する蛍光X線分析装置およびそれに用いるプログラムにおいて、非測定元素を多く含み、その原子番号を特定できない種々の試料について十分正確に分析できるものを提供することを目的とする。   The present invention has been made in view of the above-mentioned conventional problems, and in a fluorescent X-ray analyzer that analyzes the composition and area density of a sample by the FP method and a program used therefor, it contains a large number of non-measuring elements and identifies the atomic number. An object of the present invention is to provide a sample that can be analyzed sufficiently accurately for various samples that cannot be obtained.

前記目的を達成するために、本発明の第1構成は、試料に1次X線を照射するX線源と、試料中の各元素から発生する蛍光X線および1次X線の散乱線の強度を測定する検出手段と、仮定した元素の濃度に基づいて、試料中の各元素から発生する蛍光X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した元素の濃度を逐次近似的に修正計算して、試料における元素の濃度を算出する算出手段とを備えた蛍光X線分析装置において、前記算出手段が、蛍光X線を測定しない非測定元素については、平均原子番号を仮定して、蛍光X線に代えて前記散乱線を対応させて用い、前記検出手段で強度を測定した蛍光X線ごと、散乱線ごとに作成した差分連立方程式を解いて、前記仮定した元素の濃度を更新するための修正値および前記仮定した平均原子番号を更新するための修正値を求めることにより、前記理論強度と前記換算測定強度とが一致するように、前記仮定した元素の濃度および前記仮定した平均原子番号を逐次近似的に修正計算して、試料における元素の濃度を算出することを特徴とする。 In order to achieve the above object, the first configuration of the present invention includes an X-ray source that irradiates a sample with primary X-rays, fluorescent X-rays generated from each element in the sample, and scattered light of primary X-rays . Based on the detection means for measuring the intensity and the assumed concentration of the element, the theoretical intensity of fluorescent X-rays generated from each element in the sample is calculated, and the theoretical intensity and the measured intensity measured by the detection means are calculated as the theoretical intensity. In a fluorescent X-ray analysis apparatus comprising: a calculation means for calculating the concentration of an element in a sample by sequentially correcting and correcting the assumed element concentration so that the converted measurement intensity converted into a scale matches. The non-measurement element that does not measure the fluorescent X-ray is assumed to have an average atomic number, and the scattered light is used in correspondence with the scattered radiation instead of the fluorescent X-ray. Created for each X-ray and each scattered ray By solving the partial simultaneous equations, by obtaining the correction values to update the average atomic number correction value and said assumed for updating the density of the assumed elements, the theoretical strength with the conversion measured intensity and are consistent As described above, the concentration of the element in the sample is calculated by correcting the assumed concentration of the assumed element and the assumed average atomic number in an approximate manner.

第1構成の装置によれば、仮定した非測定元素の平均原子番号についても、仮定した元素の濃度と同様に、蛍光X線の理論強度と換算測定強度とが一致するように逐次近似的に修正計算し、前記散乱線の理論強度および測定強度として選択できる種類が多いので、非測定元素を多く含み、その原子番号を特定できない種々の試料について十分正確に分析できる。 According to the apparatus of the first configuration, the average atomic number of the assumed non-measuring element is also successively approximated so that the theoretical intensity of the fluorescent X-ray and the converted measured intensity coincide with each other, similarly to the assumed element concentration. Since there are many types of correction calculations that can be selected as the theoretical intensity and measurement intensity of the scattered radiation, it is possible to analyze sufficiently accurately various samples that contain many non-measurement elements and whose atomic numbers cannot be specified.

前記散乱線の理論強度および測定強度としては、1次X線の連続X線の散乱線の理論強度および測定強度、コンプトン散乱線の理論強度および測定強度、トムソン散乱線の理論強度および測定強度、ならびに、それらの散乱線のうちいずれか2つの散乱線の理論強度比および測定強度比からなる一群から選ばれた1つを用いることができる。   The theoretical intensity and measured intensity of the scattered radiation include the theoretical intensity and measured intensity of the primary X-ray continuous X-ray scattered radiation, the theoretical intensity and measured intensity of Compton scattered radiation, the theoretical intensity and measured intensity of Thomson scattered radiation, In addition, one selected from the group consisting of the theoretical intensity ratio and the measured intensity ratio of any two of the scattered rays can be used.

第1構成の装置においては、前記算出手段が、トムソン散乱線と蛍光X線との重なりおよび/またはトムソン散乱線の測定強度と測定時間から推定した相対測定精度に基づいて、前記散乱線の理論強度および測定強度として、前記一群から1つを選択することが好ましい。この好ましい構成によれば、測定すべき散乱線が適切に自動選択される。   In the apparatus of the first configuration, the calculation means calculates the theory of the scattered radiation based on the overlap between the Thomson scattered radiation and the fluorescent X-ray and / or the relative measurement accuracy estimated from the measured intensity and measurement time of the Thomson scattered radiation. It is preferable to select one from the group as the intensity and the measured intensity. According to this preferable configuration, the scattered radiation to be measured is appropriately automatically selected.

また、第1構成の装置においては、前記算出手段が、あらかじめ試料の種類ごとにコンプトン散乱線とトムソン散乱線の測定強度比と前記散乱線の測定強度を理論強度スケールに換算するための装置感度とを記憶しており、コンプトン散乱線とトムソン散乱線の測定強度比に基づいて試料の種類を判定し、対応する装置感度を用いて前記換算測定強度を求めることが好ましい。この好ましい構成によれば、試料の種類に応じて装置感度が適切に自動設定される。   Moreover, in the apparatus of 1st structure, the said calculation means is an apparatus sensitivity for converting the measured intensity ratio of a Compton scattered ray and a Thomson scattered ray and the measured intensity of the said scattered ray into a theoretical intensity scale beforehand for every kind of sample. It is preferable to determine the type of the sample based on the measured intensity ratio between the Compton scattered ray and the Thomson scattered ray, and obtain the converted measured intensity using the corresponding device sensitivity. According to this preferable configuration, the apparatus sensitivity is appropriately automatically set according to the type of the sample.

さらに、第1構成の装置においては、前記算出手段が、前記非測定元素のうち、水素以外の元素については、平均原子番号を仮定して、蛍光X線に代えて、コンプトン散乱線、トムソン散乱線および1次X線の連続X線の散乱線のうちのいずれか1つの散乱線対応させて用い、水素については、その濃度を仮定して、蛍光X線に代えて、前記平均原子番号を仮定した水素以外の元素に対応する散乱線とは異なる散乱線を対応させていてもよい。この構成によれば、非測定元素を水素とそれ以外の元素に分けて扱うので、水素を多く含むポリマーや液体である試料について、より正確に分析できる。 Furthermore, in the apparatus of the first configuration, the calculation means assumes an average atomic number for elements other than hydrogen among the non-measurement elements, and instead of fluorescent X-rays, Compton scattered radiation, Thomson scattering Any one of the scattered X-rays and the continuous X-rays of the primary X-ray is used correspondingly, and for hydrogen, assuming the concentration thereof , the average atomic number is used instead of the fluorescent X-ray. It can have use in association with different scattered radiation from the scattered radiation corresponding to elements other than hydrogen assuming. According to this configuration, since the non-measuring element is divided into hydrogen and other elements, the sample that is a polymer or liquid containing a large amount of hydrogen can be analyzed more accurately.

本発明の第2構成は、試料に1次X線を照射するX線源と、試料中の各元素から発生する蛍光X線の強度を測定する検出手段と、仮定した元素の濃度に基づいて、試料中の各元素から発生する蛍光X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した元素の濃度を逐次近似的に修正計算して、試料における元素の濃度を算出する算出手段とを備えた蛍光X線分析装置において、前記算出手段が、蛍光X線を測定しない非測定元素については、平均原子番号を仮定して、試料に所定量添加した元素の蛍光X線または試料が付着している基板を構成する元素の蛍光X線を対応させて用い、前記検出手段で強度を測定した蛍光X線ごとに作成した差分連立方程式を解いて、前記仮定した元素の濃度を更新するための修正値および前記仮定した平均原子番号を更新するための修正値を求めることにより、前記理論強度と前記換算測定強度とが一致するように、前記仮定した元素の濃度および前記仮定した平均原子番号を逐次近似的に修正計算して、試料における元素の濃度を算出することを特徴とする。 The second configuration of the present invention is based on an X-ray source that irradiates a sample with primary X-rays, detection means that measures the intensity of fluorescent X-rays generated from each element in the sample, and the assumed element concentration. The theoretical intensity of fluorescent X-rays generated from each element in the sample is calculated, and the assumption is made so that the theoretical intensity matches the measured intensity measured by the detecting means and converted to the theoretical intensity scale. In a fluorescent X-ray analysis apparatus comprising a calculating means for calculating the concentration of an element in a sample by successively approximating and calculating the concentration of the element, a non-measurement element for which the calculating means does not measure fluorescent X-rays. , assuming the average atomic number, used in association with X-ray fluorescence of elements constituting the substrate a fluorescent X-ray or a sample of a predetermined amount of addition of these elements is adhered to the specimen, the intensity at the detector Created for each measured fluorescent X-ray By solving the partial simultaneous equations, by obtaining the correction values to update the average atomic number correction value and said assumed for updating the density of the assumed elements, the theoretical strength with the conversion measured intensity and are consistent As described above, the concentration of the element in the sample is calculated by correcting the assumed concentration of the assumed element and the assumed average atomic number in an approximate manner.

つまり、前記第1構成の装置においては、非測定元素に散乱線を対応させたのに対し、第2構成の装置においては、内標準元素の蛍光X線を対応させる。第2構成の装置によっても、前記第1構成の装置と同様の作用効果が得られる。   That is, in the apparatus of the first configuration, the scattered radiation is associated with the non-measurement element, whereas in the apparatus of the second configuration, the fluorescent X-ray of the internal standard element is associated. The same effects as the first configuration apparatus can be obtained by the second configuration apparatus.

本発明の第3構成は、前記第1または第2構成の装置が備えるコンピュータを前記算出手段として機能させるためのプログラムである。本発明の第3構成のプログラムによっても、前記第1構成の装置と同様の作用効果が得られる。   A third configuration of the present invention is a program for causing a computer included in the device having the first or second configuration to function as the calculation unit. The same effect as the apparatus of the first configuration can be obtained by the program of the third configuration of the present invention.

以下、本発明の第1実施形態の蛍光X線分析装置について、図にしたがって説明する。図1に示すように、この装置は、試料13が載置される試料台8と、試料13に1次X線2を照射するX線源1と、試料13から発生する蛍光X線や散乱線などの2次X線4の強度を測定する検出手段9とを備えている。検出手段9は、試料13から発生する2次X線4を分光する分光素子5と、分光された2次X線6ごとにその強度を測定する検出器7で構成される。なお、分光素子5を用いずに、エネルギー分解能の高い検出器を検出手段としてもよい。   The X-ray fluorescence analyzer according to the first embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, this apparatus includes a sample stage 8 on which a sample 13 is placed, an X-ray source 1 that irradiates the sample 13 with primary X-rays 2, and fluorescent X-rays and scattering generated from the sample 13. And a detecting means 9 for measuring the intensity of the secondary X-ray 4 such as a line. The detection means 9 includes a spectroscopic element 5 that splits secondary X-rays 4 generated from the sample 13 and a detector 7 that measures the intensity of each of the split secondary X-rays 6. In addition, it is good also as a detection means not using the spectroscopic element 5, but a detector with high energy resolution.

そして、仮定した元素の濃度に基づいて、試料13中の各元素から発生する2次X線4の理論強度を計算し、その理論強度と検出手段9で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、仮定した元素の濃度を逐次近似的に修正計算して、試料13における元素の濃度を算出する算出手段10を備え、その算出手段10が、蛍光X線4を測定しない非測定元素については、平均原子番号を仮定して、対応する2次X線として散乱線4を用い、理論強度と換算測定強度とが一致するように、仮定した平均原子番号を逐次近似的に修正計算する。   Then, based on the assumed element concentration, the theoretical intensity of the secondary X-ray 4 generated from each element in the sample 13 is calculated, and the theoretical intensity and the measured intensity measured by the detecting means 9 are converted into a theoretical intensity scale. The calculated element 10 includes a calculating means 10 for calculating the concentration of the element in the sample 13 by successively correcting the assumed element concentration so as to match the calculated measured intensity. For non-measurement elements that do not measure 4, use the scattered radiation 4 as the corresponding secondary X-ray, assuming the average atomic number, and change the assumed average atomic number so that the theoretical intensity and the converted measured intensity match. Corrective calculation is performed in successive approximation.

前記散乱線の理論強度および測定強度としては、1次X線の連続X線の散乱線の理論強度および測定強度、コンプトン散乱線の理論強度および測定強度、トムソン散乱線の理論強度および測定強度、ならびに、それらの散乱線のうちいずれか2つの散乱線の理論強度比および測定強度比からなる一群から選ばれた1つを用いることができる。   The theoretical intensity and measured intensity of the scattered radiation include the theoretical intensity and measured intensity of the primary X-ray continuous X-ray scattered radiation, the theoretical intensity and measured intensity of Compton scattered radiation, the theoretical intensity and measured intensity of Thomson scattered radiation, In addition, one selected from the group consisting of the theoretical intensity ratio and the measured intensity ratio of any two of the scattered rays can be used.

この装置は、以下のように動作する。試料台8に載置された試料13に、X線源1から1次X線2を照射して、発生した2次X線4を分光素子5に入射させ、分光された2次X線6ごとにその強度を検出器7で測定する。そして、算出手段10が図2に示すフローチャートにしたがって演算を行う。   This device operates as follows. The sample 13 placed on the sample stage 8 is irradiated with the primary X-ray 2 from the X-ray source 1, and the generated secondary X-ray 4 is incident on the spectroscopic element 5, and the dispersed secondary X-ray 6 is obtained. The intensity is measured by the detector 7 every time. And the calculation means 10 performs a calculation according to the flowchart shown in FIG.

まず、ステップ1で、各測定元素の濃度の初期値、非測定元素の平均原子番号の初期値、必要に応じて試料の面積密度(または厚さ)の初期値をセットする。各測定元素の濃度の初期値は、試料の品種に応じてセットすることもできるが、すべて1mass%とセットしてもよい。非測定元素の平均原子番号の初期値は、例えば8とセットする。   First, in step 1, the initial value of the concentration of each measurement element, the initial value of the average atomic number of the non-measurement element, and the initial value of the area density (or thickness) of the sample are set as necessary. Although the initial value of the concentration of each measurement element can be set according to the type of the sample, all may be set to 1 mass%. The initial value of the average atomic number of the non-measurement element is set to 8, for example.

次に、ステップ2で、次式(1)によって蛍光X線と散乱線の測定強度ImeasMを理論強度スケールに換算して、それぞれの換算測定強度ImeasTとする。 Next, in step 2, the measured intensity I measM of the fluorescent X-rays and scattered rays is converted into a theoretical intensity scale by the following formula (1) to obtain respective converted measured intensity I measT .

measT=A(ImeasM)+BImeasM+C …(1) I measT = A (I measM ) 2 + BI measM + C (1)

次に、ステップ3で、セットした初期値に基づいて、各蛍光X線の理論強度IFTiと散乱線の理論強度ISTiを計算する。計算式は公知のものを用いる。 Next, in Step 3, based on the initial value set and calculates the theoretical intensity I STi of theoretical strength I FTi and scattered radiation of each X-ray fluorescence. A known formula is used.

次に、ステップ4で、各測定元素の濃度、非測定元素の平均原子番号をそれぞれ所定値変更し、変更後の理論強度を計算する。つまり、蛍光X線については、j元素の濃度をdw%変化させたときの、i元素の理論強度IFTi と、非測定元素の平均原子番号をdZ変化させたときの、i元素の理論強度IFTi 、散乱線については、j元素の濃度をdw%変化させたときの、i散乱線の理論強度ISTi と、非測定元素の平均原子番号をdZ変化させたときの、i散乱線の理論強度ISTi を計算する。dZは、例えば、0.05とする。 Next, in step 4, the concentration of each measurement element and the average atomic number of the non-measurement element are changed by predetermined values, and the changed theoretical intensity is calculated. In other words, for fluorescent X-rays, the theoretical intensity of i element when the concentration of the j element is changed by dw% and the theoretical intensity of the i element IFTI j and the average atomic number of the non-measurement element are changed by dZ. For the intensity I FTi Z , the scattered radiation, the theoretical intensity I STi j of the i scattered radiation when the concentration of the j element is changed by dw%, and i when the average atomic number of the non-measurement element is changed by dZ Calculate the theoretical intensity I STi Z of the scattered radiation. For example, dZ is set to 0.05.

次に、ステップ5で、差分方程式に基づいて、各測定元素の濃度、非測定元素の平均原子番号を更新する。具体的には、まず、蛍光X線ごと、散乱線ごとに、次式(2)、(3)の差分連立方程式を作成し、解くことにより、各測定元素の濃度、非測定元素の平均原子番号を更新するための修正値Δwj、ΔZを求める。   Next, in step 5, based on the difference equation, the concentration of each measurement element and the average atomic number of the non-measurement element are updated. Specifically, first, by creating and solving the differential simultaneous equations of the following formulas (2) and (3) for each fluorescent X-ray and each scattered ray, the concentration of each measurement element, the average atom of the non-measurement element Correction values Δwj and ΔZ for updating the number are obtained.

fmeasTi−IFTi=(dIFTi/dZ)ΔZ+Σ(dIFTi/dwj)Δwj …(2) I fmeasTi −I FTi = (dI FTi / dZ) ΔZ + Σ (dI FTi / dwj) Δwj (2)

smeasTi−ISTi=(dISTi/dZ)ΔZ+Σ(dISTi/dwj)Δwj …(3) I smearTi −I STi = (dI STi / dZ) ΔZ + Σ (dI STi / dwj) Δwj (3)

ここで、蛍光X線については、各微分項は、次式(4)で求める。   Here, for fluorescent X-rays, each differential term is obtained by the following equation (4).

(dIFTi/dwj)=((IFTi−IFTi )/dwj) …(4) (dI FTi / dwj) = ((I FTi −I FTi j ) / dwj) (4)

散乱線については、散乱線の強度としてコンプトン散乱線やトムソン散乱線などの強度を単独で用いる場合には、蛍光X線と同様に、各微分項は、次式(5)で求める。   As for the scattered radiation, when the intensity of the scattered radiation such as Compton scattered radiation or Thomson scattered radiation is used alone, each differential term is obtained by the following equation (5) as in the case of fluorescent X-rays.

(dISTi/dwj)=((ISTi−ISTi )/dwj) …(5) (dI STi / dwj) = ((I STi −I STi j ) / dwj) (5)

散乱線の強度として、例えばコンプトン散乱線とトムソン散乱線の強度比を用いる場合には、単独の散乱線の強度を用いるところに両散乱線の強度比を適用する。例えば、前式(3)、(5)の散乱線の理論強度ISTiのところに、次式(6)のように、散乱線の理論強度比ISTiRとして、トムソン散乱線の理論強度ISTiThomに対するコンプトン散乱線の理論強度ISTiCompの比を適用する。 As the intensity of scattered radiation, for example, when using the intensity ratio of Compton scattered radiation and Thomson scattered radiation, the intensity ratio of both scattered radiation is applied where the intensity of a single scattered radiation is used. For example, Equation (3), at the theoretical strength I STi of scattered radiation (5), the following equation (6), and a theoretical intensity ratio I STIR scattered radiation, Thomson scatter theoretical strength I STiThom The ratio of the theoretical intensity I STiComp of the Compton scattered radiation to is applied.

STiR=(ISTiComp/ISTiThom) …(6) I STiR = (I STiComp / I STiThom ) (6)

同様に、前式(3)の散乱線の換算測定強度IsmeasMiや前式(1)の散乱線の測定強度ImeasMにも、また後述するステップ6においても、散乱線の強度比を適用する。 Similarly, even before type measuring intensity I MeasM of scattered radiation conversion measured intensities of scattered radiation (3) I smeasMi and Equation (1), also in step 6 to be described later, to apply the intensity ratio of scattered radiation .

このように作成した式(2)、(3)の差分連立方程式を解き、各測定元素の濃度wi、非測定元素の平均原子番号Zについて、修正値Δwj、ΔZを求め、次式(7)、(8)のように、もとの値wiold,Zoldに加えることにより、更新した値winew,Znewを求める。非測定元素の濃度は、100%から測定元素の濃度wiの合計を差し引いて求める。 The differential simultaneous equations of the equations (2) and (3) created in this way are solved, and the corrected values Δwj and ΔZ are obtained for the concentration wi of each measurement element and the average atomic number Z of the non-measurement element, and the following equation (7) , as shown in (8), the original value w Iold, by adding the Z old, updated value w inew, seek Z new new. The concentration of the non-measurement element is obtained by subtracting the total of the concentration wi of the measurement element from 100%.

winew=wiold+Δwj …(7) wi new = wi old + Δwj (7)

new=Zold+ΔZ …(8) Z new = Z old + ΔZ (8)

次に、ステップ6で、更新した各測定元素の濃度winewおよび非測定元素の平均原子番号Znewに基づいて、各蛍光X線の理論強度IFTiと散乱線の理論強度ISTiを計算し、前式(1)で求めた各換算測定強度ImeasTとの差が所定値以下か否かによって、収束判定を行う。収束判定は、理論強度と換算測定強度との差が換算測定強度の所定比率(例えば0.1%)以下か否かによって行ってもよい。収束していないと判定した場合には、ステップ4に戻り、ステップ6までのステップを収束するまで繰り返す。つまり、試料から発生する2次X線(測定元素の蛍光X線と非測定元素に対応する散乱線)について、理論強度と換算測定強度とが一致するように、仮定した測定元素の濃度と仮定した非測定元素の平均原子番号を逐次近似的に修正計算する。 Next, in step 6, based on the average atomic number Z new new concentrations wi new new and unmeasured elements of each measurement element updating, to calculate the theoretical intensity I STi of theoretical strength I FTi and scattered radiation of each X-ray fluorescence The convergence determination is performed based on whether or not the difference from each converted measurement intensity I measT obtained by the previous equation (1) is equal to or less than a predetermined value. The convergence determination may be performed based on whether or not the difference between the theoretical intensity and the converted measured intensity is equal to or less than a predetermined ratio (for example, 0.1%) of the converted measured intensity. If it is determined that it has not converged, the process returns to step 4 and the steps up to step 6 are repeated until convergence. That is, for the secondary X-rays generated from the sample (fluorescent X-ray of the measurement element and scattered radiation corresponding to the non-measurement element), the assumed concentration of the measurement element is assumed so that the theoretical intensity and the converted measurement intensity match. The average atomic number of the non-measured element is corrected and calculated sequentially.

そして、収束したと判定した場合には、ステップ7へ進み、最新の各測定元素の濃度、非測定元素の平均原子番号、および、必要に応じて試料の面積密度(または厚さ)を結果として出力する。   Then, if it is determined that it has converged, the process proceeds to step 7 and results in the latest concentration of each measurement element, the average atomic number of the non-measurement element, and the area density (or thickness) of the sample as necessary. Output.

なお、前記ステップ5を、次のステップ5Aとステップ5Bに分けて実行することもできる。まず、ステップ5Aで、非測定元素の平均原子番号を固定しておき、各測定元素の濃度のみを更新する。次に、ステップ5Bで、各測定元素の濃度を最新の値に固定しておき、次式(9)からΔZを求めて、非測定元素の平均原子番号のみを更新する。   The step 5 can be executed separately in the following steps 5A and 5B. First, in step 5A, the average atomic number of the non-measurement element is fixed, and only the concentration of each measurement element is updated. Next, in step 5B, the concentration of each measurement element is fixed to the latest value, ΔZ is obtained from the following equation (9), and only the average atomic number of the non-measurement element is updated.

smeasTi−ISTi=(dISTi/dZ)ΔZ …(9) I smearTi −I STi = (dI STi / dZ) ΔZ (9)

また、面積密度を同時に分析するときには、測定する散乱線を1つ追加して、その散乱線について前式(3)を追加するとともに、差分連立方程式の各式(2)、(3)の右辺に面積密度の微分項を追加すればよい。例えば、前式(3)が、コンプトン散乱線についての式と、トムソン散乱線についての式の2つになる。   In addition, when analyzing the area density at the same time, one scattered ray to be measured is added, the previous equation (3) is added to the scattered ray, and the right side of each equation (2) and (3) of the differential simultaneous equations What is necessary is just to add the area density differential term to. For example, the previous equation (3) becomes two equations, an equation for Compton scattered rays and an equation for Thomson scattered rays.

次に、利用する散乱線の強度についてより詳細に説明する。まず、原子番号が1から9までの元素(水素から弗素)を試料とし、その面積密度を100〜99999mg/cmの範囲で4種類想定し、Rh 管球をX線源に用いた場合に試料から発生する、Rh −Kαのコンプトン散乱線の強度、Rh −Kαのトムソン散乱線の強度、Rh −Kαのトムソン散乱線の強度に対するRh −Kαのコンプトン散乱線の強度の比を、理論計算した結果を図3〜5に示す。これによると、コンプトン散乱線の強度は原子番号の小さい側で、トムソン散乱線は原子番号の大きい側で、面積密度の影響を強く受けるのに対し、コンプトン散乱線とトムソン散乱線の強度比は、面積密度の影響をほとんと受けずに、原子番号に対して単調減少することが分かる。 Next, the intensity of the scattered radiation used will be described in more detail. First, when an element having an atomic number from 1 to 9 (hydrogen to fluorine) is used as a sample, and the area density is assumed to be 4 types in the range of 100 to 99999 mg / cm 2 , and an Rh tube is used as an X-ray source. Theoretical calculation of the intensity of the Rh-Kα Compton scattered ray generated from the sample, the intensity of the Rh-Kα Thomson scattered ray, and the ratio of the Rh-Kα Compton scattered ray to the Rh-Kα Thomson scattered ray intensity The results obtained are shown in FIGS. According to this, the intensity of Compton scattered radiation is strongly influenced by the area density on the side where the atomic number is small and Thomson scattered radiation is on the side where the atomic number is large, whereas the intensity ratio between Compton scattered radiation and Thomson scattered radiation is It can be seen that there is a monotonic decrease with respect to the atomic number, with little influence from the area density.

したがって、面積密度を正確に測定できない試料などについては、コンプトン散乱線とトムソン散乱線の強度比を用いるのが適切である。また、水素、炭素、酸素などを主成分とするポリマーや液体の試料などで、コンプトン散乱線またはトムソン散乱線を非測定元素全体に対応させると、蛍光X線と散乱線の双方について理論強度と換算測定強度とが合致するような平均原子番号が求められず、正確な分析結果が得られない。このような試料についても、コンプトン散乱線とトムソン散乱線の強度比を用いるのが適切である。一方、トムソン散乱線が、蛍光X線に重なったり、強度が小さかったりして、測定が困難な場合には、コンプトン散乱線の強度のみを用いる。   Therefore, it is appropriate to use the intensity ratio between Compton scattered radiation and Thomson scattered radiation for a sample or the like whose area density cannot be measured accurately. In addition, when a Compton scattered ray or a Thomson scattered ray is made to correspond to the whole non-measurement element in a polymer or liquid sample mainly containing hydrogen, carbon, oxygen, etc., the theoretical intensity and An average atomic number that matches the converted measurement intensity cannot be obtained, and an accurate analysis result cannot be obtained. It is also appropriate to use the intensity ratio of Compton scattered light and Thomson scattered light for such a sample. On the other hand, when the Thomson scattered ray overlaps with the fluorescent X-ray or the intensity is small and measurement is difficult, only the intensity of the Compton scattered ray is used.

なお、非測定元素を水素と水素以外に分けて、水素以外の非測定元素について平均原子番号を仮定し、コンプトン散乱線の強度とトムソン散乱線の強度を両方利用することもできる。つまり、前式(3)が、コンプトン散乱線についての式と、トムソン散乱線についての式の2つになり、差分連立方程式の各式(2)、(3)の右辺に水素の濃度の微分項を追加する。   It is also possible to divide non-measuring elements into other than hydrogen and hydrogen, assume an average atomic number for non-measuring elements other than hydrogen, and use both Compton scattered light intensity and Thomson scattered light intensity. That is, the previous formula (3) becomes two formulas for the Compton scattered ray and the Thomson scattered ray, and the differential of the hydrogen concentration on the right side of the differential simultaneous equations (2) and (3). Add a term.

この場合、算出手段は、非測定元素のうち、水素以外の元素については、平均原子番号を仮定して、対応する2次X線として第1の散乱線(例えばコンプトン散乱線)を用い、水素については、その濃度を仮定して、対応する2次X線として第2の散乱線(例えばトムソン散乱線)を用い、前記理論強度と前記換算測定強度とが一致するように、仮定した平均原子番号および仮定した水素の濃度を逐次近似的に修正計算する。この構成によれば、非測定元素を水素とそれ以外の元素に分けて扱うので、水素を多く含むポリマーや液体である試料について、より正確に分析できる。   In this case, the calculation means assumes the average atomic number for the elements other than hydrogen among the non-measurement elements, uses the first scattered radiation (for example, Compton scattered radiation) as the corresponding secondary X-ray, Assuming the concentration, using the second scattered radiation (for example, Thomson scattered radiation) as the corresponding secondary X-ray, the assumed average atom so that the theoretical intensity and the converted measured intensity coincide with each other The number and hypothesized hydrogen concentration are calculated by successive approximation. According to this configuration, since the non-measuring element is divided into hydrogen and other elements, the sample that is a polymer or liquid containing a large amount of hydrogen can be analyzed more accurately.

以上において、コンプトン散乱線に代えて、1次X線の連続X線の散乱線(バックグラウンド)を用いることもできる。   In the above, instead of Compton scattered radiation, scattered radiation (background) of primary X-ray continuous X-rays can also be used.

このように、散乱線の理論強度および測定強度としては、1次X線の連続X線の散乱線の理論強度および測定強度、コンプトン散乱線の理論強度および測定強度、トムソン散乱線の理論強度および測定強度、ならびに、それらの散乱線のうちいずれか2つの散乱線の理論強度比および測定強度比からなる一群から選択することができるが、その選択を、算出手段が、以下のように、トムソン散乱線と蛍光X線との重なりおよび/またはトムソン散乱線の測定強度と測定時間から推定した相対測定精度に基づいて、自動的に行うようにすることもできる。   As described above, the theoretical intensity and measured intensity of scattered radiation include the theoretical intensity and measured intensity of primary X-ray continuous X-ray scattered radiation, the theoretical intensity and measured intensity of Compton scattered radiation, the theoretical intensity of Thomson scattered radiation and The measurement intensity and a group consisting of the theoretical intensity ratio and the measurement intensity ratio of any two of the scattered radiation can be selected from the group consisting of Thomson as follows. It may be automatically performed based on the overlap between the scattered radiation and the fluorescent X-ray and / or the relative measurement accuracy estimated from the measurement intensity and measurement time of the Thomson scattered radiation.

トムソン散乱線と蛍光X線の重なりについては、例えば、X線源にRh 管球を使用するときにはRh −Kα線のトムソン散乱線を利用するが、近接線としてMo −Kβ線やU−Lr線などの蛍光X線があるので、Mo またはUが検出されて、前記近接線がRh −Kα線に重なる強度が、Rh −Kα線の強度に対し所定割合(例えば、2%)以上のときに、重なりがあると判定して、散乱線の理論強度および測定強度としてRh −Kα線のコンプトン散乱線の理論強度および測定強度を選択する。また、管球ターゲット元素のRh が試料に含まれている場合にも、上述のMo またはUが試料に含まれている場合と同様に判定する。管球ターゲット元素Rh の検出には、1次フィルターを使用し、1次X線の管球ターゲット元素の特性X線(この例では、Rh −Kα線)をカットして測定する。また、トムソン散乱線のネット強度計算には、Rh −Kα線のピークだけでなくバックグラウンド位置も測定するが、バックグラウンド位置についても、同様に蛍光X線の重なりの判定を行う。 The overlap of Thomson scattered radiation and X-ray fluorescence, for example, it utilizes a Thomson scattered radiation Rh -Keiarufa line when using Rh tube to the X-ray source, Mo -Kβ 2 lines and U-Lr as near line Since there are fluorescent X-rays such as two lines, Mo or U is detected, and the intensity at which the adjacent line overlaps the Rh-Kα line is greater than or equal to a predetermined ratio (for example, 2%) with respect to the intensity of the Rh-Kα line. Sometimes, it is determined that there is an overlap, and the theoretical intensity and measured intensity of Compton scattered rays of Rh-Kα rays are selected as the theoretical intensity and measured intensity of scattered rays. Even when the sample Rh of the tube target element is included in the sample, the determination is made in the same manner as when the above-described Mo or U is included in the sample. To detect the tube target element Rh, a primary filter is used, and the characteristic X-ray (Rh-Kα ray in this example) of the tube target element of the primary X-ray is cut and measured. Further, in calculating the net intensity of the Thomson scattered radiation, not only the peak of the Rh-Kα ray but also the background position is measured, and the overlap of fluorescent X-rays is similarly determined for the background position.

トムソン散乱線の相対測定精度については、例えば、相対測定精度が所定値以下のときには、散乱線の理論強度および測定強度として、コンプトン散乱線とトムソン散乱線の理論強度比および測定強度比を選択し、所定値よりも大きいときには、コンプトン散乱線の理論強度および測定強度を選択する。特に小さい試料や重元素を主成分とする試料では、トムソン散乱線の強度が小さくなり、相対測定精度が低下する。また、測定時間を短くしたときにも、相対測定精度が低下する。判定基準とする前記所定値は、トムソン散乱線の測定強度誤差が分析値に与える影響度によって決定し、例えば、2%とする。   Regarding the relative measurement accuracy of Thomson scattered radiation, for example, when the relative measurement accuracy is below a predetermined value, select the theoretical intensity ratio and measured intensity ratio of Compton scattered radiation and Thomson scattered radiation as the theoretical intensity and measured intensity of the scattered radiation. When the value is larger than the predetermined value, the theoretical intensity and measured intensity of the Compton scattered radiation are selected. In particular, in the case of a small sample or a sample containing a heavy element as a main component, the intensity of Thomson scattered radiation is reduced, and the relative measurement accuracy is lowered. Also, the relative measurement accuracy decreases when the measurement time is shortened. The predetermined value as the determination criterion is determined by the degree of influence of the measurement intensity error of the Thomson scattered radiation on the analysis value, and is 2%, for example.

また、利用する散乱線が同じでも、散乱線の測定強度を理論強度スケールに換算するための装置感度は、ポリマーであるか、酸化物の粉末であるかなど、試料の種類によって幾分異なる。そこで、算出手段に、あらかじめ試料の種類ごとにコンプトン散乱線とトムソン散乱線の測定強度比と装置感度とを記憶させておき、コンプトン散乱線とトムソン散乱線の測定強度比に基づいて試料の種類を自動的に判定させ、対応する装置感度を用いて適切に換算測定強度を求めさせることもできる。つまり、試料の種類に応じて装置感度を適切に自動設定させることもできる。   Moreover, even if the scattered radiation used is the same, the sensitivity of the apparatus for converting the measured intensity of the scattered radiation into the theoretical intensity scale differs somewhat depending on the type of sample, such as whether it is a polymer or an oxide powder. Therefore, the calculation means stores in advance the measurement intensity ratio of the Compton scattered ray and the Thomson scattered ray and the device sensitivity for each type of sample, and the type of sample based on the measured intensity ratio of the Compton scattered ray and the Thomson scattered ray. Can be determined automatically, and the corresponding measured sensitivity can be used to appropriately determine the converted measured intensity. That is, the apparatus sensitivity can be automatically set appropriately according to the type of sample.

焼却灰である試料について、以上に説明した第1実施形態の装置で分析した結果を、従来のFP法を利用した装置で残分を酸素として分析した結果および標準値と対比して、表1に示す。   Table 1 compares the results of analyzing the sample that is incinerated ash with the apparatus of the first embodiment described above with the results of analyzing the remainder as oxygen with the apparatus using the conventional FP method and the standard values. Shown in

Figure 0003965173
Figure 0003965173

これによると、11ある測定元素のうち、Ni においてのみ、第1実施形態の装置による分析値が従来装置による分析値よりも標準値からわずかに遠いものの、Sb においては同等で、残る9つにおいては、第1実施形態の装置による分析値が従来装置による分析値よりも標準値に近く、分析全体については第1実施形態の装置の方がより正確である。つまり、第1実施形態の装置によれば、非測定元素を多く含み、その原子番号を特定できない試料を十分正確に分析できる。   According to this, among the 11 measurement elements, only in Ni, the analysis value by the apparatus of the first embodiment is slightly far from the standard value than the analysis value by the conventional apparatus, but in Sb, the remaining 9 are the same. The analysis value by the apparatus of the first embodiment is closer to the standard value than the analysis value by the conventional apparatus, and the apparatus of the first embodiment is more accurate for the entire analysis. That is, according to the apparatus of the first embodiment, it is possible to analyze a sample that contains a large amount of non-measuring elements and whose atomic number cannot be specified sufficiently accurately.

次に、本発明の第2実施形態の蛍光X線分析装置について説明する。非測定元素に対応する2次X線として、前記第1実施形態の装置では、散乱線を用いたところ、第2実施形態の装置では、内標準元素の蛍光X線、具体的には試料に所定量添加した元素の蛍光X線または試料が付着している基板を構成する元素の蛍光X線を用いる点のみが異なる。つまり、前式(2)が1つ増える代わりに、前式(3)、(5)、(6)は不要となる。また、前式(9)に代えて、次式(10)を用いる。   Next, a fluorescent X-ray analyzer according to the second embodiment of the present invention will be described. As secondary X-rays corresponding to non-measuring elements, scattered light is used in the apparatus of the first embodiment. In the apparatus of the second embodiment, fluorescent X-rays of internal standard elements, specifically, samples are used. The only difference is that a fluorescent X-ray of an element added in a predetermined amount or a fluorescent X-ray of an element constituting the substrate to which the sample is attached is used. That is, instead of increasing the previous formula (2) by one, the previous formulas (3), (5), and (6) become unnecessary. Further, the following formula (10) is used instead of the previous formula (9).

fmeasTi−IFTi=(dIFTi/dZ)ΔZ …(10) I fmeasTi −I FTi = (dI FTi / dZ) ΔZ (10)

第2実施形態の装置によれば、Cr ターゲットのX線管などをX線源として用いてコンプトン散乱線が測定できないような場合でも、前記第1実施形態の装置と同様の作用効果が得られる。   According to the apparatus of the second embodiment, even when the Compton scattered radiation cannot be measured using an X-ray tube or the like of a Cr target as an X-ray source, the same effect as the apparatus of the first embodiment can be obtained. .

以上の第1、第2実施形態の装置は、通常、コンピュータを備えるが、そのコンピュータを前記算出手段として機能させるためのプログラムも、本発明の実施形態である。   The apparatuses of the first and second embodiments described above normally include a computer, but a program for causing the computer to function as the calculation unit is also an embodiment of the present invention.

本発明の第1、第2実施形態の蛍光X線分析装置を示す概略図である。It is the schematic which shows the fluorescent X-ray-analysis apparatus of 1st, 2nd embodiment of this invention. 同装置が備える算出手段の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the calculation means with which the apparatus is provided. 単一の軽元素からなる試料の原子番号と試料から発生するRh −Kαのコンプトン散乱線の強度との関係を、4種類の面積密度について理論計算した結果を示す図である。It is a figure which shows the result of having theoretically calculated the relationship between the atomic number of the sample which consists of a single light element, and the intensity | strength of the Compton scattered ray of Rh-K (alpha) generated from a sample about four types of area densities. 同様に、試料の原子番号と試料から発生するRh −Kαのトムソン散乱線の強度との関係を示す図である。Similarly, it is a figure which shows the relationship between the atomic number of a sample, and the intensity | strength of the Rh-K (alpha) Thomson scattered ray generate | occur | produced from a sample. 同様に、試料の原子番号と試料から発生するRh −Kαのトムソン散乱線の強度に対するRh −Kαのコンプトン散乱線の強度の比との関係を示す図である。Similarly, it is a figure which shows the relationship between the atomic number of a sample, and the ratio of the intensity | strength of the Rh-Kα Compton scattered ray to the intensity of the Rh-Kα Thomson scattered ray generated from the sample.

符号の説明Explanation of symbols

1 X線源
2 1次X線
4 2次X線(蛍光X線、散乱線)
9 検出手段
10 算出手段
13 試料
1 X-ray source 2 Primary X-ray 4 Secondary X-ray (fluorescent X-ray, scattered radiation)
9 Detection means 10 Calculation means 13 Sample

Claims (7)

試料に1次X線を照射するX線源と、
試料中の各元素から発生する蛍光X線および1次X線の散乱線の強度を測定する検出手段と、
仮定した元素の濃度に基づいて、試料中の各元素から発生する蛍光X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した元素の濃度を逐次近似的に修正計算して、試料における元素の濃度を算出する算出手段とを備えた蛍光X線分析装置において、
前記算出手段が、蛍光X線を測定しない非測定元素については、平均原子番号を仮定して、蛍光X線に代えて前記散乱線を対応させて用い、前記検出手段で強度を測定した蛍光X線ごと、散乱線ごとに作成した差分連立方程式を解いて、前記仮定した元素の濃度を更新するための修正値および前記仮定した平均原子番号を更新するための修正値を求めることにより、前記理論強度と前記換算測定強度とが一致するように、前記仮定した元素の濃度および前記仮定した平均原子番号を逐次近似的に修正計算して、試料における元素の濃度を算出することを特徴とする蛍光X線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
Detection means for measuring the intensity of fluorescent X-rays and primary X-ray scattered rays generated from each element in the sample ;
Based on the assumed element concentration, the theoretical intensity of fluorescent X-rays generated from each element in the sample is calculated, and the converted intensity measured by converting the theoretical intensity and the measured intensity measured by the detection means into a theoretical intensity scale; In the fluorescent X-ray analysis apparatus comprising the calculating means for calculating the concentration of the element in the sample by sequentially correcting and correcting the assumed element concentration so as to match,
For the non-measuring element that does not measure the fluorescent X-ray, the calculation means assumes an average atomic number, uses the scattered radiation instead of the fluorescent X-ray, and uses the detection means to measure the intensity of the fluorescent X By solving the differential simultaneous equations created for each line and each scattered ray, obtaining a correction value for updating the assumed element concentration and a correction value for updating the assumed average atomic number, the theory Fluorescence characterized in that the concentration of the assumed element and the assumed average atomic number are successively approximated and corrected so that the intensity and the converted measured intensity coincide with each other to calculate the concentration of the element in the sample X-ray analyzer.
請求項1において、
前記散乱線の理論強度および測定強度として、1次X線の連続X線の散乱線の理論強度および測定強度、コンプトン散乱線の理論強度および測定強度、トムソン散乱線の理論強度および測定強度、ならびに、それらの散乱線のうちいずれか2つの散乱線の理論強度比および測定強度比からなる一群から選ばれた1つを用いる蛍光X線分析装置。
In claim 1,
The theoretical intensity and measured intensity of the scattered X-ray, the theoretical intensity and measured intensity of the primary X-ray continuous X-ray, the theoretical intensity and measured intensity of the Compton scattered ray, the theoretical intensity and measured intensity of the Thomson scattered ray, and A fluorescent X-ray analyzer using one selected from the group consisting of the theoretical intensity ratio and the measured intensity ratio of any two of the scattered rays.
請求項2において、
前記算出手段が、トムソン散乱線と蛍光X線との重なりおよび/またはトムソン散乱線の測定強度と測定時間から推定した相対測定精度に基づいて、前記散乱線の理論強度および測定強度として、前記一群から1つを選択する蛍光X線分析装置。
In claim 2,
Based on the relative measurement accuracy estimated from the overlap between Thomson scattered rays and fluorescent X-rays and / or the measured intensity of Thomson scattered rays and the measurement time, the calculation means uses the group as the theoretical intensity and measured intensity of the scattered rays. X-ray fluorescence analyzer for selecting one from the following.
請求項1ないし3のいずれか一項において、
前記算出手段が、あらかじめ試料の種類ごとにコンプトン散乱線とトムソン散乱線の測定強度比と前記散乱線の測定強度を理論強度スケールに換算するための装置感度とを記憶しており、コンプトン散乱線とトムソン散乱線の測定強度比に基づいて試料の種類を判定し、対応する装置感度を用いて前記換算測定強度を求める蛍光X線分析装置。
In any one of Claims 1 thru | or 3,
The calculation means stores in advance the measurement intensity ratio of Compton scattered radiation and Thomson scattered radiation for each type of sample and device sensitivity for converting the measured intensity of the scattered radiation into a theoretical intensity scale, and Compton scattered radiation And a Thomson scattered radiation measurement intensity ratio, a fluorescent X-ray analyzer that determines the type of sample and obtains the converted measurement intensity using the corresponding apparatus sensitivity.
請求項1において、
前記算出手段が、前記非測定元素のうち、水素以外の元素については、平均原子番号を仮定して、蛍光X線に代えて、コンプトン散乱線、トムソン散乱線および1次X線の連続X線の散乱線のうちのいずれか1つの散乱線対応させて用い、水素については、その濃度を仮定して、蛍光X線に代えて、前記平均原子番号を仮定した水素以外の元素に対応する散乱線とは異なる散乱線を対応させている蛍光X線分析装置。
In claim 1,
For the elements other than hydrogen among the non-measured elements, the calculating means assumes a mean atomic number, and instead of fluorescent X-rays, Compton scattered rays, Thomson scattered rays and primary X-ray continuous X-rays Any one of the scattered rays is used correspondingly, and with respect to hydrogen, assuming its concentration, it corresponds to an element other than hydrogen assuming the average atomic number instead of fluorescent X-ray. scattered ray fluorescence X-ray analysis apparatus are use in association with different scattered radiation from.
試料に1次X線を照射するX線源と、
試料中の各元素から発生する蛍光X線の強度を測定する検出手段と、
仮定した元素の濃度に基づいて、試料中の各元素から発生する蛍光X線の理論強度を計算し、その理論強度と前記検出手段で測定した測定強度を理論強度スケールに換算した換算測定強度とが一致するように、前記仮定した元素の濃度を逐次近似的に修正計算して、試料における元素の濃度を算出する算出手段とを備えた蛍光X線分析装置において、
前記算出手段が、蛍光X線を測定しない非測定元素については、平均原子番号を仮定して、試料に所定量添加した元素の蛍光X線または試料が付着している基板を構成する元素の蛍光X線を対応させて用い、前記検出手段で強度を測定した蛍光X線ごとに作成した差分連立方程式を解いて、前記仮定した元素の濃度を更新するための修正値および前記仮定した平均原子番号を更新するための修正値を求めることにより、前記理論強度と前記換算測定強度とが一致するように、前記仮定した元素の濃度および前記仮定した平均原子番号を逐次近似的に修正計算して、試料における元素の濃度を算出することを特徴とする蛍光X線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
Detection means for measuring the intensity of fluorescent X-rays generated from each element in the sample ;
Based on the assumed element concentration, the theoretical intensity of fluorescent X-rays generated from each element in the sample is calculated, and the converted intensity measured by converting the theoretical intensity and the measured intensity measured by the detection means into a theoretical intensity scale; In the fluorescent X-ray analysis apparatus comprising: a calculation means for calculating the concentration of the element in the sample by sequentially correcting and correcting the assumed element concentration so as to match,
The calculating means, for the unmeasured element which does not measure the fluorescent X-ray, the average atomic number assuming, of elements X-ray fluorescence or sample a predetermined amount the elements added to the specimen constitutes the substrate adhering A correction value for updating the assumed concentration of the element and the assumed average atom by solving the differential simultaneous equations created for each fluorescent X-ray whose intensity is measured by the detection means using the corresponding X-ray fluorescence By calculating a correction value for updating the number, the concentration of the assumed element and the assumed average atomic number are sequentially corrected and calculated so that the theoretical intensity and the converted measurement intensity coincide with each other. An X-ray fluorescence analyzer characterized by calculating the concentration of an element in a sample .
請求項1ないし6のいずれか一項に記載の蛍光X線分析装置が備えるコンピュータを前記算出手段として機能させるためのプログラム。   The program for functioning the computer with which the fluorescent X-ray-analysis apparatus as described in any one of Claims 1 thru | or 6 is provided as the said calculation means.
JP2004251785A 2004-08-31 2004-08-31 X-ray fluorescence analyzer and program used therefor Expired - Lifetime JP3965173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251785A JP3965173B2 (en) 2004-08-31 2004-08-31 X-ray fluorescence analyzer and program used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251785A JP3965173B2 (en) 2004-08-31 2004-08-31 X-ray fluorescence analyzer and program used therefor

Publications (2)

Publication Number Publication Date
JP2006071311A JP2006071311A (en) 2006-03-16
JP3965173B2 true JP3965173B2 (en) 2007-08-29

Family

ID=36152121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251785A Expired - Lifetime JP3965173B2 (en) 2004-08-31 2004-08-31 X-ray fluorescence analyzer and program used therefor

Country Status (1)

Country Link
JP (1) JP3965173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100611A1 (en) 2021-12-01 2023-06-08 株式会社リガク X-ray fluorescence analysis device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3965191B2 (en) 2005-04-06 2007-08-29 理学電機工業株式会社 X-ray fluorescence analyzer and program used therefor
JP4834613B2 (en) * 2007-06-11 2011-12-14 株式会社リガク X-ray fluorescence analyzer and method
JP5276382B2 (en) * 2008-08-28 2013-08-28 株式会社リガク X-ray fluorescence analyzer
JP5634763B2 (en) * 2010-06-21 2014-12-03 株式会社堀場製作所 X-ray fluorescence analyzer and computer program
CN102346156B (en) * 2011-06-24 2012-12-12 江苏龙源催化剂有限公司 Method for measuring active component content in selective catalytic reduction de-nitration catalyst
WO2015056305A1 (en) * 2013-10-15 2015-04-23 株式会社島津製作所 X-ray fluorescence analysis method and x-ray fluorescence analysis device
JP6507757B2 (en) * 2015-03-20 2019-05-08 株式会社島津製作所 Foreign substance analyzer
JP6507898B2 (en) * 2015-07-13 2019-05-08 株式会社島津製作所 Resin discrimination device
JP7190751B2 (en) 2020-10-30 2022-12-16 株式会社リガク X-ray fluorescence analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100611A1 (en) 2021-12-01 2023-06-08 株式会社リガク X-ray fluorescence analysis device

Also Published As

Publication number Publication date
JP2006071311A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP3965191B2 (en) X-ray fluorescence analyzer and program used therefor
JP4247559B2 (en) X-ray fluorescence analyzer and program used therefor
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
US20100272232A1 (en) Rapid Screening for Lead Concentration Compliance by X-Ray Fluorescence (XRF) Analysis
JP2008309807A (en) Method of determining background corrected count of radiation quantum in x-ray energy spectrum
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
JPH05240808A (en) Method for determining fluorescent x rays
JP2848751B2 (en) Elemental analysis method
JP5697388B2 (en) X-ray analysis method, X-ray analysis apparatus and program thereof
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP2005513478A5 (en)
JP4237891B2 (en) Background correction method for fluorescent X-ray analyzer and fluorescent X-ray analyzer using the method
JP3610256B2 (en) X-ray fluorescence analyzer
JP2928688B2 (en) Pollution element analysis method and device
JP5874108B2 (en) X-ray fluorescence analyzer
EP3885758A1 (en) Analysis method and x-ray fluorescence analyzer
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JP3729186B2 (en) X-ray fluorescence analyzer
WO2023100611A1 (en) X-ray fluorescence analysis device
WO2024095551A1 (en) Fluorescent x-ray analysis method, analysis program, and fluorescent x-ray analysis device
JP7190751B2 (en) X-ray fluorescence analyzer
JP5043387B2 (en) Film analysis method and apparatus by fluorescent X-ray analysis
JP3399861B2 (en) X-ray analyzer
JP2947404B2 (en) X-ray fluorescence analysis method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3965173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250