JP2001249089A - Method and apparatus for fluorescence x-ray analysis - Google Patents

Method and apparatus for fluorescence x-ray analysis

Info

Publication number
JP2001249089A
JP2001249089A JP2000059939A JP2000059939A JP2001249089A JP 2001249089 A JP2001249089 A JP 2001249089A JP 2000059939 A JP2000059939 A JP 2000059939A JP 2000059939 A JP2000059939 A JP 2000059939A JP 2001249089 A JP2001249089 A JP 2001249089A
Authority
JP
Japan
Prior art keywords
line
fluorescent
ray
intensity ratio
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000059939A
Other languages
Japanese (ja)
Other versions
JP3527956B2 (en
Inventor
Yoshiyuki Kataoka
由行 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2000059939A priority Critical patent/JP3527956B2/en
Publication of JP2001249089A publication Critical patent/JP2001249089A/en
Application granted granted Critical
Publication of JP3527956B2 publication Critical patent/JP3527956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus capable of properly searching for fluorescence X-rays or component to be used in the overlap correction of analytic rays in fluorescence X-ray analysis to display the same. SOLUTION: The theoretical intensities of analytic rays and a jamming rays are calculated on the basis of the composition data of a sample 13 and the intensity ratio of the jamming rays to the analytic rays in the wavelength of the analytic rays is calculated as a degree of influence of overlap on the basis of both theoretical intensities and the degree of influence of the overlap of respective jamming rays is compared with a predetermined value and fluorescence X-rays to be used in the overlap correction of the analytic rays or a component for generating the same is detected to be displayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光X線分析にお
いて、分析線の重なり補正に用いるべき蛍光X線または
成分を検索する方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for retrieving fluorescent X-rays or components to be used for correcting the overlap of analytical lines in fluorescent X-ray analysis.

【0002】[0002]

【従来の技術】従来より、例えば、分光素子を用いる波
長分散型の蛍光X線分析では、分析装置の分解能の関係
で、測定される蛍光X線は、波長(またはエネルギー)
においてある程度拡がりを有する。このような蛍光X線
の測定結果(強度と波長またはエネルギーとの関係)を
スペクトルというが、測定対象の蛍光X線である分析線
に対し、波長が近似する別の蛍光X線が妨害線としてス
ペクトルの一部において重なる場合がある。このような
妨害線の重なりの影響を除去して、分析線について正確
に分析するために、例えば特開平10−123071号
や特願平11−196153号等に示されるように、妨
害線の測定強度もしくは理論強度または妨害線を発生す
る成分の含有率を用いて重なり補正をしている。
2. Description of the Related Art Conventionally, for example, in wavelength-dispersive X-ray fluorescence analysis using a spectroscopic element, the X-ray fluorescence to be measured has a wavelength (or energy) depending on the resolution of an analyzer.
Has a certain extent. Such a fluorescent X-ray measurement result (relationship between intensity and wavelength or energy) is called a spectrum, and another fluorescent X-ray whose wavelength is close to that of an analysis line, which is the fluorescent X-ray to be measured, is an interference line. It may overlap in part of the spectrum. In order to remove the influence of such overlapping of the interference lines and accurately analyze the analysis line, as described in, for example, Japanese Patent Application Laid-Open No. 10-123071 and Japanese Patent Application No. 11-196153, measurement of the interference line is performed. The overlap is corrected using the intensity or the theoretical intensity or the content of the component that generates the interference line.

【0003】[0003]

【発明が解決しようとする課題】しかし、分析線に対し
て、妨害線がどの程度の重なり具合で現れるかは、試料
の組成や用いる分析装置の検出手段等についての測定条
件によって異なるので、どの蛍光X線または成分を分析
線の測定に影響あるものとして重なり補正に用いるべき
かの判断も、測定ごとに必要で、しかもその判断には、
分析線近傍のスペクトルを測定し現れたピークと波長表
とを照合して調べる等の作業のために、蛍光X線分析に
関する技術的な知識が要求されるので容易でない。すな
わち、妨害線が特定できれば、その強度等を用いて重な
り補正をする方法は、前述のように種々あるが、分析線
の測定に影響する妨害線を適切に特定することが容易で
ない。
However, the degree to which the interference line appears with respect to the analysis line depends on the composition of the sample and the measurement conditions of the detection means of the analyzer used. It is necessary to determine for each measurement whether fluorescent X-rays or components should be used for the overlap correction as having an influence on the measurement of the analytical line.
It is not easy to measure the spectrum in the vicinity of the analysis line and to check the resulting peak against the wavelength table, for example, because technical knowledge on X-ray fluorescence analysis is required. That is, if an interference line can be identified, there are various methods for performing overlap correction using the intensity or the like as described above, but it is not easy to appropriately identify the interference line that affects the measurement of the analysis line.

【0004】本発明は前記従来の問題に鑑みてなされた
もので、蛍光X線分析において、分析線の重なり補正に
用いるべき蛍光X線または成分を適切に検索して表示で
きる方法および装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and provides a method and apparatus capable of appropriately searching and displaying fluorescent X-rays or components to be used for correction of overlap of analytical lines in fluorescent X-ray analysis. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析方法では、試料にX線源か
ら1次X線を照射して発生する蛍光X線の強度を検出手
段で測定する蛍光X線分析方法において、まず、分析対
象とする試料品種の代表的組成に基づいて、測定対象の
蛍光X線である分析線と、その分析線に対し所定の波長
の範囲で近傍にある蛍光X線である妨害線とについて、
それぞれ理論強度を計算する。そして、分析線と妨害線
の理論強度に基づいて、分析線の波長における分析線に
対する妨害線の強度比を重なりの影響度として求め、各
妨害線の重なりの影響度を所定の値と比較することによ
り、分析線の重なり補正に用いるべき蛍光X線またはそ
れを発生する成分を検索して表示する。
In order to achieve the above object, in the X-ray fluorescence analysis method of the present invention, the intensity of X-ray fluorescence generated by irradiating a sample with primary X-rays from an X-ray source is measured. In the X-ray fluorescence analysis method of measuring by the detection means, first, based on the representative composition of the sample type to be analyzed, an analysis line which is the X-ray fluorescence to be measured, and a predetermined wavelength range with respect to the analysis line And the interference line, which is a fluorescent X-ray in the vicinity,
Calculate the theoretical strength for each. Then, based on the theoretical intensity of the analysis line and the interference line, the intensity ratio of the interference line to the analysis line at the wavelength of the analysis line is determined as the degree of influence of the overlap, and the degree of influence of the overlap of each interference line is compared with a predetermined value. Thereby, the fluorescent X-rays to be used for the overlap correction of the analysis lines or the components that generate the fluorescent X-rays are retrieved and displayed.

【0006】請求項1の方法によれば、試料の組成情報
をもとに計算した分析線と妨害線の理論強度に基づい
て、妨害線の重なりの影響度が高い信頼性で求められる
ので、分析線の重なり補正に用いるべき蛍光X線または
成分を適切に検索して表示できる。
According to the method of the first aspect, the influence of the overlap of the interference line can be obtained with high reliability based on the theoretical intensity of the analysis line and the interference line calculated based on the composition information of the sample. The X-ray fluorescence or the component to be used for the correction of the overlap of the analysis lines can be appropriately searched and displayed.

【0007】請求項2の蛍光X線分析方法では、請求項
1の方法において、前記検出手段が、試料から発生する
蛍光X線を分光する分光素子と、その分光素子で分光さ
れた蛍光X線が入射されて蛍光X線のエネルギーに応じ
た波高のパルスを強度に応じた数だけ発生させる検出器
と、その検出器で発生したパルスのうち所定の波高の範
囲のものを選別する波高分析器とを含んでいる。すなわ
ち、波長分散型の蛍光X線分析方法である。そして、前
記分光素子で分光される2次以上の高次線である妨害線
について、分析対象とする試料品種の代表的組成につい
ての理論強度ならびに前記波高分析器での波高分布曲線
および所定の波高の範囲に基づいて、1次線に対する高
次線の強度比を次数間強度比として求め、その次数間強
度比を用いて前記重なりの影響度を求める。
According to a second aspect of the present invention, in the method of the first aspect, the detecting means includes a spectroscopic element for separating the fluorescent X-rays generated from the sample and a fluorescent X-ray separated by the spectroscopic element. And a detector for generating a pulse having a pulse height corresponding to the energy of the fluorescent X-rays by the number corresponding to the intensity, and a pulse height analyzer for selecting pulses in a predetermined pulse height range among the pulses generated by the detector. And That is, it is a wavelength dispersive X-ray fluorescence analysis method. The theoretical intensity of the representative composition of the sample type to be analyzed with respect to the disturbing line, which is a second-order or higher-order line separated by the spectroscopic element, the wave height distribution curve obtained by the wave height analyzer, and the predetermined wave height , The intensity ratio of the higher-order line to the primary line is determined as the inter-order intensity ratio, and the degree of influence of the overlap is determined using the inter-order intensity ratio.

【0008】請求項2の方法によれば、1次線のみなら
ず2次以上の高次線である妨害線についても適切に考慮
して重なりの影響度を求めるので、分析線の重なり補正
に用いるべき蛍光X線または成分をいっそう適切に検索
して表示できる。
According to the method of the second aspect, the degree of influence of the overlap is determined by appropriately considering not only the primary line but also the interference line which is a higher-order line of the second or higher order. The fluorescent X-rays or components to be used can be more appropriately searched and displayed.

【0009】請求項3の蛍光X線分析方法では、請求項
2の方法において、前記波高分析器での波高分布曲線に
おいて現れるエスケープピークについて、あらかじめ、
エスケープピークを発生させる高次線である妨害線に対
するエスケープピークの強度比をエスケープピーク強度
比として求めておき、そのエスケープピーク強度比を用
いて前記次数間強度比を求める。
According to a third aspect of the present invention, in the method of the second aspect, an escape peak appearing in a peak distribution curve of the peak analyzer is determined in advance.
The intensity ratio of the escape peak to the interference line, which is a higher-order line that generates an escape peak, is determined as an escape peak intensity ratio, and the inter-order intensity ratio is determined using the escape peak intensity ratio.

【0010】請求項3の方法によれば、さらにエスケー
プピークも含めて高次線である妨害線について適切に考
慮して重なりの影響度を求めるので、分析線の重なり補
正に用いるべき蛍光X線または成分をよりいっそう適切
に検索して表示できる。
According to the third aspect of the present invention, the influence of the overlap is determined by appropriately considering the interference line, which is a higher-order line including the escape peak, so that the fluorescent X-ray to be used for the overlap correction of the analysis line is obtained. Alternatively, components can be searched and displayed more appropriately.

【0011】請求項4の蛍光X線分析装置は、請求項1
の方法に用いられる装置であって、試料にX線源から1
次X線を照射して発生する蛍光X線の強度を検出手段で
測定する蛍光X線分析装置において、検索手段と表示手
段とを備える。前記検索手段は、分析対象とする試料品
種の代表的組成に基づいて、測定対象の蛍光X線である
分析線と、その分析線に対し所定の波長の範囲で近傍に
ある蛍光X線である妨害線とについて、それぞれ理論強
度を計算し、分析線と妨害線の理論強度に基づいて、分
析線の波長における分析線に対する妨害線の強度比を重
なりの影響度として求め、各妨害線の重なりの影響度を
所定の値と比較することにより、分析線の重なり補正に
用いるべき蛍光X線またはそれを発生する成分を検索す
る。前記表示手段は、前記検索手段で検索した結果を表
示する。請求項4の装置によっても、請求項1の方法と
同様の作用効果が得られる。
According to a fourth aspect of the present invention, there is provided an X-ray fluorescence analyzer.
Used in the method of (1), wherein the sample is applied from an X-ray source to
An X-ray fluorescence analyzer for measuring the intensity of X-ray fluorescence generated by irradiating the next X-ray with a detection unit includes a search unit and a display unit. The search means includes, based on a representative composition of a sample type to be analyzed, an analysis line that is a fluorescent X-ray to be measured, and a fluorescent X-ray that is close to the analysis line within a predetermined wavelength range. Calculate the theoretical intensity of the interference line and the theoretical intensity of the interference line, and calculate the intensity ratio of the interference line to the analysis line at the wavelength of the analysis line as the influence of the overlap based on the theoretical intensity of the analysis line and the interference line. Is compared with a predetermined value, thereby searching for a fluorescent X-ray or a component that generates the fluorescent X-ray to be used for the overlap correction of the analysis line. The display means displays a result searched by the search means. According to the device of the fourth aspect, the same operation and effect as those of the method of the first aspect can be obtained.

【0012】請求項5の蛍光X線分析装置は、請求項2
の方法に用いられる装置であって、請求項4の装置にお
いて、まず、前記検出手段が、試料から発生する蛍光X
線を分光する分光素子と、その分光素子で分光された蛍
光X線が入射されて蛍光X線のエネルギーに応じた波高
のパルスを強度に応じた数だけ発生させる検出器と、そ
の検出器で発生したパルスのうち所定の波高の範囲のも
のを選別する波高分析器とを含んでいる。すなわち、波
長分散型の蛍光X線分析装置である。そして、前記検索
手段が、前記分光素子で分光される2次以上の高次線で
ある妨害線について、分析対象とする試料品種の代表的
組成についての理論強度ならびに前記波高分析器での波
高分布曲線および所定の波高の範囲に基づいて、1次線
に対する高次線の強度比を次数間強度比として求め、そ
の次数間強度比を用いて前記重なりの影響度を求める。
請求項5の装置によっても、請求項2の方法と同様の作
用効果が得られる。
The X-ray fluorescence spectrometer according to claim 5 is the second invention.
5. The apparatus according to claim 4, wherein said detecting means first detects fluorescence X generated from the sample.
A spectroscopic element that disperses the X-rays, a detector that receives fluorescent X-rays separated by the spectroscopic element and generates a number of pulses having a wave height corresponding to the energy of the fluorescent X-rays according to the intensity, and a detector including the detector. A pulse height analyzer for selecting a pulse having a predetermined pulse height in the generated pulses. That is, it is a wavelength dispersive X-ray fluorescence analyzer. Then, the search means determines the theoretical intensity of the representative composition of the sample type to be analyzed and the wave height distribution by the wave height analyzer with respect to the disturbing line, which is a second-order or higher-order line that is spectrally separated by the spectral element. Based on the curve and the predetermined wave height range, the intensity ratio of the higher-order line to the primary line is determined as the inter-order intensity ratio, and the degree of influence of the overlap is determined using the inter-order intensity ratio.
According to the device of the fifth aspect, the same operation and effect as the method of the second aspect can be obtained.

【0013】請求項6の蛍光X線分析装置は、請求項3
の方法に用いられる装置であって、請求項5の装置にお
いて、前記検索手段が、前記波高分析器での波高分布曲
線において現れるエスケープピークについて、エスケー
プピークを発生させる高次線である妨害線に対するエス
ケープピークの強度比をエスケープピーク強度比として
記憶し、その記憶したエスケープピーク強度比を用いて
前記次数間強度比を求める。請求項6の装置によって
も、請求項3の方法と同様の作用効果が得られる。
[0013] The X-ray fluorescence spectrometer according to the sixth aspect is the third aspect of the present invention.
6. The apparatus according to claim 5, wherein the search means is configured to detect an escape peak which appears in a wave height distribution curve of the wave height analyzer with respect to a disturbance line which is a higher-order line which generates an escape peak. The intensity ratio of the escape peak is stored as an escape peak intensity ratio, and the inter-order intensity ratio is obtained using the stored escape peak intensity ratio. According to the device of the sixth aspect, the same operation and effect as those of the method of the third aspect can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施形態の蛍光
X線分析方法について説明する。まず、この方法に用い
る蛍光X線分析装置について、図1にしたがって説明す
る。この装置は、まず、試料13が載置される試料台8
と、試料13に1次X線2を照射するX線管等のX線源
1と、試料13から発生する蛍光X線4の強度を測定す
る検出手段10とを備えている。検出手段10は、試料
13から発生する蛍光X線4を分光する分光素子5と、
その分光素子5で分光された蛍光X線6が入射されて蛍
光X線6のエネルギーに応じた波高(電圧)のパルスを
強度に応じた数だけ発生させる検出器7と、その検出器
7で発生したパルスのうち所定の波高の範囲のものを選
別する波高分析器9とを含んでいる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an X-ray fluorescence analysis method according to an embodiment of the present invention will be described. First, an X-ray fluorescence analyzer used in this method will be described with reference to FIG. The apparatus first includes a sample stage 8 on which a sample 13 is placed.
And an X-ray source 1 such as an X-ray tube for irradiating the sample 13 with primary X-rays 2, and a detecting means 10 for measuring the intensity of fluorescent X-rays 4 generated from the sample 13. The detecting means 10 includes a spectroscopic element 5 for separating the fluorescent X-rays 4 generated from the sample 13,
A detector 7 that receives the fluorescent X-rays 6 separated by the spectroscopic element 5 and generates pulses of a wave height (voltage) corresponding to the energy of the fluorescent X-rays 6 by the number corresponding to the intensity, and the detector 7 And a pulse height analyzer 9 for selecting pulses generated within a predetermined pulse height range from the generated pulses.

【0015】この装置は、さらに、以下の検索手段11
と表示手段12とを備えている。前記検索手段11は、
分析対象とする試料13の品種の代表的組成に基づい
て、測定対象の蛍光X線4である分析線と、その分析線
に対し所定の波長の範囲で近傍にある蛍光X線4である
妨害線とについて、それぞれ理論強度を計算し、分析線
と妨害線の理論強度に基づいて、分析線の波長における
分析線に対する妨害線の強度比を重なりの影響度として
求め、各妨害線の重なりの影響度を所定の値と比較する
ことにより、分析線の重なり補正に用いるべき蛍光X線
4またはそれを発生する成分を検索する。
The apparatus further comprises the following search means 11
And display means 12. The search means 11 comprises:
Based on the representative composition of the type of the sample 13 to be analyzed, an analysis line which is the fluorescent X-ray 4 to be measured and an interference which is the fluorescent X-ray 4 near the analysis line within a predetermined wavelength range. For each line, calculate the theoretical intensity, and based on the theoretical intensity of the analytical line and the disturbing line, calculate the intensity ratio of the disturbing line to the analytical line at the wavelength of the analyzing line as the degree of influence of the overlap. By comparing the degree of influence with a predetermined value, a search is made for the fluorescent X-rays 4 to be used for the overlap correction of the analysis lines or the components generating the fluorescent X-rays.

【0016】また、この検索手段11は、前記分光素子
5で分光される2次以上の高次線である妨害線につい
て、分析対象とする試料品種の代表的組成についての理
論強度ならびに前記波高分析器9での波高分布曲線およ
び所定の波高の範囲に基づいて、1次線に対する高次線
の強度比を次数間強度比として求め、その次数間強度比
を用いて前記重なりの影響度を求める。さらに、この検
索手段11は、前記波高分析器9での波高分布曲線にお
いて現れるエスケープピークについて、エスケープピー
クを発生させる高次線である妨害線に対するエスケープ
ピークの強度比をエスケープピーク強度比として記憶
し、その記憶したエスケープピーク強度比を用いて前記
次数間強度比を求める。前記表示手段12は、例えばC
RTであって、この検索手段11で検索した結果を表示
する。
The search means 11 calculates the theoretical intensity of the representative composition of the sample type to be analyzed with respect to the interference line, which is a higher-order line of second or higher order, which is separated by the spectroscopic element 5 and the wave height analysis. The intensity ratio of the higher-order line to the primary line is determined as the inter-order intensity ratio based on the peak-height distribution curve in the detector 9 and the predetermined range of the peak height, and the degree of influence of the overlap is determined using the inter-order intensity ratio. . Further, the search means 11 stores, as an escape peak intensity ratio, an escape peak intensity ratio of an escape peak appearing in the wave height distribution curve of the wave height analyzer 9 with respect to a disturbance line which is a higher-order line generating the escape peak. Then, the inter-order intensity ratio is obtained using the stored escape peak intensity ratio. The display means 12 is, for example, C
RT, the result of the search by the search means 11 is displayed.

【0017】次に、この装置を用いる本実施形態の蛍光
X線分析方法について説明する。まず、分析対象とする
試料13の品種の代表的組成に基づいて、検索手段11
により、測定対象の蛍光X線4である分析線iと、その
分析線iに対し所定の波長の範囲で近傍にある蛍光X線
4である妨害線j(特性X線の波長表から検索して得ら
れ、通常複数である)とについて、それぞれファンダメ
ンタルパラメータ法により理論強度Ii ,Ij を計算す
る。所定の波長の範囲は、分析線に対し、波長が近似す
る別の蛍光X線がスペクトルの一部において重なる可能
性のある範囲で、例えば分析線ごとにあらかじめ適切に
設定しておく。
Next, an X-ray fluorescence analysis method of this embodiment using this apparatus will be described. First, based on the typical composition of the variety of the sample 13 to be analyzed, the search means 11
As a result, the analysis line i which is the fluorescent X-ray 4 to be measured and the interference line j which is the fluorescent X-ray 4 near the analysis line i within a predetermined wavelength range (retrieved from the characteristic X-ray wavelength table). , Respectively, are usually obtained in plural numbers), and the theoretical intensities Ii and Ij are respectively calculated by the fundamental parameter method. The predetermined wavelength range is a range in which another fluorescent X-ray whose wavelength is close to the analysis line may overlap in a part of the spectrum, and is appropriately set in advance, for example, for each analysis line.

【0018】また、分析線の測定にあたり、ピークの両
側の波長でバックグラウンドを測定し差し引いてネット
強度を求める場合であって、別の蛍光X線の波長(ピー
ク)が、分析線からみてバックグラウンドの測定波長よ
りも外側にある場合には、バックグラウンドを差し引い
てネット強度を求める段階で、別の蛍光X線の重なりも
含めて除去されるので、妨害線として扱う必要がない。
すなわち、このような蛍光X線は、分析線に対し所定の
波長の範囲で近傍にある蛍光X線には、含まれない。
In the measurement of the analytical line, the background is measured at the wavelengths on both sides of the peak, and the net intensity is obtained by subtracting the background. The wavelength (peak) of another fluorescent X-ray is different from that of the analytical line. If it is outside the measured wavelength of the ground, it is removed including the overlap of another fluorescent X-ray at the stage of obtaining the net intensity by subtracting the background, so that it is not necessary to treat it as an interference line.
That is, such fluorescent X-rays are not included in the fluorescent X-rays that are in the vicinity of the analysis line within a predetermined wavelength range.

【0019】この実施形態の方法では、1次線のみなら
ず2次以上の高次線である妨害線についても考慮する。
すなわち、以下のように、検索手段11により、前記分
光素子5で分光される2次以上の高次線である妨害線に
ついて、分析対象とする試料品種の代表的組成について
の理論強度ならびに前記波高分析器9での波高分布曲線
および所定の波高の範囲に基づいて、1次線に対する高
次線の強度比を次数間強度比Rhij として求める。この
次数間強度比Rhij は、次述するように、1次線と高次
線間における分光素子5の反射特性および検出器7の計
数効率の相違による強度比Rrej と、同線間における波
高分析器9での減衰の相違による強度比Rphj との積で
ある。
In the method of this embodiment, not only the primary line, but also a disturbing line which is a higher-order line of the second or higher order is considered.
That is, as described below, with respect to the disturbing line, which is a second-order or higher-order line separated by the spectroscopic element 5, the theoretical intensity of the representative composition of the sample type to be analyzed and the wave height The intensity ratio of the higher-order line to the primary line is determined as the inter-order intensity ratio R hi j based on the wave height distribution curve in the analyzer 9 and the predetermined wave height range. As described below, the inter-order intensity ratio R hi j is the same as the intensity ratio R re j between the primary line and the higher-order line due to the difference in the reflection characteristics of the spectroscopic element 5 and the counting efficiency of the detector 7. It is the product of the intensity ratio R ph j and the difference in attenuation in the pulse height analyzer 9 between the two.

【0020】まず、分析対象とする試料品種の代表的組
成を用いて、妨害線ごとに2次線から用いる分光素子5
で反射(回折、分光)しうる次数の高次線までについ
て、理論強度を求め、1次線についての値を1とする相
対的な前記強度比Rrej として、検索手段11に記憶さ
せておく。ここで、求める強度は、下限値と上限値で決
められる波高分析器9の前記所定の波高の範囲の下限値
と上限値を用いず(全波高値範囲)、積分測定として求
める。
First, using the representative composition of the sample type to be analyzed, the spectroscopic element 5 used for each interference line from the secondary line is used.
The theoretical intensity is obtained up to a higher-order line of an order that can be reflected (diffraction, spectral) by the above-described method, and stored as the relative intensity ratio R re j in which the value of the primary line is set to 1 and stored in the search means 11. deep. Here, the intensity to be obtained is obtained as an integral measurement without using the lower limit and the upper limit of the predetermined range of the wave height of the wave height analyzer 9 determined by the lower limit and the upper limit (the entire peak value range).

【0021】次に、下限値と上限値で決められる前記所
定の波高の範囲に基づく波高分析器9での選別による減
衰についての前記強度比Rphj を求める。そのために、
あらかじめ、用いる検出器7および波高分析器9で1次
線(エネルギー:Erp)の波高分布曲線の分解能(半値
幅)ERrpを測定し、検索手段11に記憶させておく。
高次線の波高分布曲線については、形状はガウス分布を
仮定し、分解能ERは、次式(1)のように、同一検出
器であればエネルギーEの平方根に反比例するものとし
て、記憶した1次線についての分解能ERrpから計算で
求める。
Next, the intensity ratio R ph j with respect to the attenuation by the selection in the peak height analyzer 9 based on the predetermined range of the peak height determined by the lower limit value and the upper limit value is obtained. for that reason,
The resolution (half width) ER rp of the peak distribution curve of the primary line (energy: E rp ) is measured in advance by the detector 7 and the peak height analyzer 9 to be used, and stored in the search means 11.
Regarding the wave height distribution curve of the higher-order line, the shape is assumed to be Gaussian, and the resolution ER is stored as 1 which is inversely proportional to the square root of the energy E for the same detector as shown in the following equation (1). It is calculated from the resolution ER rp of the next line.

【0022】 ER=(Erp/E)1/2 ・ERrp …(1)ER = (E rp / E) 1/2 · ER rp (1)

【0023】ここで、エネルギーEは、波長λに反比例
し、次式(2)で得られる。高次線のエネルギーEは、
1次線のエネルギーERに次数を乗じた値である。な
お、hは定数である。
Here, the energy E is inversely proportional to the wavelength λ and is obtained by the following equation (2). The energy E of the higher-order line is
It is a value obtained by multiplying the energy ER of the primary line by the order. Note that h is a constant.

【0024】E=h/λ …(2)E = h / λ (2)

【0025】さらに、この実施形態の方法では、波高分
析器での波高分布曲線において現れるエスケープピーク
も含めて高次線である妨害線について考慮する。例え
ば、P−10ガスを使用するガスフロー型比例計数管を
検出器7として用いる場合であって、アルゴンガスのK
吸収端のエネルギーよりも大きいエネルギーの蛍光X線
を測定する場合には、エスケープピークが、もとの蛍光
X線のエネルギーよりもAr −Kα線のエネルギー分だ
け小さいエネルギー位置に現れる。そこで、この実施形
態の方法では、高次線の波高分布曲線と同様に、エスケ
ープピークの波高分布曲線についても、形状はガウス分
布を仮定し、もとの高次線のピークの強度に対するエス
ケープピーク(頂点)の強度の比を、あらかじめ測定に
より求めてエスケープピーク強度比として検索手段11
に記憶させておく。
Further, in the method of this embodiment, a higher-order interference line is considered, including an escape peak appearing in a peak distribution curve of a peak analyzer. For example, a case where a gas flow type proportional counter using P-10 gas is used as the detector 7 and the K of argon gas is used.
When measuring a fluorescent X-ray having an energy larger than the energy at the absorption edge, an escape peak appears at an energy position smaller than the original fluorescent X-ray energy by the energy of the Ar-Kα ray. Therefore, in the method of this embodiment, similarly to the wave height distribution curve of the higher-order line, the shape of the wave height distribution curve of the escape peak assumes a Gaussian distribution, and the escape peak relative to the intensity of the peak of the original higher-order line. The search unit 11 obtains the ratio of the (vertex) intensities in advance by measuring it as an escape peak intensity ratio.
To be stored.

【0026】そして、前記記憶した1次線についての分
解能ERrpおよびエスケープピーク強度比に基づいて、
高次線の波高分布曲線において、高次線およびそのエス
ケープピークの全体の強度に対する高次線およびそのエ
スケープピークにおける前記所定の波高の範囲内の強度
の比を、1次線についての値を1とする相対的な前記強
度比(波高分析器9での減衰の相違による強度比)Rph
j として計算で求める。
Then, based on the resolution ER rp and the escape peak intensity ratio for the stored primary line,
In the wave height distribution curve of the higher-order line, the ratio of the intensity within the predetermined wave height at the higher-order line and its escape peak to the overall intensity of the higher-order line and its escape peak is set to 1 for the primary line. Relative intensity ratio (intensity ratio due to difference in attenuation in wave height analyzer 9) R ph
Calculate as j.

【0027】以上のように記憶した分光素子5の反射特
性および検出器7の計数効率に関する強度比Rrej と、
求めた波高分析器9での減衰に関する強度比Rphj との
積として、次式(3)のように、前記1次線に対する高
次線の次数間強度比Rhij を計算で求める。次数間強度
比Rhij も、1次線については値が1になる。
The intensity ratio R rej relating to the reflection characteristics of the spectral element 5 and the counting efficiency of the detector 7 stored as described above,
As a product of the obtained intensity ratio R ph j relating to the attenuation in the wave height analyzer 9, the inter-order intensity ratio R hi j of the higher-order line with respect to the primary line is calculated by the following equation (3). The inter-order intensity ratio R hi j also has a value of 1 for the primary line.

【0028】Rhij =Rrej ・Rphj …(3)R hi j = R re j · R ph j (3)

【0029】次に、分光素子5での分光角いわゆる2θ
(波長に対応する)における分析線と妨害線との差によ
る影響を考慮する。まず、用いる装置において2θと測
定強度を軸とするスペクトルを測定し、妨害線ごとの半
値幅を検索手段11に記憶させておく。そして、妨害線
のプロファイルの形状を、ガウス分布とローレンツ分布
の合成と仮定し、記憶した半値幅に基づいて、次式
(4)のように、妨害線のピーク強度Ia に対する分析
線の分光角における妨害線の強度Ib の比を、分光角差
による強度比Rofj として計算で求める。
Next, the spectral angle at the spectral element 5, that is, 2θ,
Consider the effect of the difference between the analysis line and the interference line (corresponding to the wavelength). First, a spectrum using 2θ and the measured intensity as axes is measured in an apparatus to be used, and the half value width for each interference line is stored in the search means 11. Then, assuming that the shape of the profile of the interference line is a combination of a Gaussian distribution and a Lorentz distribution, based on the stored half-value width, the spectral angle of the analysis line with respect to the peak intensity Ia of the interference line is calculated as in the following equation (4). Is calculated by calculation as an intensity ratio R of j based on the spectral angle difference.

【0030】Rofj =Ib /Ia …(4)R of j = Ib / Ia (4)

【0031】以上のように求めた妨害線の理論強度Ij
、次数間強度比Rhij および分光角差による強度比R
ofj から、分析線の波長において分析線に重なる妨害線
の強度Iovj を、次式(5)のように計算で求める。
The theoretical intensity Ij of the interference line obtained as described above
, The order intensity ratio R hi j and the intensity ratio R due to the spectral angle difference
From the value of j, the intensity I ov j of the interference line overlapping the analysis line at the wavelength of the analysis line is calculated by the following equation (5).

【0032】Iovj =Ij ・Rhij ・Rofj …(5)I ov j = I j · R hi j · R of j (5)

【0033】さらに、この分析線の波長における妨害線
の強度Iovj と前記求めた分析線の理論強度Ii から、
次式(6)のように、分析線の波長における分析線に対
する妨害線の強度比を、重なりの影響度IR として計算
で求める。
Further, from the intensity I ov j of the interference line at the wavelength of the analysis line and the theoretical intensity Ii of the analysis line obtained above,
As shown in the following equation (6), the intensity ratio of the interference line to the analysis line at the wavelength of the analysis line is calculated as the degree of influence IR of the overlap.

【0034】IR =Iovj /Ii …(6)IR = Iovj / Ii (6)

【0035】この重なりの影響度IR は、用いる装置の
分光素子5、検出器7等の測定条件を考慮しているの
で、複数の分光素子5や検出器7を切り換えて用いる場
合には、それぞれにおいて重なりの影響度IR を求める
必要がある。逆に、そのように重なりの影響度IR を求
めるのであれば、測定条件の設定を変えてみて、分析対
象の試料13について実際にその条件で測定しなくて
も、妨害線の影響の少ない測定条件を見つけることもで
きる。このように、分析線と妨害線の理論強度Ii,Ij
に基づいて重なりの影響度IR が求められるので、さ
らに検索手段11により、各妨害線の重なりの影響度I
R を所定の値と比較して、例えば、所定の値0.01以
上の重なりの影響度IR をもつ妨害線を、分析線の重な
り補正に用いるべき蛍光X線として検索(選択)する。
そして、その検索結果を表示手段12で表示する。
The degree of influence IR of the overlap takes into account the measurement conditions of the spectroscopic element 5 and the detector 7 of the apparatus to be used. It is necessary to find the degree of influence IR of the overlap. Conversely, if the degree of influence IR of the overlap is to be obtained, the setting of the measurement conditions is changed, and even if the measurement is not performed on the sample 13 to be analyzed under the same conditions, the measurement is performed with less influence of the interference line. You can also find conditions. Thus, the theoretical intensities Ii, Ij of the analysis line and the interference line
The degree of overlap IR is obtained based on the following equation.
By comparing R with a predetermined value, for example, a disturbing line having an overlapping degree of influence IR equal to or more than a predetermined value of 0.01 is searched (selected) as a fluorescent X-ray to be used for correcting the overlap of the analysis lines.
Then, the search result is displayed on the display unit 12.

【0036】なお、各妨害線の重なりの影響度IR を所
定の値と比較した結果、分析線の重なり補正に用いるべ
きものとして、何を検索、表示するかは、その表示に基
づいて行う重なり補正の方法によって異なる。第1に、
妨害線を発生する妨害成分の含有率を用いて重なり補正
をする場合には、例えば分析線Mn −Kαに対して妨害
線Cr −Kβ1 の重なりの影響度IR が所定の値以上に
なったとすると、妨害成分Cr を分析線Mn −Kαの重
なり補正に用いるべき成分として検索し、表示する。
As a result of comparing the degree of influence IR of each interference line with a predetermined value, what is searched and displayed as the one to be used for the correction of the overlap of the analysis lines is determined based on the display. Depends on the correction method. First,
In the case of performing the overlap correction using the content of the interference component that generates the interference line, for example, if the influence IR of the overlap of the interference line Cr-Kβ1 with the analysis line Mn-Kα is equal to or greater than a predetermined value. The interference component Cr is retrieved and displayed as a component to be used for the overlap correction of the analysis line Mn-Kα.

【0037】第2に、実際に測定する蛍光X線の測定強
度を用いて重なり補正をする場合には、例えば分析線M
n −Kαに対して妨害線Cr −Kβ1 の重なりの影響度
IRが所定の値以上になったとしても、成分Cr につい
てはCr −Kβ1 でなくCr−Kαを測定していること
もあり、そのような場合には、代用にCr −Kαを分析
線Mn −Kαの重なり補正に用いるべき蛍光X線として
検索し、表示する。第3に、妨害線の理論強度を用いて
重なり補正をする場合には、例えば分析線Mn−Kαに
対して妨害線Cr −Kβ1 の重なりの影響度IR が所定
の値以上になったとすると、実際にはCr −Kβ1 を測
定しなくても測定強度は不要であるから、そのままCr
−Kβ1 を分析線Mn −Kαの重なり補正に用いるべき
蛍光X線として検索し、表示する。なお、第2の場合に
おいて、重なりの影響度IR が所定の値以上になった妨
害線を実際に測定する場合でも、その妨害線と分析線の
波長がほとんど同じような場合には、妨害線の測定強度
を得るのは困難であるから、やはり、同一成分(元素)
について測定できる他の線種で代用する。
Second, when the overlap correction is performed using the measured intensity of the fluorescent X-ray actually measured, for example, the analysis line M
Even if the degree of influence IR of the overlap of the disturbing lines Cr-Kβ1 with respect to n-Kα exceeds a predetermined value, the component Cr may be measured not by Cr-Kβ1, but by Cr-Kα. In such a case, Cr-Kα is retrieved and displayed as a fluorescent X-ray to be used for the overlap correction of the analysis line Mn-Kα instead. Third, in the case of performing the overlap correction using the theoretical intensity of the interference line, for example, assuming that the degree of influence IR of the overlap of the interference line Cr-Kβ1 with respect to the analysis line Mn-Kα becomes a predetermined value or more, Actually, even if Cr-Kβ1 is not measured, the measurement intensity is not necessary.
-Kβ1 is retrieved and displayed as a fluorescent X-ray to be used for the correction of the overlap of the analysis line Mn-Kα. In the second case, even when actually measuring a disturbance line in which the degree of influence IR of the overlap exceeds a predetermined value, if the wavelength of the disturbance line and the analysis line are almost the same, the disturbance line It is difficult to obtain the measured intensity of the same component (element)
Substitute other line types that can be measured for.

【0038】以上のように、本実施形態の方法によれ
ば、試料13の組成情報をもとに計算した分析線と妨害
線の理論強度Ii ,Ij に基づいて、妨害線の重なりの
影響度IR が高い信頼性で求められるので、分析線の重
なり補正に用いるべき蛍光X線または成分を適切に検索
して表示できる。また、次数間強度比Rhij を求めて用
いることにより、1次線のみならず2次以上の高次線で
ある妨害線についても適切に考慮して重なりの影響度I
R を求めるので、分析線の重なり補正に用いるべき蛍光
X線または成分をいっそう適切に検索して表示できる。
さらに、エスケープピーク強度比を求めて用いることに
より、エスケープピークも含めて高次線である妨害線に
ついて適切に考慮して重なりの影響度IR を求めるの
で、分析線の重なり補正に用いるべき蛍光X線または成
分をよりいっそう適切に検索して表示できる。
As described above, according to the method of this embodiment, based on the theoretical intensities Ii and Ij of the analysis line and the interference line calculated based on the composition information of the sample 13, the degree of influence of the overlap of the interference line Since IR is required with high reliability, it is possible to appropriately retrieve and display the fluorescent X-rays or components to be used for the overlap correction of the analysis lines. In addition, by determining and using the inter-order intensity ratio R hi j, the degree of influence I of the overlap is appropriately considered not only for the primary line but also for a disturbing line which is a higher-order line of second or higher order.
Since R is obtained, the fluorescent X-ray or component to be used for the overlap correction of the analysis line can be more appropriately searched and displayed.
Further, by determining and using the escape peak intensity ratio, the degree of influence IR of the overlap is determined by properly considering the higher-order interference line including the escape peak, so that the fluorescence X to be used for the overlap correction of the analysis line is determined. Lines and components can be searched and displayed more appropriately.

【0039】なお、この実施形態では波長分散型の蛍光
X線分析方法への適用について説明したが、本発明はエ
ネルギー分散型の蛍光X線分析方法および装置にも適用
できる。その場合には、高次線の代わりにエスケープピ
ークを考慮し、エスケープピークの半値幅もエネルギー
に対応したものを用いる。
In this embodiment, the application to the wavelength dispersive X-ray fluorescence analysis method has been described, but the present invention is also applicable to the energy dispersive X-ray fluorescence analysis method and apparatus. In that case, an escape peak is considered instead of a higher-order line, and the half width of the escape peak also corresponds to the energy.

【0040】[0040]

【発明の効果】以上詳細に説明したように、本発明によ
れば、試料の組成情報をもとに計算した分析線と妨害線
の理論強度に基づいて、妨害線の重なりの影響度が高い
信頼性で求められるので、分析線の重なり補正に用いる
べき蛍光X線または成分を適切に検索して表示できる。
したがって、その表示に基づいて、迅速かつ適切に重な
り補正を行うことができる。
As described above in detail, according to the present invention, the degree of influence of the interference line is high based on the theoretical intensity of the analysis line and the interference line calculated based on the composition information of the sample. Since it is required with reliability, it is possible to appropriately search and display a fluorescent X-ray or a component to be used for the overlap correction of the analysis line.
Therefore, it is possible to quickly and appropriately perform the overlap correction based on the display.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の蛍光X線分析方法に用い
る装置を示す概略図である。
FIG. 1 is a schematic view showing an apparatus used for a fluorescent X-ray analysis method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線源、2…1次X線、3…標準試料、4…試料か
ら発生する蛍光X線、5…分光素子、6…分光素子で分
光された蛍光X線、7…検出器、9…波高分析器、10
…検出手段、11…検索手段、12…表示手段、13…
試料。
DESCRIPTION OF SYMBOLS 1 ... X-ray source, 2 ... primary X-ray, 3 ... standard sample, 4 ... fluorescent X-ray generated from a sample, 5 ... spectroscopic element, 6 ... fluorescent X-ray separated by a spectroscopic element, 7 ... detector, 9 ... wave height analyzer, 10
... Detection means, 11 ... Search means, 12 ... Display means, 13 ...
sample.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料にX線源から1次X線を照射して発
生する蛍光X線の強度を検出手段で測定する蛍光X線分
析方法において、 分析対象とする試料品種の代表的組成に基づいて、測定
対象の蛍光X線である分析線と、その分析線に対し所定
の波長の範囲で近傍にある蛍光X線である妨害線とにつ
いて、それぞれ理論強度を計算し、 分析線と妨害線の理論強度に基づいて、分析線の波長に
おける分析線に対する妨害線の強度比を重なりの影響度
として求め、 各妨害線の重なりの影響度を所定の値と比較することに
より、分析線の重なり補正に用いるべき蛍光X線または
それを発生する成分を検索して表示することを特徴とす
る蛍光X線分析方法。
1. An X-ray fluorescence analysis method for measuring the intensity of X-ray fluorescence generated by irradiating a sample with primary X-rays from an X-ray source by a detection means, the method comprising the steps of: Based on the analysis lines, the theoretical intensities are calculated for the analysis line that is the fluorescent X-ray to be measured and the interference line that is the fluorescent X-ray that is in the vicinity of the analysis line within a predetermined wavelength range. Based on the theoretical intensity of the line, the intensity ratio of the interference line to the analysis line at the wavelength of the analysis line is determined as the degree of influence of the overlap, and the degree of influence of the overlap of each interference line is compared with a predetermined value. A fluorescent X-ray analysis method characterized by retrieving and displaying fluorescent X-rays to be used for overlap correction or components generating the same.
【請求項2】 請求項1において、 前記検出手段が、試料から発生する蛍光X線を分光する
分光素子と、その分光素子で分光された蛍光X線が入射
されて蛍光X線のエネルギーに応じた波高のパルスを強
度に応じた数だけ発生させる検出器と、その検出器で発
生したパルスのうち所定の波高の範囲のものを選別する
波高分析器とを含み、 前記分光素子で分光される2次以上の高次線である妨害
線について、分析対象とする試料品種の代表的組成につ
いての理論強度ならびに前記波高分析器での波高分布曲
線および所定の波高の範囲に基づいて、1次線に対する
高次線の強度比を次数間強度比として求め、 その次数間強度比を用いて前記重なりの影響度を求める
蛍光X線分析方法。
2. The method according to claim 1, wherein the detecting means is configured to split the fluorescent X-rays generated from the sample into a spectroscopic element, and to receive the fluorescent X-rays separated by the spectroscopic element according to the energy of the fluorescent X-rays. And a pulse height analyzer that selects a pulse within a predetermined wave height range among the pulses generated by the detector, and the light is separated by the spectroscopic element. The primary line is determined based on the theoretical intensity of the representative composition of the sample type to be analyzed, the peak height distribution curve by the peak height analyzer, and the predetermined range of the peak height for the disturbing line that is a secondary line or higher. X-ray fluorescence analysis method in which an intensity ratio of a higher-order line with respect to is determined as an inter-order intensity ratio, and the degree of influence of the overlap is obtained using the inter-order intensity ratio.
【請求項3】 請求項2において、 前記波高分析器での波高分布曲線において現れるエスケ
ープピークについて、あらかじめ、エスケープピークを
発生させる高次線である妨害線に対するエスケープピー
クの強度比をエスケープピーク強度比として求めてお
き、 そのエスケープピーク強度比を用いて前記次数間強度比
を求める蛍光X線分析方法。
3. An escape peak intensity ratio according to claim 2, wherein an escape peak appearing in a wave height distribution curve of the wave height analyzer is determined in advance by an escape peak intensity ratio with respect to a disturbance line which is a higher-order line generating the escape peak. A fluorescent X-ray analysis method for determining the inter-order intensity ratio using the escape peak intensity ratio.
【請求項4】 試料にX線源から1次X線を照射して発
生する蛍光X線の強度を検出手段で測定する蛍光X線分
析装置において、 分析対象とする試料品種の代表的組成に基づいて、測定
対象の蛍光X線である分析線と、その分析線に対し所定
の波長の範囲で近傍にある蛍光X線である妨害線とにつ
いて、それぞれ理論強度を計算し、分析線と妨害線の理
論強度に基づいて、分析線の波長における分析線に対す
る妨害線の強度比を重なりの影響度として求め、各妨害
線の重なりの影響度を所定の値と比較することにより、
分析線の重なり補正に用いるべき蛍光X線またはそれを
発生する成分を検索する検索手段と、 その検索手段で検索した結果を表示する表示手段とを備
えたことを特徴とする蛍光X線分析装置。
4. A fluorescent X-ray analyzer for irradiating a sample with primary X-rays from an X-ray source to measure the intensity of fluorescent X-rays generated by a detecting means, wherein a representative composition of a sample type to be analyzed is used. Based on the analysis line, which is the fluorescent X-ray to be measured, and the interference line, which is the fluorescent X-ray in the vicinity of the analysis line within a predetermined wavelength range, the theoretical intensity is calculated, and the analysis line and the interference are calculated. Based on the theoretical intensity of the line, determine the intensity ratio of the interference line to the analysis line at the wavelength of the analysis line as the degree of influence of the overlap, and by comparing the degree of influence of the overlap of each interference line with a predetermined value,
An X-ray fluorescence spectrometer comprising: a search unit for searching for a fluorescent X-ray to be used for the analysis line overlap correction or a component generating the X-ray; and a display unit for displaying a result searched by the search unit. .
【請求項5】 請求項4において、 前記検出手段が、試料から発生する蛍光X線を分光する
分光素子と、その分光素子で分光された蛍光X線が入射
されて蛍光X線のエネルギーに応じた波高のパルスを強
度に応じた数だけ発生させる検出器と、その検出器で発
生したパルスのうち所定の波高の範囲のものを選別する
波高分析器とを含み、 前記検索手段が、前記分光素子で分光される2次以上の
高次線である妨害線について、分析対象とする試料品種
の代表的組成についての理論強度ならびに前記波高分析
器での波高分布曲線および所定の波高の範囲に基づい
て、1次線に対する高次線の強度比を次数間強度比とし
て求め、その次数間強度比を用いて前記重なりの影響度
を求める蛍光X線分析装置。
5. The method according to claim 4, wherein the detecting unit is configured to split the fluorescent X-rays generated from the sample into a spectroscopic element, and to receive the fluorescent X-rays separated by the spectroscopic element according to the energy of the fluorescent X-rays. A detector that generates a number of pulses having the same wave height according to the intensity, and a wave height analyzer that selects pulses in a predetermined wave height range among the pulses generated by the detector. Regarding the disturbing line, which is a second-order or higher-order line that is separated by the element, based on the theoretical intensity of the representative composition of the sample type to be analyzed, the wave height distribution curve with the wave height analyzer, and a predetermined wave height range. An X-ray fluorescence analyzer for determining an intensity ratio of a higher-order line to a primary line as an inter-order intensity ratio, and using the inter-order intensity ratio to determine the degree of influence of the overlap.
【請求項6】 請求項5において、 前記検索手段が、前記波高分析器での波高分布曲線にお
いて現れるエスケープピークについて、エスケープピー
クを発生させる高次線である妨害線に対するエスケープ
ピークの強度比をエスケープピーク強度比として記憶
し、その記憶したエスケープピーク強度比を用いて前記
次数間強度比を求める蛍光X線分析装置。
6. The apparatus according to claim 5, wherein the search means escapes an intensity ratio of an escape peak, which is a higher-order line that generates an escape peak, with respect to an escape peak appearing in a wave height distribution curve of the wave height analyzer. An X-ray fluorescence analyzer that stores the peak intensity ratio and calculates the inter-order intensity ratio using the stored escape peak intensity ratio.
JP2000059939A 2000-03-06 2000-03-06 X-ray fluorescence analysis method and apparatus Expired - Fee Related JP3527956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059939A JP3527956B2 (en) 2000-03-06 2000-03-06 X-ray fluorescence analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059939A JP3527956B2 (en) 2000-03-06 2000-03-06 X-ray fluorescence analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2001249089A true JP2001249089A (en) 2001-09-14
JP3527956B2 JP3527956B2 (en) 2004-05-17

Family

ID=18580328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059939A Expired - Fee Related JP3527956B2 (en) 2000-03-06 2000-03-06 X-ray fluorescence analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3527956B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159828B4 (en) * 2001-12-06 2007-09-20 Rigaku Industrial Corporation, Takatsuki X-ray fluorescence spectrometer
JP2018151179A (en) * 2017-03-10 2018-09-27 日本電子株式会社 Analyzing apparatus and analyzing method
EP3835769A4 (en) * 2018-08-09 2021-09-22 Rigaku Corporation X-ray fluorescence spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204362A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Quantitative measurement of element
JPH055711A (en) * 1991-06-27 1993-01-14 Shimadzu Corp X-ray fluorescence analysis
JPH07113770A (en) * 1993-10-20 1995-05-02 Shimadzu Corp Fluorescent x-ray analyzing method
JPH10123071A (en) * 1996-08-27 1998-05-15 Rigaku Ind Co Method and equipment for x ray analysis
JP2000097885A (en) * 1998-07-22 2000-04-07 Rigaku Industrial Co Fluorescence x-ray analyzing method, and fluorescence x-ray analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204362A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Quantitative measurement of element
JPH055711A (en) * 1991-06-27 1993-01-14 Shimadzu Corp X-ray fluorescence analysis
JPH07113770A (en) * 1993-10-20 1995-05-02 Shimadzu Corp Fluorescent x-ray analyzing method
JPH10123071A (en) * 1996-08-27 1998-05-15 Rigaku Ind Co Method and equipment for x ray analysis
JP2000097885A (en) * 1998-07-22 2000-04-07 Rigaku Industrial Co Fluorescence x-ray analyzing method, and fluorescence x-ray analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159828B4 (en) * 2001-12-06 2007-09-20 Rigaku Industrial Corporation, Takatsuki X-ray fluorescence spectrometer
JP2018151179A (en) * 2017-03-10 2018-09-27 日本電子株式会社 Analyzing apparatus and analyzing method
EP3835769A4 (en) * 2018-08-09 2021-09-22 Rigaku Corporation X-ray fluorescence spectrometer
US11156569B2 (en) 2018-08-09 2021-10-26 Rigaku Corporation X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JP3527956B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JPH10123071A (en) Method and equipment for x ray analysis
JP4324701B2 (en) Optical emission spectrometer
US6310935B1 (en) Fluorescent x-ray analyzer
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
JP5204655B2 (en) Methods for qualitative and quantitative analysis by emission spectroscopy
Sorrentino et al. Fast analysis of complex metallic alloys by double-pulse time-integrated laser-induced breakdown spectroscopy
JP2018504709A (en) Automatic quantitative regression
JP3527956B2 (en) X-ray fluorescence analysis method and apparatus
JP3610256B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
IL126620A (en) Analysis of chemical elements
JP2001091481A (en) Background correction method for fluorescent x-ray analyzer
JP6917668B1 (en) Energy dispersive X-ray fluorescence analyzer, evaluation method and evaluation program
JP6467684B2 (en) X-ray fluorescence analyzer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JPH07128260A (en) Fluorescent x-ray analyzing device
JP2022041186A (en) Temperature measurement method by raman scattered light and raman scattered light analyzer
JP2000065765A (en) X-ray fluorescence analyzer
JP3331192B2 (en) X-ray fluorescence analysis method and apparatus
JP5634763B2 (en) X-ray fluorescence analyzer and computer program
JP3312001B2 (en) X-ray fluorescence analyzer
CN113777121B (en) Method for detecting chlorine content by using X-ray fluorescence spectrometer
JP3266896B2 (en) X-ray fluorescence analyzer
JP4279983B2 (en) X-ray fluorescence analyzer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3527956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees