JP3010598B2 - X-ray spectroscopic analysis method of a sample covered with a thin film - Google Patents

X-ray spectroscopic analysis method of a sample covered with a thin film

Info

Publication number
JP3010598B2
JP3010598B2 JP2419070A JP41907090A JP3010598B2 JP 3010598 B2 JP3010598 B2 JP 3010598B2 JP 2419070 A JP2419070 A JP 2419070A JP 41907090 A JP41907090 A JP 41907090A JP 3010598 B2 JP3010598 B2 JP 3010598B2
Authority
JP
Japan
Prior art keywords
sample
ray
characteristic
thin film
ray intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2419070A
Other languages
Japanese (ja)
Other versions
JPH04249741A (en
Inventor
由佳 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2419070A priority Critical patent/JP3010598B2/en
Publication of JPH04249741A publication Critical patent/JPH04249741A/en
Application granted granted Critical
Publication of JP3010598B2 publication Critical patent/JP3010598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜で覆われた試料の
X線分光分析方法による定量分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively analyzing a sample covered with a thin film by X-ray spectroscopy.

【0002】[0002]

【従来の技術】通常、EPMA等のX線分析装置では、
電子の照射によって試料から放射されるX線の波長と強
度を測定し、そのX線の波長によって元素の種類を、そ
のX線強度によって濃度を調べることにより、定量分析
を行っている。従来、薄膜に覆われている試料では、薄
膜の影響を無視して測定していた。特に、絶縁物試料等
において、電子照射による帯電防止のため導電性薄膜を
蒸着する場合では、殆ど無視されていた。しかし、薄膜
における特性X線の吸収は、波長によって異なるため
に、試料成分元素によって薄膜の影響が異なり、測定結
果に影響を与えており、高精度の測定結果を得ることが
難しいと云う問題があった。
2. Description of the Related Art Usually, in an X-ray analyzer such as EPMA,
Quantitative analysis is performed by measuring the wavelength and intensity of X-rays emitted from a sample by electron irradiation, and examining the type of element based on the wavelength of the X-rays and the concentration based on the X-ray intensity. Conventionally, in the case of a sample covered with a thin film, the measurement was performed ignoring the effect of the thin film. In particular, in the case of depositing a conductive thin film on an insulator sample or the like to prevent electrification due to electron irradiation, it was almost ignored. However, since the absorption of characteristic X-rays in a thin film differs depending on the wavelength, the effect of the thin film differs depending on the sample component element, which affects the measurement result, and it is difficult to obtain a highly accurate measurement result. there were.

【0003】[0003]

【発明が解決しようとする課題】本発明は、薄膜で覆わ
れた試料のX線分光定量分析で、薄膜の厚さ,成分が既
知である場合に、薄膜の影響を除去する補正を行うこと
によって、高精度の測定結果を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention provides an X-ray spectroscopic quantitative analysis of a sample covered with a thin film, and a correction for removing the influence of the thin film when the thickness and the composition of the thin film are known. To obtain a highly accurate measurement result.

【0004】[0004]

【課題を解決するための手段】X線分光分析方法におい
て、所定加速電圧で加速された電子ビームで照射されて
いる、薄膜で被覆された測定試料から放射される成分元
素の特性X線測定強度を表面薄膜の吸収による各特性X
線強度の減衰率で割算して、減衰前の各特性X線強度を
求め、この強度と、各成分元素の標準試料を上記電子ビ
ームと同じ加速電圧で加速された電子ビームで照射した
とき、上記標準試料から放射される特性X線強度とのX
線強度比から測定試料の各元素濃度を仮定し、上記仮定
した測定試料元素濃度から理論計算による標準試料と測
定試料の各特性X線のX線強度比を求め、同計算による
X線強度比が上記測定によるX線強度比に等しくなるよ
うに、各成分元素濃度を修正し、上記修正した各成分元
素濃度を仮定濃度として上記と同じ理論計算を行い、以
下同様の計算の繰り返しにより、逐次近似的に測定試料
組成を決定するようにした。
In an X-ray spectroscopic analysis method, an electron beam is irradiated with an electron beam accelerated at a predetermined accelerating voltage.
Are, each property characteristic X-ray measuring the intensity of the component elements to be emitted from the measurement sample coated with a thin film due to absorption of the surface film X
The characteristic X-ray intensity before attenuation is obtained by dividing by the attenuation rate of the linear intensity, and this intensity and the standard sample of each component element are converted to the above-mentioned electronic beam.
Irradiation with an electron beam accelerated at the same accelerating voltage as the beam
Then, X of the characteristic X-ray intensity radiated from the standard sample
Assuming each element concentration of the measurement sample from the line intensity ratio, the X-ray intensity ratio of each characteristic X-ray of the standard sample and the measurement sample is theoretically calculated from the assumed element concentration of the measurement sample by the theoretical calculation. Is adjusted to be equal to the X-ray intensity ratio obtained by the above measurement, and the same theoretical calculation as above is performed by using the corrected respective element concentration as the assumed concentration. The composition of the measurement sample was determined approximately.

【0005】[0005]

【作用】本発明は、本願出願人が出願した特願昭63−
45287号におけるコンピュータシミュレーションに
よるX線強度計算方法を用いて、蒸着膜で被覆した試料
の定量分析補正を行おうとするものである。上記コンピ
ュータシミュレーションにより、電子ビームの加速電圧
Eと蒸着膜及び試料の各元素濃度Cから、X線強度を理
論的に計算することができる。この計算では、各成分元
素の濃度が判明している必要があるが、各元素濃度Cが
不明である試料の測定データから、成分元素濃度を仮定
して、上記理論計算により、逐次近似的に各元素濃度C
A ,CB ,CC ,……を求めるものである。即ち、理
論計算による各成分の特性X線強度比の相互比率が、試
料について測定された各特性X線比の相互比率に一致す
るように、各成分の濃度を決めるのである。
The present invention is based on Japanese Patent Application No. 63-63, filed by the present applicant.
No. 45287 is intended to perform quantitative analysis correction of a sample covered with a vapor-deposited film by using an X-ray intensity calculation method by computer simulation. By the computer simulation, the X-ray intensity can be theoretically calculated from the acceleration voltage E of the electron beam and the element concentrations C of the deposited film and the sample. In this calculation, the concentration of each component element needs to be known. However, from the measurement data of the sample in which the concentration C of each element is unknown, it is assumed that the concentration of the component element is assumed, and the above-described theoretical calculation is successively performed. Element concentration C
A , C B , C C ,... Are obtained. That is, the concentration of each component is determined so that the mutual ratio of the characteristic X-ray intensity ratios of the respective components according to the theoretical calculation matches the mutual ratio of the characteristic X-ray ratios measured for the sample.

【0006】上の逐次近似計算で用いられる試料の実測
X線強度は、薄膜がない場合の値であるから、薄膜があ
る場合は、実測強度に薄膜による吸収補正をしておく必
要がある。試料の成分元素A,B,C,……の組成比が
一定であっても、各元素の特性X線の強度の相互比率は
蒸着膜の組成及び膜厚によって変化する。しかし、蒸着
膜の組成及び膜厚は既知であるから、蒸着膜が試料各成
分元素の特性X線強度に及ぼす影響、即ち、試料から放
射される各成分元素の特性X線強度の表面薄膜の吸収に
よる減衰率は計算により求まり、試料について直接測定
された各特性X線強度から表面膜がない時の各特性X線
強度を求めることは可能であり、これを用いて上記した
逐次近似を行えばよい。
Since the measured X-ray intensity of the sample used in the above-described successive approximation calculation is a value when there is no thin film, if there is a thin film, it is necessary to correct the measured intensity for absorption by the thin film. Even if the composition ratio of the constituent elements A, B, C,... Of the sample is constant, the mutual ratio of the characteristic X-ray intensity of each element changes depending on the composition and thickness of the deposited film. However, since the composition and thickness of the deposited film are known, the effect of the deposited film on the characteristic X-ray intensity of each component element of the sample, that is, the surface thin film of the characteristic X-ray intensity of each component element radiated from the sample, The attenuation factor due to absorption is obtained by calculation, and it is possible to obtain each characteristic X-ray intensity when there is no surface film from each characteristic X-ray intensity directly measured for the sample. Just do it.

【0007】表面膜がないときの各特性X線強度を求め
て、逐次近似計算を開始するので、表面膜の吸収補正な
しに計算を開始するより、逐次近似の収束が早くなる。
Since the characteristic X-ray intensity when there is no surface film is obtained and the successive approximation calculation is started, the convergence of the successive approximation is faster than when the calculation is started without the absorption correction of the surface film.

【0008】[0008]

【実施例】図に本発明の一実施例のフローチャートを示
す。図において、測定前に測定試料Sの構成元素及び蒸
着膜の定性組成及び膜厚を調査しておく、適当な加速電
圧E0 による電子ビームを試料Sに照射し、測定試料S
の各元素A,B,Cの特性X線強度IAS,IBS,ICS
測定し(ア)、各元素A,B,Cの純品標準試料Kを上
記加速電圧E O の電子ビームで照射したとき同標準試料
から放射される各成分元素の特性X線強度IAK,IBK
CKを測定し(イ)、上記測定によって得られた試料S
の特性X線強度IAS,IBS,ICSと、標準試料Kの特性
X線強度IAK,IBK,ICKから、各元素A,B,CのX
線強度比KA0=IAK/IAS(以下同様),KB0,KC0
計算する(ウ)。X線強度比KZ0(Z=A,B,C)の
薄膜による吸収補正は、各特性X線毎に実験的に補正係
数を求めておいても良いが、表面薄膜が人工膜である場
合、膜厚,組成が分かっているから、計算によっても吸
収による減衰率を求めることができる。従って、何れか
の方法によってKZ0を各元素特性X線の表面薄膜による
減衰率で割算することにより、X線強度比KZ0の吸収補
正を行い、薄膜が存在しない時の補正X線強度比HZ0
求める。計算による補正は、例えば、下記のように計算
する。 HZ0=KZ0/exp(−μρz) [但し、ρ;密度、z;深さ] b μ=Σ μFnn [但し、n=a,b] n=a 但し、μFn;元素Zから発生したX線の元素nによる質
量吸収係数 Cn ;薄膜の元素nの濃度 上記計算により求められた補正X線強度比HZ0を用い
て、各元素A,B,Cの第1近似濃度CA1,CB1,CC1
を、 C CZ1=HZ0/Σ HZ0 [但し、Z=A,B,C] Z=A により求めると共に、予め調査した蒸着膜の組成及び膜
厚,電子ビームの加速電圧E0 等を設定する(エ)。上
記動作で設定された各元素濃度CA1,CB1,CC1の測定
試料Sと、各元素の標準試料Kの元素A,B,Cの特性
X線強度を理論計算し、第1近似濃度CA1,CB1,CC1
による各元素A,B,CのX線強度比KA1,KB1,KC1
を計算する(オ)。誤差数値E(i)を、E(i)=Σ
|(KZ0−KZi)/KZ0|として計算し(カ)、E
(i)<ε0 かどうか判定する(キ)。但し、Zは元素
A,B,C、iは逐次近似計算回数とし、ε0 は適宜な
値とする。E(i)<ε0 であれば、補正計算が適正に
行われたとして、計算で得られた各元素濃度CZ を表示
装置に表示する(ク)。i−1回目の逐次近似計算で、
E(i−1)<ε0 でない時は、i回目の逐次近似計算
の各元素仮定濃度CZiの計算を下式のように行う。各元
素A,B,Cの濃度CAi,CBi,CCiを、 CAi’=CAi-1×KA0/KAi-1Bi’=CBi-1×KB0/KBi-1Ci’=CCi-1×KC0/KCi-1Ai=CAi’/(CAi’+CBi’+CCi’) CBi=CBi’/(CAi’+CBi’+CCi’) CCi=CCi’/(CAi’+CBi’+CCi’) として求め、第i近似濃度CZiを設定する(ケ)。上記
動作(ケ)で設定された各元素濃度CAi,CBi,C
Ciと、加速電圧E0 によって測定試料の各成分の特性X
線強度の理論計算を行い、強度比KAi,KBi,KCiを計
算する(コ)。以下動作(カ)から動作(コ)までの動
作を、動作(キ)でYESの判定がでるまで繰り返す。
FIG. 1 is a flowchart showing one embodiment of the present invention. In the figure, previously examined qualitative composition and thickness of the constituent elements and deposited film of sample S, an electron beam with an appropriate acceleration voltage E 0 is applied to the sample S prior to measurement, the measurement sample S
The characteristic X-ray intensities I AS , I BS , and I CS of each of the elements A, B, and C were measured (A), and the pure standard sample K of each of the elements A, B, and C was placed on top.
The same standard sample when irradiated with an electron beam at the accelerating voltage E O
Characteristic X-ray intensity of each component element to be emitted from the I AK, I BK,
I CK was measured (a), and sample S obtained by the above measurement was measured.
From the characteristic X-ray intensities I AS , I BS , and I CS of the standard sample K and the characteristic X-ray intensities I AK , I BK , and I CK of the standard sample K,
The linear intensity ratio K A0 = I AK / I AS (the same applies hereinafter), K B0 , and K C0 are calculated (C). For the absorption correction by the thin film of the X-ray intensity ratio K Z0 (Z = A, B, C), a correction coefficient may be obtained experimentally for each characteristic X-ray, but when the surface thin film is an artificial film. Since the film thickness, composition, and composition are known, the attenuation factor due to absorption can be obtained by calculation. Therefore, by dividing the K Z0 attenuation rate due to the surface film of the elements characteristic X-ray by any method performs attenuation correction of the X-ray intensity ratio K Z0, corrected X-ray intensity at which the film does not exist Determine the ratio H Z0 . The correction by calculation is calculated, for example, as follows. H Z0 = K Z0 / exp ( -μρz) [ where, [rho; density, z; depth] b μ = Σ μ Fn C n [ where, n = a, b] n = a , however, mu Fn; element Z Mass absorption coefficient C n of X-rays generated from element n due to element n; concentration of element n in thin film First approximate concentration of each element A, B, C using corrected X-ray intensity ratio H Z0 obtained by the above calculation C A1 , C B1 , C C1
C Z1 = H Z0 / ΣH Z0 [where Z = A, B, C] Z = A, and the composition and film thickness of the deposited film, the acceleration voltage E 0 of the electron beam, etc. Set (D). The characteristic X-ray intensities of the measurement sample S of each element concentration C A1 , C B1 , C C1 set in the above operation and the elements A, B, C of the standard sample K of each element are theoretically calculated, and the first approximate concentration is calculated. C A1 , C B1 , C C1
X-ray intensity ratio K A1 , K B1 , K C1 of each element A, B, C
Is calculated (E). The error value E (i) is calculated by E (i) = Σ
| (K Z0 −K Zi ) / K Z0 |
(I) It is determined whether <ε 0 (g). Here, Z is the element A, B, C, and i is the number of successive approximation calculations, and ε 0 is an appropriate value. If E (i) <ε 0, it is determined that the correction calculation has been properly performed, and the respective element concentrations C Z obtained by the calculation are displayed on the display device (h). In the (i-1) th successive approximation calculation,
When E (i−1) <ε 0 is not satisfied, the calculation of the assumed elemental concentrations C Zi in the i-th successive approximation calculation is performed as in the following equation. Each element A, B, the concentration C Ai of C, C Bi, a C Ci, C Ai '= C Ai-1 × K A0 / K Ai-1 C Bi' = C Bi-1 × K B0 / K Bi- 1 C Ci '= C Ci- 1 × K C0 / K Ci-1 C Ai = C Ai' / (C Ai '+ C Bi' + C Ci ') C Bi = C Bi' / (C Ai '+ C Bi' + C Ci ′ ) It is obtained as C Ci = C Ci ′ / (C Ai ′ + C Bi ′ + C Ci ′ ), and the i-th approximate density C Zi is set (q). Each element concentration C Ai , C Bi , C set in the above operation (g)
The characteristic X of each component of the measurement sample is determined by Ci and the acceleration voltage E 0 .
The theoretical calculation of the line intensity is performed, and the intensity ratios K Ai , K Bi , and K Ci are calculated (コ). Hereinafter, the operations from the operation (f) to the operation (h) are repeated until a determination of YES is made in the operation (g).

【0009】上記実施例では、成分元素をA,B,Cの
3元素に限定して説明しているが、成分元素数は4以上
でも、同様な方法で元素濃度を決定できるのは勿論であ
る。
In the above embodiment, the component elements are described as being limited to the three elements A, B, and C. However, even when the number of component elements is four or more, the element concentration can be determined by the same method. is there.

【0010】なお、上記で理論による試料の各成分元素
の特性X線強度を求める計算の詳細は、本願出願人が出
願した特願昭63−45287号に記載されており、試
料に打込まれた電子の試料内の軌跡をモンテカルロシミ
ュレーション法により追跡して、その間の試料成分の原
子との相互作用の確率からX線強度を計算するものであ
る。
The details of the calculation for obtaining the characteristic X-ray intensity of each component element of the sample based on the theory described above are described in Japanese Patent Application No. 63-45287 filed by the present applicant, and are incorporated into the sample. The trajectory of the electrons in the sample is traced by the Monte Carlo simulation method, and the X-ray intensity is calculated from the probability of interaction of the sample components with atoms during that time.

【0011】[0011]

【発明の効果】本発明によれば、X線強度比の実測値と
濃度を仮定した理論計算値とが一致するように濃度を決
めることによって、薄膜で覆われた試料における各元素
の測定による各元素濃度を逐次近似的に求めるのである
が、第1近似濃度として、実測X線強度に薄膜の吸収補
正を行って、補正された各元素特性X線強度から各成分
濃度を仮定するので、逐次計算の収束が速くなり、薄膜
で覆われた試料の定量分析を高精度,高速度で行うこと
ができるようになった
According to the present invention, the concentration is determined so that the measured value of the X-ray intensity ratio and the theoretically calculated value assuming the concentration are determined, whereby the measurement of each element in the sample covered with the thin film is performed. The concentration of each element is obtained successively approximately. However, as a first approximate concentration, the absorption of the thin film is corrected for the measured X-ray intensity, and the concentration of each component is assumed from the corrected element characteristic X-ray intensity. sequential convergence calculation becomes faster, high-precision quantitative analysis of a sample covered with a thin film, and Tsu name so that it can be performed at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のフローチャートである。FIG. 1 is a flowchart of one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 23/22 - 23/227 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 23/22-23/227

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 薄膜で被覆された測定試料を所定加速
電圧で加速された電子ビームで照射したとき、該測定試
料から放射される成分元素の特性X線測定強度を表面薄
膜の吸収による各特性X線強度の減衰率で割算して、減
衰前の各特性X線強度を求め、この強度と、各成分元素
の標準試料を上記測定試料を励起するのと同じ加速電圧
で加速された電子ビームで照射したとき上記標準試料
ら放射される特性X線強度とのX線強度比から測定試料
の各元素濃度を仮定し、上記仮定した測定試料元素濃度
から理論計算による標準試料と測定試料の各特性X線の
X線強度比を求め、同計算によるX線強度比が上記測定
によるX線強度比に等しくなるように、各成分元素濃度
を修正し、上記修正した各成分元素濃度を仮定濃度とし
て上記と同じ理論計算を行い、以下同様の計算の繰り返
しにより、逐次近似的に測定試料組成を決定することを
特徴とする薄膜で覆われた試料のX線分光分析方法。
A predetermined acceleration of a measurement sample covered with a thin film;
When irradiating with an electron beam accelerated by a voltage, the characteristic X-ray measurement intensity of the component element radiated from the measurement sample is divided by the attenuation rate of each characteristic X-ray intensity due to absorption of the surface thin film, and the intensity before the attenuation is determined. Each characteristic X-ray intensity is obtained, and the intensity and the same accelerating voltage for exciting the standard sample of each component element to the above measurement sample
Assuming each element concentration of the measurement sample from the X-ray intensity ratio with the characteristic X-ray intensity emitted from the standard sample when irradiated with the electron beam accelerated at The X-ray intensity ratio of each characteristic X-ray of the standard sample and the measurement sample is calculated from the theoretical calculation, and the concentration of each component element is corrected so that the X-ray intensity ratio obtained by the calculation becomes equal to the X-ray intensity ratio obtained by the above measurement. The same theoretical calculation as above is performed using the corrected component element concentrations as assumed concentrations, and thereafter, by repeating the same calculations, the composition of the sample covered with the thin film is characterized in that the measurement sample composition is successively and approximately determined. X-ray spectroscopy method.
JP2419070A 1990-12-29 1990-12-29 X-ray spectroscopic analysis method of a sample covered with a thin film Expired - Fee Related JP3010598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419070A JP3010598B2 (en) 1990-12-29 1990-12-29 X-ray spectroscopic analysis method of a sample covered with a thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419070A JP3010598B2 (en) 1990-12-29 1990-12-29 X-ray spectroscopic analysis method of a sample covered with a thin film

Publications (2)

Publication Number Publication Date
JPH04249741A JPH04249741A (en) 1992-09-04
JP3010598B2 true JP3010598B2 (en) 2000-02-21

Family

ID=18526778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419070A Expired - Fee Related JP3010598B2 (en) 1990-12-29 1990-12-29 X-ray spectroscopic analysis method of a sample covered with a thin film

Country Status (1)

Country Link
JP (1) JP3010598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948737B1 (en) * 2011-05-18 2019-02-18 엘지전자 주식회사 An air conditioner and a control method the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787773B1 (en) * 2000-06-07 2004-09-07 Kla-Tencor Corporation Film thickness measurement using electron-beam induced x-ray microanalysis
JP4498855B2 (en) * 2004-08-17 2010-07-07 日本電子株式会社 Quantitative analysis method and quantitative analysis apparatus
GB0609744D0 (en) * 2006-05-16 2006-06-28 Oxford Instr Analytical Ltd Method of determining the feasibility of a proposed x-ray structure analysis process
JP4499125B2 (en) * 2007-03-05 2010-07-07 日本電子株式会社 Quantitative analysis method in sample analyzer
JP6311532B2 (en) * 2014-08-25 2018-04-18 富士通株式会社 Composition analysis method, composition analysis apparatus, and composition analysis program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948737B1 (en) * 2011-05-18 2019-02-18 엘지전자 주식회사 An air conditioner and a control method the same

Also Published As

Publication number Publication date
JPH04249741A (en) 1992-09-04

Similar Documents

Publication Publication Date Title
JP3108660B2 (en) X-ray analysis method and apparatus
Amelio et al. Auger spectroscopy of graphite single crystals with low energy electrons
US8346521B2 (en) Method of determining the feasibility of a proposed structure analysis process
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
JP2884692B2 (en) Quantitative measurement method of sample coated with vapor deposited film
Heinrich Strategies of electron probe data reduction
WO2011159264A1 (en) A thickness determination method
JP3132678B2 (en) Thin film sample thickness measurement and elemental quantitative analysis method
JP3373698B2 (en) X-ray analysis method and X-ray analyzer
JP2730227B2 (en) X-ray depth analysis method
JP2906506B2 (en) X-ray spectroscopy for thin film determination
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JP2819716B2 (en) X-ray spectroscopy for thin film determination and film thickness measurement
JP2853257B2 (en) Simultaneous measurement method of composition and density of thin film sample by EPMA
JPH11271244A (en) Quantitative analysing method by x-ray spectrum
JP2900532B2 (en) Quantitative measurement method for samples with large irregularities
JP2595686B2 (en) X-ray spectroscopy by electron beam excitation
JP2867621B2 (en) Fluorescence excitation correction method for multilayer film
Fine et al. Determination of inter-element effects through Monte Carlo simulation of X-ray fluorescence
SU1368747A1 (en) Method of quantitative analysis of impurities on metals and semiconductors
JP3635337B2 (en) X-ray fluorescence analysis method and apparatus
JP3377328B2 (en) X-ray fluorescence analysis method
Saleh et al. Enhancement effects in XRF analysis
Egorov et al. Ion-beam and X-ray methods of elemental diagnostics of thin film coatings

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees