JPS6235534A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6235534A
JPS6235534A JP60176039A JP17603985A JPS6235534A JP S6235534 A JPS6235534 A JP S6235534A JP 60176039 A JP60176039 A JP 60176039A JP 17603985 A JP17603985 A JP 17603985A JP S6235534 A JPS6235534 A JP S6235534A
Authority
JP
Japan
Prior art keywords
groove
forming
polycrystalline silicon
film
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60176039A
Other languages
Japanese (ja)
Inventor
Miyoto Watabe
毅代登 渡部
Makoto Hirayama
誠 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60176039A priority Critical patent/JPS6235534A/en
Publication of JPS6235534A publication Critical patent/JPS6235534A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To compose a trench capacitor by forming an oxide film or a nitride film on the inner surface of a groove, and forming a polycrystalline silicon layer in the groove to form a separating region between the elements by a low temperature process, thereby utilizing the separating region. CONSTITUTION:An oxide film or a nitride film 14 is formed by a plasma anodic oxidation method or a nitriding method on a semiconductor substrate 11 which contains the inner surface of a groove 13. A polycrystalline silicon layer 15 is grown by an LPCVD method on the entire surface which contains the groove 13 to completely bury the groove 13 and to flatten the surface. According to this, there is no possibility of causing a deformation in the formation of a separating region, possibility of forming by a low temperature process, and no bird beak in case of forming an element. The narrowing of an element region is eliminated, a separation between the elements in the same separating width can be obtained, and the surface can be flattened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関し、特に半導体装
置における素子間分離領域、ならびに同分離領域を利用
する)・レンチキャパシタの形成方法に係るものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for forming an inter-element isolation region in a semiconductor device and a method for forming a wrench capacitor (using the isolation region). It is.

〔従来の技術〕[Conventional technology]

従来例によるこの種の半導体装置における素子間分離領
域の形成方法として、特開昭58−153349号公報
に記載された手段を第3図(a)ないしくNに工程順に
示す。
As a conventional method for forming an isolation region in this type of semiconductor device, a method described in Japanese Patent Application Laid-Open No. 153349/1982 is shown in the order of steps in FIGS. 3(a) to 3(N).

これらの各図において、従来例方法は、まずシリコン半
導体基板21上に熱酸化法によって二酸化硅素膜22を
形成し、その上に窒化硅素膜23を形成し、かつ素子領
域形状を有するホトレジスト膜25を形成する(同図(
a))。また前記ホトレジスト膜25を耐スパツタエツ
チングマスクとして1反応性スパッタエツチングにより
、前記下地の窒化硅素膜23.二酸化硅素膜22.およ
びシリコン半導体基板21を選択的にエツチング除去し
て溝部Aを形成したのち、マスクとしてのホトレジスト
膜25を除去する(同図(b))。
In each of these figures, the conventional method first forms a silicon dioxide film 22 on a silicon semiconductor substrate 21 by a thermal oxidation method, forms a silicon nitride film 23 thereon, and forms a photoresist film 25 having an element region shape. (see figure (
a)). Using the photoresist film 25 as a sputter etching-resistant mask, one-reactive sputter etching is performed to remove the underlying silicon nitride film 23. Silicon dioxide film 22. After selectively etching and removing the silicon semiconductor substrate 21 to form a trench A, the photoresist film 25 serving as a mask is removed (FIG. 2(b)).

次に前記溝部への内面に二酸化硅素膜27を形成し、か
つ素子領域を覆っている前記窒化硅素膜23を耐イオン
注入マスクとして、溝底部に基板と同一導電形の不純物
層26をイオン注入により形成する(同図(C))、ま
たその全面にCVD法によって二酸化硅素膜2?aを形
成する(同図(d))が、この二酸化硅素膜27aの形
成により、溝部A上部の開口部形状が逆ハの字状となっ
て1次工程での多結晶シリコンの回り込みがよくなり、
表面を平坦化できる。
Next, a silicon dioxide film 27 is formed on the inner surface of the trench, and an impurity layer 26 of the same conductivity type as the substrate is ion-implanted into the bottom of the trench using the silicon nitride film 23 covering the element region as an ion implantation-resistant mask. ((C) in the same figure), and a silicon dioxide film 2? is formed on the entire surface by CVD method. A is formed (FIG. 2(d)), but due to the formation of this silicon dioxide film 27a, the opening shape at the top of the trench A becomes an inverted V-shape, which allows the polycrystalline silicon to wrap around easily in the first step. Become,
The surface can be flattened.

ついで多結晶シリコン層2?bを全面に成長させて前記
溝部Aを完全に埋め込んで表面を平坦化させたのち(同
図(e))、この多結晶シリコン層27bを前記二酸化
硅素膜27aの界面下まで選択的にエツチング除去する
(同図(f))。そして溝部A内に残された多結晶シリ
コン層27bを熱酸化法により酸化して二酸化硅素膜2
7cを形成し、かつその表面を平坦化する(同図(g)
)が、このときこの溝内部に形成される二酸化硅素膜2
7cは、基板表面下の所定深さまで達しており、その量
、つまり深さは製造される各デバイスによって異なるが
、通常のnチャンネルシリコンゲートMOSトランジス
タの場合、aoooX程度で充分である。
Next, polycrystalline silicon layer 2? After the polycrystalline silicon layer 27b is grown on the entire surface to completely fill the groove A and flatten the surface (FIG. 2(e)), the polycrystalline silicon layer 27b is selectively etched to below the interface of the silicon dioxide film 27a. ((f) in the same figure). Then, the polycrystalline silicon layer 27b left in the trench A is oxidized by a thermal oxidation method to form a silicon dioxide film 2.
7c and flatten its surface ((g) in the same figure).
) is the silicon dioxide film 2 formed inside this groove at this time.
7c reaches a predetermined depth below the substrate surface, and the amount, or depth, varies depending on each device manufactured, but in the case of a normal n-channel silicon gate MOS transistor, about aoooX is sufficient.

続いて前記表面に形成された二酸化硅素膜27a。Subsequently, a silicon dioxide film 27a is formed on the surface.

27cを、前記窒化硅素膜23の耐エツチングマスクに
より基板表面まで選択的にエツチング除去し、その後、
窒化硅素l1923.二酸化硅素膜22を除去して、所
期の素子間分離領域を形成する(同図(h))のである
27c is selectively etched away to the substrate surface using the etching-resistant mask of the silicon nitride film 23, and then
Silicon nitride l1923. The silicon dioxide film 22 is removed to form a desired isolation region between elements (FIG. 4(h)).

そしてこのようにして得られる素子間分離領域において
は、同領域形成時に、いわゆる、バーズビークが形成さ
れる惧れがなく、また素子領域のせばまりが解消される
と共に、表面が平坦化されてその後の素子形成が容易に
なり、しかも溝部の深さをさらに深くすることによって
、深さ方向に拡った深い拡散層に対しても、同一分離幅
での素子間分離をなし得て、素子の高集積化を向上でき
るのである。
In the device isolation region obtained in this way, there is no risk of so-called bird's beaks being formed when the region is formed, and the narrowness of the device region is eliminated, and the surface is flattened. Furthermore, by making the depth of the groove even deeper, it is possible to perform isolation between elements with the same isolation width even in a deep diffusion layer that spreads in the depth direction. High integration can be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、一方、前記した従来例での半導体装置の
製造方法においては、素子間分離領域形成のための溝部
を熱酸化させるようにしていることから、いわゆる、高
温プロセスとなり、不純物プロファイルの形状などが変
化し易く、従って素子形成の微細化に適当でないという
問題点があった。
However, in the conventional semiconductor device manufacturing method described above, the trench for forming the isolation region is thermally oxidized, which is a so-called high-temperature process, and the shape of the impurity profile etc. There is a problem in that it is easy to change and therefore is not suitable for miniaturization of element formation.

この発明は、従来のこのような問題点を改善するために
なされたもので、その目的とするところは、素子間分離
領域を低温プロセスにより形成し得るようにさせ、ひい
ては同分離領域を利用してトレンチキャパシタを構成さ
せる半導体装置の製造方法を提供することである。
This invention was made in order to improve these conventional problems, and its purpose is to make it possible to form isolation regions between elements by a low-temperature process, and to make it possible to utilize the same isolation regions. An object of the present invention is to provide a method for manufacturing a semiconductor device in which a trench capacitor is configured using the following methods.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置の製造方法は、半導体基板上
の溝部内面に、プラズマ陽極酸化または窒化法を用いて
酸化膜または窒化膜を形成させると共に、溝部内に多結
晶シリコン層を形成して、素子間分離領域を構成させる
ようにしたものであり、併せて同分離領域に形成される
多結晶シリコン層を電極形成して、トレンチキャパシタ
を構成させるようにしたちのである。
A method for manufacturing a semiconductor device according to the present invention includes forming an oxide film or a nitride film on the inner surface of a groove on a semiconductor substrate using plasma anodic oxidation or nitriding, and forming a polycrystalline silicon layer within the groove. An isolation region between elements is formed, and an electrode is formed on the polycrystalline silicon layer formed in the isolation region to form a trench capacitor.

〔作   用〕[For production]

従ってこの発明においては、溝部内面の酸化膜または窒
化膜形成に、プラズマ陽極酸化または窒化法を用いるこ
とにより、変形のない素子間分離領域を低温プロセスで
形成し得るのであり、また同分離領域に形成される多結
晶シリコン層をトレンチキャパシタとしても有効活用し
得る。
Therefore, in the present invention, by using plasma anodic oxidation or nitriding to form an oxide film or nitride film on the inner surface of the groove, it is possible to form an undeformed isolation region between elements in a low-temperature process. The formed polycrystalline silicon layer can also be effectively used as a trench capacitor.

〔実 施 例〕〔Example〕

以下、この発明に係る半導体装置の製造方法の一実施例
につき、第1図および第2図を参照して詳細に説明する
Hereinafter, one embodiment of the method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図(a)ないしくr)、および第2図(a)ないし
くe)はこの発明の第1および第2実施例を適用した半
導体装置の製造方法を工程順に示すそれぞれ断面図であ
る。これらの第1および$2実施例各図において前記従
来例各図と同一符号は同一または相当部分を示している
FIGS. 1(a) through r) and FIGS. 2(a) through e) are cross-sectional views showing, in order of steps, a method for manufacturing a semiconductor device to which the first and second embodiments of the present invention are applied. . In the drawings of the first and second embodiments, the same reference numerals as in the drawings of the conventional example indicate the same or corresponding parts.

第1図(a)ないしくf)の第1実施例方法は、まずシ
リコン半導体基板11上に、素子領域形状を有するホト
レジスト膜12を形成しく同図(a))、このホトレジ
スト膜12を耐スパッタエツチングマスクとして、反応
性スパッタエツチングにより、半導体基板11を選択的
にエツチング除去して溝部13を形成したのち、マスク
としてのホトレジスト膜12を除去する(同図(b))
The method of the first embodiment shown in FIGS. 1(a) to 1f) first forms a photoresist film 12 having the shape of an element region on a silicon semiconductor substrate 11 (see FIG. 1(a)). As a sputter etching mask, the semiconductor substrate 11 is selectively etched and removed by reactive sputter etching to form a groove 13, and then the photoresist film 12 as a mask is removed (FIG. 2(b)).
.

次に前記溝部3の内面を含む半導体基板11の表面に、
プラズマ陽極酸化法(または窒化法)により、酸化膜(
または窒化膜) 14を形成させ(同図(C))、また
この溝部13を含む全面にLPCVD法によって多結晶
シリコン層15を成長させて、溝部13を完全に埋め込
むと共に、表面を平坦化させる(同図(d))。
Next, on the surface of the semiconductor substrate 11 including the inner surface of the groove portion 3,
Oxide film (
A polycrystalline silicon layer 15 is grown on the entire surface including the groove 13 by LPCVD to completely fill the groove 13 and flatten the surface. ((d) in the same figure).

続いて前記酸化膜(または窒化11%)14と多結晶シ
リコン層15との選択比の高いガスを用い、この多結晶
シリコン層15を半導体基板11面まで選択的にエツチ
ング除去して、溝部13内に多結晶シリコン層15aを
残しく同図(e))、かつその後、半導体基板11の表
面の酸化膜(または窒化膜) 14を、例えばRIE異
方性エツチングにより選択的にエツチング除去する(同
図(f))。
Subsequently, using a gas having a high selectivity between the oxide film (or 11% nitride) 14 and the polycrystalline silicon layer 15, the polycrystalline silicon layer 15 is selectively etched to the surface of the semiconductor substrate 11. After that, the oxide film (or nitride film) 14 on the surface of the semiconductor substrate 11 is selectively etched away by, for example, RIE anisotropic etching, leaving the polycrystalline silicon layer 15a (FIG. 2(e)). Figure (f)).

すなわち1以上の第1実施例の工程によって、前記従来
例と同様の特長を有するところの、素子の高集積化に適
した所期の素子間分離領域を形成し得るのであり、また
併せて分離領域形成のための溝部内面の酸化膜(または
窒化膜)形成に、プラズマ陽極酸化(または窒化)法を
用いたので、分離領域形成に変形などを生ずる惧れがな
く、低温プロセスでの形成が可能となる。
In other words, by performing one or more of the steps of the first embodiment, it is possible to form a desired isolation region between elements, which has the same features as the conventional example, and is suitable for high integration of elements. Plasma anodic oxidation (or nitriding) is used to form the oxide film (or nitride film) on the inner surface of the trench for region formation, so there is no risk of deformation in the isolation region formation, and formation can be done in a low-temperature process. It becomes possible.

また、第2図(a)ないしくe)の第2実施例方法は、
前記第1実施例方法と同様に、シリコン半導体基板ll
上に、素子領域形状を有するホトレジスト膜12を形成
しく同図(a))、このホトレジスト膜12を耐スパツ
タエツチングマスクとして、反応性スパー、タエッチン
グにより溝部13を形成し、かつホトレジスト膜12を
除去(同図(b)) した上で、溝部13の内面を含む
半導体基板11の表面に、プラズマ陽極酸化法(または
窒化法)により、酸化膜(または窒化膜)14を形成さ
せる(同図(C))。
In addition, the second embodiment method shown in FIGS. 2(a) to e) is as follows:
Similar to the method of the first embodiment, the silicon semiconductor substrate ll
A photoresist film 12 having the shape of an element region is formed on top of the photoresist film 12 (FIG. 2(a)), and using this photoresist film 12 as a spatter-resistant etching mask, a groove 13 is formed by reactive spur and sputter etching, and the photoresist film 12 is ((b) in the same figure), and then an oxide film (or nitride film) 14 is formed on the surface of the semiconductor substrate 11 including the inner surface of the groove portion 13 by a plasma anodizing method (or nitriding method). Figure (C)).

ついで前記溝部13を含む全面にLPCiVD法によっ
て多結晶シリコン層15を成長させ、溝部13を完全に
埋め込んで表面を平坦化させ(同図(d))、またこの
溝部13に対応する多結晶シリコン層15上に、電極形
状を有するホトレジスト膜18を形成させておき、この
ホトレジスト膜16をエツチングマスクとして、例えば
RIE異方性エツチングにより多結晶シリコン層15を
選択的にエツチング除去し、残された多結晶シリコン層
15bを電極に用いてトレンチキャパシタを構成させた
ものである。
Next, a polycrystalline silicon layer 15 is grown on the entire surface including the groove 13 by the LPCiVD method, the groove 13 is completely buried and the surface is flattened (FIG. 1D), and the polycrystalline silicon layer 15 corresponding to the groove 13 is grown. A photoresist film 18 having an electrode shape is formed on the layer 15, and using this photoresist film 16 as an etching mask, the polycrystalline silicon layer 15 is selectively etched away by, for example, RIE anisotropic etching. A trench capacitor is constructed using polycrystalline silicon layer 15b as an electrode.

すなわち1以上の第2実施例の工程によって、こ\でも
前記従来例と同様の特長をもつ、素子のき、また分離領
域形成のための溝部内面の酸化膜(または窒化膜)形成
に、プラズマ陽極酸化(または窒化)法を用いたので、
低温プロセスでの形成が可能となって形状変化などを生
ずる惧れがなく、さらに分離領域に形成される多結晶シ
リコンをトレンチキャパシタとしても有効に活用し得る
のである。
That is, through one or more steps of the second embodiment, plasma is used to form an oxide film (or nitride film) on the inner surface of the trench for forming the element and for forming the isolation region, which also has the same characteristics as the conventional example. Since we used the anodic oxidation (or nitriding) method,
Since it can be formed in a low-temperature process, there is no risk of shape change, and furthermore, the polycrystalline silicon formed in the isolation region can be effectively used as a trench capacitor.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明方法によれば、半導体基板
面に溝部を形成すると共に、この溝部の内面にプラズマ
陽極酸化または窒化法を用いて酸化膜または窒化膜を形
成させ、かつ溝部内に多結晶シリコン層を形成して、素
子間分離領域を構成させるようにしたから、分離領域形
成に変形などを生ずる惧れがなくて、低温プロセスでの
形成が可能であり、かつ素子形成に際しての、いわゆる
バーズビークも形成されず、しかも素子領域のせばまり
が解消されると共に、同一分離幅での素子間分離をなし
得られ、また表面が平坦化されるために、その移の素子
形成が容易になり、結果的に素子の高集積化を向上でき
、さらに分離領域に形成される多結晶シリコン層を電極
形成することによって、この分離領域をトレンチキャパ
シタとしても有効利用できるなどの優れた特長を有する
ものである。
As detailed above, according to the method of the present invention, a groove is formed on the surface of a semiconductor substrate, an oxide film or a nitride film is formed on the inner surface of the groove using plasma anodization or nitriding, and Since the isolation region between elements is formed by forming a polycrystalline silicon layer, there is no risk of deformation in forming the isolation region, it can be formed in a low-temperature process, and it is easy to use when forming the elements. , so-called bird's beaks are not formed, and the narrowness of the element area is eliminated, and the elements can be isolated with the same isolation width, and the surface is flattened, making it easy to form elements at the same time. As a result, the device can be highly integrated, and by forming an electrode on the polycrystalline silicon layer formed in the isolation region, this isolation region can be effectively used as a trench capacitor. It is something that you have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないしくf)、および第2図(a)ないし
くe)はこの発明の第1および第2実施例を適用した半
導体装置の製造方法を工程順に示すそれぞれ断面図であ
り、また第3図(a)ないしくh)は従来例による半導
体装置の製造方法を工程順に示すそれぞれ断面図である
。 11・・・・シリコン半導体基板、12.18・・・・
ホトレジスト膜、13・・・・溝部、14・・・・酸化
11!J (または窒化膜) 、15.15a、15b
・・・・多結晶シリコン層。 代理人  大  岩  増  雄 第1図 (d) 15、%獣啄1eシ11クンλ奮 第2図 (a)      (e) (C) (d) R 15b=多棹轟シリコン層 16:丁−トレジ′ストP隻 第3図 (α)(e) (d)     (h) 2、発明の名称 半導体装置の製造方法 3、補正をする者 代表者志岐守哉 4、代理人 住 所    東京都千代田区丸の陶工丁目2番3号明
細書7頁15行の「3」を「13」と補正する。1、−
゛・・−2,7 以  上
1(a) to f) and FIG. 2(a) to e) are cross-sectional views showing, in order of steps, a method for manufacturing a semiconductor device to which the first and second embodiments of the present invention are applied, respectively. , and FIGS. 3(a) to 3(h) are cross-sectional views showing a conventional method for manufacturing a semiconductor device in the order of steps. 11... Silicon semiconductor substrate, 12.18...
Photoresist film, 13... Groove, 14... Oxidation 11! J (or nitride film), 15.15a, 15b
...Polycrystalline silicon layer. Agent Masuo Oiwa Figure 1 (d) 15, % Beast 1e Shi 11 Kun λ Figure 2 (a) (e) (C) (d) R 15b = Todoro Tasado silicon layer 16: Ding - Tresist P ship Figure 3 (α) (e) (d) (h) 2. Name of the invention Method for manufacturing semiconductor devices 3. Person making the amendment Representative Moriya Shiki 4. Agent address Chiyoda, Tokyo The "3" on page 7, line 15 of the specification of Kuumaru no Potter Chome No. 2-3 is corrected to "13". 1, -
゛...-2,7 or more

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板を選択的にエッチングして溝部を形成
した後、この溝部の内面にプラズマ陽極酸化または窒化
法により酸化膜または窒化膜を形成する工程と、前記内
面に酸化膜または窒化膜を形成した溝部内を多結晶シリ
コン膜で埋め込み、かつその表面を平坦化する工程と、
前記多結晶シリコン膜を溝部内に残すようにして、前記
酸化膜または窒化膜の界面下まで選択的にエッチング除
去する工程とを含み、素子間分離領域を構成させたこと
を特徴とする半導体装置の製造方法。
(1) After selectively etching a semiconductor substrate to form a groove, forming an oxide or nitride film on the inner surface of the groove by plasma anodization or nitriding; and forming an oxide or nitride film on the inner surface. filling the formed groove with a polycrystalline silicon film and flattening the surface;
and selectively etching away the polycrystalline silicon film to below the interface of the oxide film or nitride film, leaving the polycrystalline silicon film in the trench, thereby forming an isolation region between elements. manufacturing method.
(2)半導体基板を選択的にエッチングして溝部を形成
した後、この溝部の内面にプラズマ陽極酸化または窒化
法により酸化膜または窒化膜を形成する工程と、前記内
面に酸化膜または窒化膜を形成した溝部内を多結晶シリ
コン膜で埋め込み、かつその表面を平坦化する工程と、
前記多結晶シリコン膜を溝部内、および表面上で電極形
状相当分だけ残すようにして、前記酸化膜または窒化膜
の界面下まで選択的にエッチング除去する工程とを含み
、素子間分離領域と共にトレンチキャパシタを構成させ
たことを特徴とする半導体装置の製造方法。
(2) After selectively etching the semiconductor substrate to form a groove, forming an oxide or nitride film on the inner surface of the groove by plasma anodization or nitriding; and forming an oxide or nitride film on the inner surface. filling the formed groove with a polycrystalline silicon film and flattening the surface;
selectively etching away the polycrystalline silicon film to below the interface of the oxide film or nitride film, leaving the polycrystalline silicon film in the trench portion and on the surface in an amount equivalent to the shape of the electrode, A method for manufacturing a semiconductor device, comprising a capacitor.
JP60176039A 1985-08-08 1985-08-08 Manufacture of semiconductor device Pending JPS6235534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176039A JPS6235534A (en) 1985-08-08 1985-08-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176039A JPS6235534A (en) 1985-08-08 1985-08-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6235534A true JPS6235534A (en) 1987-02-16

Family

ID=16006649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176039A Pending JPS6235534A (en) 1985-08-08 1985-08-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6235534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459691B1 (en) * 1998-01-05 2005-01-17 삼성전자주식회사 Trench isolation method of semiconductor device to improve electrical characteristic
US20100093125A1 (en) * 2007-03-09 2010-04-15 Quevy Emmanuel P Method for temperature compensation in mems resonators with isolated regions of distinct material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459691B1 (en) * 1998-01-05 2005-01-17 삼성전자주식회사 Trench isolation method of semiconductor device to improve electrical characteristic
US20100093125A1 (en) * 2007-03-09 2010-04-15 Quevy Emmanuel P Method for temperature compensation in mems resonators with isolated regions of distinct material
US8464418B2 (en) * 2007-03-09 2013-06-18 Silicon Laboratories Inc. Method for temperature compensation in MEMS resonators with isolated regions of distinct material
US8669831B2 (en) 2007-03-09 2014-03-11 Silicon Laboratories Inc. Method for temperature compensation in MEMS resonators with isolated regions of distinct material
US9422157B2 (en) 2007-03-09 2016-08-23 Semiconductor Manufacturing International (Shanghai) Corporation Method for temperature compensation in MEMS resonators with isolated regions of distinct material

Similar Documents

Publication Publication Date Title
JPS63314844A (en) Manufacture of semiconductor device
JP2006049828A (en) Semiconductor device and its manufacturing method
JPH10303291A (en) Semiconductor device and its manufacture
JPS61137338A (en) Manufacture of semiconductor integrated circuit device
JPH02119238A (en) Semiconductor device and manufacture thereof
JPH09120989A (en) Formation of trench of semiconductor device using spacer
JPS6235534A (en) Manufacture of semiconductor device
JPH098292A (en) Semiconductor device and manufacture thereof
JPS58153349A (en) Manufacture of semiconductor device
JPS5898943A (en) Manufacture of semiconductor device
JP2955838B2 (en) Method for manufacturing semiconductor device
JP2002190515A (en) Semiconductor device and its manufacturing method
JPH11243142A (en) Manufacture of semiconductor device
US20030100167A1 (en) Manufacturing method of semiconductor device
JP4670198B2 (en) Manufacturing method of semiconductor device
JPS62274665A (en) Manufacture of semiconductor device
JPS60105247A (en) Manufacture of semiconductor device
JPH05226466A (en) Manufacture of semiconductor device
JPS6117143B2 (en)
JPS59177941A (en) Manufacture of element isolation region
JPH06252259A (en) Semiconductor device and its manufacture
JP3850933B2 (en) Manufacturing method of semiconductor device
JPS61176133A (en) Manufacture of semiconductor device
KR0183971B1 (en) Semiconductor element isolation method
JPH01101649A (en) Element isolation of semiconductor device