JPS6235494B2 - - Google Patents
Info
- Publication number
- JPS6235494B2 JPS6235494B2 JP14918382A JP14918382A JPS6235494B2 JP S6235494 B2 JPS6235494 B2 JP S6235494B2 JP 14918382 A JP14918382 A JP 14918382A JP 14918382 A JP14918382 A JP 14918382A JP S6235494 B2 JPS6235494 B2 JP S6235494B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- thick
- yarns
- filament
- multifilament
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012209 synthetic fiber Substances 0.000 claims description 10
- 229920002994 synthetic fiber Polymers 0.000 claims description 10
- 230000001788 irregular Effects 0.000 claims description 5
- 239000004744 fabric Substances 0.000 description 30
- 239000000835 fiber Substances 0.000 description 19
- 238000005452 bending Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 11
- 239000002932 luster Substances 0.000 description 9
- 210000002268 wool Anatomy 0.000 description 9
- 210000000744 eyelid Anatomy 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000004043 dyeing Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007794 irritation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000008358 core component Substances 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- -1 wool Substances 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は天然繊維、とりわけアイリツシユリネ
ンや高級梳毛糸の感覚を有する合成繊維マルチフ
イラメント糸に関する。
従来から合成繊維マルチフイラメント糸を用い
てウール、麻、木綿など天然繊維紡績糸に類似し
た、いわゆるスパンライク糸およびスパンライク
織編物を創出するための数々の試みが成されてき
た。しかるに、天然繊維、中でもウールや麻の良
さは表面タツチの上でぬめるようなソフトさがあ
りながら基質としてはきしみやしやりみのあるド
ライな感触を有し、曲げに対して柔軟でありなが
ら、張り・腰といつた反発性を有し、毛羽や捲縮
で嵩高なふくらみがありながら、撚りによつて締
つた構造と感覚を有し、強い光沢がありながら、
スパン特有の不透明感を有し、更に、マクロには
均質で高品位な布帛表面を有しながら、ミクロに
は非常にむらの多い集合体として自然感を呈して
いるなど、それぞれ相反する特性を合わせもつて
いる点にあり、均質さを基本とする合成繊維マル
チフイラメント糸でこれらを達しようとすると、
随所で技術的に相矛盾する壁に衝き当ることにな
る。
具体的には、例えば仮ヨリ加工、押込み捲縮加
工、収縮率差混繊、流体加工などで代表される技
術により、毛羽感、ふくらみなどが付与されるが
張り・腰が低下したり、ふかつきが出たりして締
つた感覚がない。
単糸繊度が細いフイラメント糸ではタツチのソ
フトさは出るが張り・腰はなく、一方、太いフイ
ラメント糸では逆の傾向になる。融着加工技術に
よりしやりみを付与すると表面タツチのソフトさ
が消え、また張りは出るが反発性がなくなつて防
しわ性なども低下する。更に異繊度混繊技術を上
記各種技術と組合わせる手段も提案されている
が、単なる技術の組合わせでは合成繊維特有の単
調さを除去することができず、根本的な解決には
到つていない。
本発明者らは天然繊維の中でも優れた素材とし
て春夏用素材の代表であるアイリツシユリネンと
秋冬用素材の代表である高級ウールを繊維、糸、
布帛の各レベルで徹底的な解析を行ない、両者に
おける基本的な性質を解明することにより合成繊
維マルチフイラメントでこれらの特性を創出すべ
く鋭意検討し、本発明に到達した。
即ち、本発明の目的はアイリツシユリネンや高
級ウールなどの天然繊維紡績糸の基本的特徴を有
する合成繊維マルチフイラメント糸およびこれを
用いた織編物を得ることにあり、より具体的に
は、
(1) ソフトさがあり、かつドライな表面タツチ
(2) 柔軟、かつ反発性のある曲げ特性
(3) 嵩高、かつ締つた糸、布帛構造
(4) 光沢があり、かつ不透明感のある外観
(5) 高品位で、かつ自然なむら感のある目風
など、相反する特性を両立させた合成繊維マルチ
フイラメント糸およびこれを用いた織編物を提案
することにある。
本発明は前記目的を達成せんとするものであり
次の構成を有する。即ち、
単糸繊度が6デニール以上で、かつ突起のある
異形断面極太マルチフイラメント糸が主として芯
糸として配置され、一方、単糸繊度が1.5デニー
ル以下の極細マルチフイラメント糸が主としてさ
や糸として配置されていて、かつ前記極太マルチ
フイラメント糸と極細マルチフイラメント糸とが
互いに交絡してなることを特徴とする合成繊維ス
パンライク加工糸であり、さらに、かかる本発明
の糸における好ましい実施態様として、さらに芯
糸やさや糸の一部または全部にシツクアンドシン
ヤーンを含むことを特徴とするものであり、また
さらに、交絡部の一部が節糸となつていて、糸長
さ方向に太細差を有することを特徴とするもので
ある。
本発明では極太マルチフイラメント糸を主とし
て芯糸として、極細マルチフイラメント糸を主と
してさや糸として配置せしめて、かつこれら両糸
を交絡させて用いるが、ここでそれぞれの成分糸
の繊度、断面形状、単糸繊度比、合計繊度比率、
交絡状態などは本発明の目的を達する上で非常に
重要な因子である。
以下、本発明をさらに詳細に説明する。
まず、芯糸となる突起のある異形断面極太マル
チフイラメント糸は少なくとも2本以上のフイラ
メントで構成され、少なくとも6デニール(d)以
上、より好ましくは9d以上からなり、かつ、20d
未満であつて芯糸の全部または一部を形成する。
本発明の目的とする風合いを具現するために好ま
しくは芯糸中の極太マルチフイラメント糸のデニ
ール比率が全芯糸の20%以上、70%以下として含
まれていることが望ましい。勿論、芯糸すべてが
極太マルチフイラメント糸でも差しつかえない
が、張り・腰と適当な柔軟性、タツチのソフトさ
としやり感を両立する上で極太フイラメント糸よ
りも低繊度なフイラメント糸との混繊が望ましい
わけである。
また、極太フイラメント糸の単糸繊度について
は種々検討の結果、6d未満ではいくら芯糸の比
率を高くしても本発明の風合いのものは得られな
かつた。一方、単糸繊度が20d以上になると張
り・腰は高くなるが、本発明の狙いである麻や梳
毛調の張り・腰やしやりみの領域からはずれた風
合いとなるばかりでなく、さや糸との色差による
イラツキも避けられないことが判つた。
また、本発明の極太フイラメント糸の断面形状
は本発明の重要なポイントの一つであり、極太フ
イラメント糸としての効果、即ち、高い剛性を損
うことなく、織編物にしたときに極細マルチフイ
ラメント糸とのフイラメント相互のかみ合いによ
る天然繊維のごとき風合い、タツチ、光沢が付与
できるのである。
第6図は、本発明にかかるスパンライク加工糸
の1例を説明するものであり、糸断面の顕微鏡拡
大写真をトレースしたものである。この図に示し
た例は、突起のある異形断面極太マルチフイラメ
ント糸として、75デニール−12フイラメント(単
糸繊度6.25デニール)のH形断面糸を用い、極細
マルチフイラメント糸としては100デニール−98
フイラメント(単糸繊度1.04デニール)の丸断面
糸を用いたものである。
また、第7図は、第6図に例示した本発明糸の
側面形態拡大写真を同じくトレースしたものであ
り、同図に示す4本は、いずれも上記本発明の1
本の糸について長さ方向の一部を示したものであ
り、糸長さ方向に明瞭な太細差を有している状態
を説明するものである。なお、本発明の糸におい
て、交絡している部分の交絡形態や糸外観は、従
来知られている交絡糸のものと基本的には同じも
のである。
本発明において突起のある断面形状とは繊維断
面において少なくとも2個以上の凸角があり、か
つ、隣接する凸角間に凹角を有する断面形状を言
う。換言すれば、少なくとも2個以上の尖端形状
を有する突起があり、かつ、隣接する突起間に凹
面を有する断面形状である。そして、本発明の糸
において、該突起は、最終的な糸としては、糸長
さ方向の一部等の部分的にみた場合には一部折れ
ているような状態であつても差支えないものであ
る。
本発明においてこの凸角と凹角とを有する断面
形状は非常に重要な役割を果たす。まず凸角は非
融着でありながら粗い摩擦特性を有し、基質とし
てのドライな感触に寄与する。また、凸角と凹角
の共存により、同一単糸繊度では円断面に比べて
高い曲げ剛性を有し、布帛の張りに寄与する。更
に凹角は入射光に対して単繊維内での拡散反射量
を高め、透明な基質でありながら鈍光沢となり、
見掛け上のカバーフアクターを上げて視覚的にス
パンライクな外観を呈する。また、このためさや
成分との間の染差によるイラツキも低減される。
本発明の場合、極太フイラメント糸の任意の断
面を見たときに少なくとも該突起のある異形断面
部分を1個以上含むものを言う。
断面形状については種々検討の結果、十字形、
V字形、U字形、H字形、三葉以上の多葉形など
の比較的鋭い突起のあるものがよく、とくに十字
形、八葉形などが好ましいことが判つた。また、
一字形や三角形、四角形などの鋭い突起(凸角)
はあつても凹角を持たない断面形状についてはタ
ツチのしやりみは一応出るが、本発明のごとき風
合いや光沢などは得られないことが判つた。具体
的には異形断面について本発明の一例を図−1
に、また、本発明以外のものを図−2に例示し
た。
一方、主としてさや糸となる極細マルチフイラ
メント糸は軽い表面側圧に対して天然繊維のごと
きソフトさを付与する上で、少なくとも単糸繊度
が1.5d以下、より好ましくは1.1d以下、0.5d以上
の極細フイラメントからなり、極太マルチフイラ
メント糸を芯糸として互いに交絡している。
極細フイラメントに対する極太フイラメントの
単糸繊度比は本発明の目的、即ち、天然繊維とく
にアイリツシユリネンや梳毛ウール織編物の風合
い、タツチ、光沢を具現する上で、単糸繊度比は
4倍以上、好ましくは6倍以上となることが望ま
しい。
一般に単糸繊度差による染めのイラツキは同浴
染めをする場合、単糸繊度比が1対10以上では無
視できない程度となるが、本発明の異形極太マル
チフイラメント糸と極細マルチフイラメント糸と
の構成では極太マルチフイラメント糸の断面形状
から散乱光が多くなるため、濃染効果が少なく、
単糸繊度比が1対20程度でもイラツキを生じな
い。更に、光沢感を維持するために、極細フイラ
メント糸は基質として極力、透明度が高いことが
必要であり、従つて、TiO2など不透明化成分を
含まないことが望ましい。また、含んでいても
0.2重量%以下が好ましい。透明性を比較的損わ
ないSiO2系粒子の場合には0.5重量%以下が好ま
しい。
また、同様の理由から、主としてさや糸となる
極細マルチフイラメント糸の断面形状は丸、扁
平、多角、三葉ないし五葉程度の多葉形などが好
ましく、乱反射の大きい複雑な形状は好ましくな
い。但し、光沢感を損わない範囲で多角化ないし
多葉化することにより、ソフトで、かつ、繊細な
きしみのある表面タツチを得ることができる。
また、よりスパンライクなタツチ、外観を得る
ために、さや糸の一部または全部のフイラメント
糸が部分的に切断され毛羽となつていてもよい。
3つ目のポイントである交絡については本発明
のソフトさがあり、ドライな表面タツチ、柔軟、
かつ、反発性のある曲げ特性を付与する上で側圧
あるいは曲げ圧力に対して極太フイラメント糸と
極細フイラメント糸が部分的にあるときは噛み合
い、あるときは分離する形で存在し、極細マルチ
フイラメント糸が主としてさや糸となるよう互い
に混合し、部分的には芯糸の突起のある極太フイ
ラメントが露出しながら両者が完全分離しないよ
うに交絡している必要がある。
ここで、混合とは両者が混在した状態を言い、
両者に糸長差があつてもよいし、部分的にさや糸
が交互撚り状に捲回し、あるいは節糸となり、あ
るいはまた、ループを形成してもよい。
また、交絡についても流体によるインタレース
やループタイプの交絡、静電開繊など、どんなタ
イプでもよい。交絡が全くない場合、高次工程で
の通過性を損うばかりでなく、芯糸とさや糸のマ
イグレーシヨンが悪いため、本発明のスパンライ
ク糸となり得ない。交絡の程度は後述する測定方
法による交絡度が5から300であることが望まし
い。
使用する合成繊維マルチフイラメント糸として
はポリエステル系、ポリアミド系、ポリアクリル
系、ポリオレフイン系、アセテートなどが単独、
あるいは組合せて用いることができる。
また、本発明の織編物とは本発明のスパンライ
ク糸をそのまま、あるいは他の糸との組合せで織
編物の全部または一部に用いたものを言う。
本発明でいう交絡度の測定は米国特許第
3290932号明細書に準じた方法で行なう。概略を
以下に示す。
第3図の装置において試料1を引取ローラ5で
解舒し、ウエストローラ6に巻取る。糸を1cm/
sec.の速度で走行させた状態でマグネツト式張力
付加装置2を調整して、該張力付加装置2と引取
ローラ5間の張力を初張力に設定する。初張力は
デニール×0.2gとし、張力付加装置2と引取ロ
ーラ5の間に固定されて設けてある張力計4で検
知する。初張力設定後、糸の走行を停止し、第4
図に示すように糸をほぼ2分する位置に測定用針
3を刺す。ついで、糸を1cm/sec.で再び走行さ
せると、針が交絡点7に引掛かり、針4と引取ロ
ーラ5間の張力が上昇する。前記、張力値が〔初
張力+(極細フイラメントの単糸デニール)×1
g〕に達すると引取ローラ5を停止するように設
定しておき、針を刺してから再び停止するまでの
糸の走行移動距離li(mm)を引取ローラ5の回
転角から読みとる。同様の操作を40回繰返し、交
絡度は次式により計算する。
測定は3回行ない、平均値で表示する。
本発明における交絡度は上記原理に基づいて製
作されたRHTHSCHILD社製エンタングルメン
ト・テスター(型式R2040)を用いて測定を行な
つた。
本発明は前記詳述した如き、極太マルチフイラ
メント糸、極細フイラメント糸およびこれらの交
絡からなる3要素により総合的な効果として本発
明の目的を達し得るものである。即ち、まず極細
マルチフイラメント糸が交絡状態となつてさや成
分を形成するため、極く軽い表面側圧に対しては
ほとんど抵抗力がなく、羽毛の如きソフトな表面
タツチとなるが、やや側圧を高めると極細マルチ
フイラメント糸と極太マルチフイラメント糸との
相互間の摩擦を生じて繊細なきしみ感となり、更
に側圧を高めると、極太マルチフイラメント糸の
粗い摩擦を生じて、しやりみを表わすようにな
り、結果として、ソフトでありながらドライな感
触を有する複雑、かつ、味わい深い肌触りを得る
ものである。これはウールやリネンの細繊度繊維
の毛羽とスケールや太繊度繊維のねじれや粗面な
側面構造とによつてかもし出される触感に相当す
る。
次に曲げに対して、低曲率領域ではこの程度の
交絡では極細マルチフイラメント糸と極太マルチ
フイラメント糸との間に自由度があるため、曲げ
て行つた場合、極細マルチフイラメント糸は極太
マルチフイラメント糸間や極太フイラメント糸の
突起間に充填されるのみであり、曲げ応力にほと
んど寄与しない。従つて、曲げ応力は構造上、少
成分である極太マルチフイラメント糸によつて生
ずる応力に主として依存し、適度な張りのある範
囲で、柔らかな曲げ特性を有する。しかし、高曲
率領域では極細および極太マルチフイラメント糸
の総合された曲げ応力および反発力を生ずるた
め、非常に腰と反発性のある曲げ特性となる。
これは割り竹の束を曲げた挙動に似ていて、更
にはウールやアイリツシユリネンにおける高範囲
な繊度混繊糸の曲げ特性に相当する。また、極細
マルチフイラメント糸が適度に極太マルチフイラ
メント糸と交絡し、かつ、その隙間に充填される
ため、嵩高性がありながら締つた感覚の構造にな
る。
更に表面光沢特性については極細マルチフイラ
メント糸、極太マルチフイラメント糸ともに透明
な基質を持つていて、反射特性は高く、かつ、極
細マルチフイラメント糸は光沢がありながら細繊
度のため比表面積が大きいことおよび交絡により
方向性を乱されているため、散乱光を出し易く、
また、極太マルチフイラメント糸は複雑な断面形
状のため、乱反射が大きい。
従つて、表面的な正反射光沢を有しつつ、さや
成分の極細マルチフイラメント糸と芯成分の異形
極太マルチフイラメント糸との間で複雑な光の干
渉を生じて、内部的には不透明な鈍光沢となる。
また、芯成分が太繊度のため、発色性が高く、非
常に深みのある色調を呈する。
ウールやアイリツシユリネンはスパン糸のため
一見、鈍光沢であるが、基質としては非常に透明
性が高い素材であり、本発明の主旨に一致する点
である。
さらに芯糸やさや糸にシツクアンドシンヤーン
を用い加工した本発明のスパンライク加工糸はシ
ツクアンドシンヤーン特有の太さむらや染めの濃
淡差による外観的なムラ感や味わいのほかに、風
合いでも、本発明の糸構造とも相まつて、よりス
パンライクでライブリネスのある織編物が得られ
る。また、交絡部分で主として節糸となるように
加工した本発明のスパンライク加工糸は節糸部と
その他の部分との太細差以外に節糸部のつよい光
沢とも相まつて、スパンライクとくにアイリツシ
ユリネンライクな外観を示す。なお、節糸部の長
さが短かすぎるものは織編物にしたとき、ネツプ
状に見え、品位が悪い。高品位な織編物を得るた
めには節糸部の長さは1cm以上、より好ましくは
2cm以上が適する。
以下実施例により本発明を具体的に説明する。
実施例 1
A スパンライク糸の加工
芯糸としてポリエステルマルチフイラメント
糸50D−16F(6.8d八葉断面極太フイラメント
糸、2本と2.3d丸断面フイラメント糸14本から
成る異繊度混繊糸で、いずれもTiO2を含まな
い)を用い、さや糸用としてポリエステルマル
チフイラメント糸75D−72F(三角断面、TiO2
を含まず)を用い、第5図のような加工装置に
より、次の条件で加工した。
加工速度:150m/min(引取ローラの表面速
度)
オーバフイード率(OFR):芯糸 2%
さや糸 12%
液体加工ノズル:強交絡ノズル(試作品)
圧空圧:3.5Kg/cm2
振動子の回転数:950r.p.m.
得られた糸は交絡度184で、糸軸方向に1m
当り平均7.5個の節糸部を有し、極太フイラメ
ント糸を含むマルチフイラメント糸が芯糸とな
り、極細マルチフイラメント糸が主としてさや
糸となつたスパンライク糸であつた(トータル
デニール141D、沸騰水収縮率4.4%)。
オーバフイード率(OFR、%)は次のよう
に算出した。
OFR(%)=FR−DR/DR×100
ただし、
FR:送り出しローラ11あるいは12の表面
速度
DR:引取ローラ15の表面速度
B 製織評価
上記Aで得られた本発明のスパンライク糸に
300T/Mの追撚を施し、タテ糸、ヨコ糸使い
で平織物に製織し、次に条件で仕上げた。
生機:(密度:本/in、タテ67、ヨコ58)
精練:98℃×5min
“サンデツド”G−29〔ノニオン系活性剤、
三洋化成工業(株)〕
ソーダ灰 各2g/添加
中間セツト:180℃×2min
アルカリ減量加工:98℃×50min
(減量率:12%)苛性ソーダ30g/
染色(浸染):130℃×60min.
(螢光晒し)
仕上げセツト:150℃×2min.
得られた織物は外観的には光沢があり、スラ
ブ感のあるスパンライク織物、とくに、アイリ
ツシユリネン織物のようなつよい張り・腰とタ
ツチのソフトさ、それにリネン特有のしやりみ
を有する織物となつた(仕上り密度:本/in、
タテ76、ヨコ65、目付86g/m2)。
また得られた織物をサンドペーパ(#180)
による軽いバフイングを実施したところ、主と
してさや糸となつている極細糸のみが毛羽とな
り、あたかもリネン織物(シヤーチング)のご
とき、タツチのソフトさとしやりみ、それに張
り・腰を兼ね備えた織物となつた。
この織物の抗ピル性はJIS L 1076A法
(ICI型試験機を用いる方法)でテストした結
果、4級(テスト10HR)であり、全く問題な
いレベルにあつた。
更に、上記で得たスパンライク糸を用いてダ
ブルニツト(24G、インタロツク)に製編し、
通常の条件で仕上げた。
得られた編地は張り・腰があり、タツチのソ
フトさとしやりみを兼ね備えた高級梳毛ウール
調のスパンライクな編地となつた。
実施例2および比較例
種々のフイラメント糸を組合せて、第5図に示
す装置を用いて糸加工を実施した(但し、振動子
13は使用せず)。なお、いずれのフイラメント
原糸も艶消し剤(TiO2)を添加していないものを
用いた。
このようにして得られた各加工糸を用いてタフ
タを製織し、実施例1と同じ条件で仕上げた。ア
ルカリ減量率はいずれも約12%とした。
原糸組合せ、糸加工条件、各加工糸の糸質、製
品特性などは第1表のとおりであつた。
製品特性評価は次の条件で行なつた。
(1) 曲げ仕事量:織物をタテ、ヨコ別に3cm×6
cmにカツトし、長辺(6cm)の端を薄い両面テ
ープで固定し、織物内側の折り曲げ点の隙間が
0.1mmになるまで一定圧縮速度(5mm/min)
で高曲率に圧縮したときの曲げ仕事量で表わし
た。
(2) 厚さ、圧縮量、圧縮率:圧縮弾性試験機〔前
田精器(株)製〕を用いて初荷重(50g/cm2)、定
荷重(300g/cm2)を加えたときの各々の厚
み、S0、Sを測定し、次のように求めた。
厚さ:S0(mm)
圧縮量:S0−S(mm)
圧縮率:S0−S/S100(%)
(3) 対比光沢度:三次元変角光度計JSG−21(城
南製作所製)を用いて、次の条件で測定した。
光源:12Vタングステンランプ
投光スリツト:4.8φ
投光角:45゜
受光角:45゜(鏡面光沢度)および0゜(拡散
光沢度)
酸化マグネシウム白板を標準白板として用い
反射率(受光角45゜)が100%になるように調
整した。対比光沢度は次のように算出した。
対比光沢度=拡散光沢度/鏡面光沢度
(4) 節糸の頻度:得られた加工糸10m間に存在す
る節糸部を数えた(3回繰返し、平均で表
示)。
(注) 表−1の説明
単糸繊度比:極細フイラメントデニールに対す
る極太フイラメントデニールの比。
(A) 芯糸中の極太フイラメント
*1:芯糸中の極太フイラメントを除く他のフ
イラメント糸は48D−15F丸断面糸。また、
芯糸、さや糸ともすべてポリエステルフイラ
メント糸である。
*2:OFRを除いて実施例1に同じ。振動子
13は使用せず。
*3:芯糸(101D)は同時高速紡糸(2950
m/min)により得たPOYを次の条件でシツ
クアンドシンヤーン延伸した。
延伸速度:505m/min
延伸ピン:22φ(1回巻)
延伸の温度:85℃
延伸倍率:1.38倍
*4:加工No.8はさや糸として芯糸と同じもの
を使用した。
*5:比較例
官能評価判定
◎ 極めて良好 〇 良好 × 不良
The present invention relates to synthetic multifilament yarns having the feel of natural fibers, especially eyelid linen or fine worsted yarns. Many attempts have been made to create so-called spun-like yarns and spun-like woven and knitted fabrics, which are similar to spun yarns of natural fibers such as wool, hemp, and cotton, using synthetic multifilament yarns. However, the advantage of natural fibers, especially wool and linen, is that they are soft to the touch, but when used as a substrate, they have a dry feel with a squeaky, stiff feel, and are flexible against bending. Although it has elasticity and resilience, it has a bulky bulge due to fluff and crimping, and has a tight structure and feel due to twisting, and has a strong luster.
It has a sense of opacity that is unique to spans, and while it has a homogeneous and high-quality fabric surface on the macroscopic level, it has a natural appearance as an extremely uneven aggregate on the microscopic level. There is also a point of combination, and if you try to achieve these with synthetic fiber multifilament yarn, which is based on homogeneity,
You will run into technical contradictions at various points. Specifically, techniques such as temporary twisting, push crimping, mixed fibers with different shrinkage rates, and fluid processing can give a fluffy feel and fullness, but they can also cause a decrease in tension and elasticity. There is no tightness or tightness. A filament yarn with a thin single filament fineness will have a soft touch but no tension or stiffness, while a thick filament yarn will have the opposite tendency. When applying pliability using fusion processing technology, the softness of the surface touch disappears, and although tension is created, resilience is lost and wrinkle resistance is also reduced. Furthermore, methods have been proposed to combine the mixed fiber technology with different fineness fibers and the various technologies mentioned above, but a simple combination of technologies cannot eliminate the monotony peculiar to synthetic fibers, and a fundamental solution has not been reached. do not have. The present inventors have used eyelid linen, a typical spring/summer material, and high-grade wool, a typical autumn/winter material, as fibers, yarns, and other excellent materials among natural fibers.
We conducted a thorough analysis at each level of the fabric, elucidated the basic properties of both, and worked diligently to create these properties in synthetic fiber multifilament, resulting in the present invention. That is, the purpose of the present invention is to obtain a synthetic fiber multifilament yarn having the basic characteristics of natural fiber spun yarn such as eyelid linen and high-grade wool, and a woven or knitted fabric using the same. 1) Soft and dry surface touch (2) Flexible and resilient bending properties (3) Bulky and tight thread and fabric structure (4) Shiny and opaque appearance ( 5) Our objective is to propose synthetic fiber multifilament yarns that have contradictory properties such as high quality and natural uneven texture, and woven and knitted fabrics using the same. The present invention aims to achieve the above object and has the following configuration. That is, a very thick multifilament yarn with a single filament fineness of 6 denier or more and an irregular cross section with protrusions is mainly arranged as a core yarn, while an extremely fine multifilament yarn with a single filament fineness of 1.5 denier or less is mainly arranged as a sheath yarn. It is a synthetic fiber spunlike processed yarn characterized in that the extremely thick multifilament yarn and the extremely fine multifilament yarn are intertwined with each other. It is characterized by containing thick and thin yarn in part or all of the yarn or sheath yarn, and furthermore, a part of the intertwined part is a knotted yarn, and there is a difference in thickness in the yarn length direction. It is characterized by this. In the present invention, the ultra-thick multifilament yarn is mainly arranged as a core yarn, the ultra-fine multifilament yarn is mainly arranged as a sheath yarn, and these two yarns are intertwined. Yarn fineness ratio, total fineness ratio,
The state of entanglement is a very important factor in achieving the purpose of the present invention. The present invention will be explained in more detail below. First, the extra-thick multifilament yarn with irregular cross-section and protrusions, which will serve as the core yarn, is composed of at least two filaments, has a diameter of at least 6 denier (d), more preferably 9 denier (d) or more, and has a diameter of 20 denier (d) or more.
less than 10% and forms all or part of the core yarn.
In order to achieve the desired texture of the present invention, it is preferable that the denier ratio of the extra-thick multifilament yarn in the core yarn is 20% or more and 70% or less of the total core yarn. Of course, all of the core yarns can be made of extra-thick multi-filament yarn, but in order to achieve both tension and stiffness, appropriate flexibility, soft touch and a supple feel, it is best to mix fibers with filament yarns that have a lower fineness than extra-thick filament yarns. That is why it is desirable. Further, as a result of various studies regarding the single yarn fineness of the extra-thick filament yarn, it was found that the texture of the present invention could not be obtained at a yarn fineness of less than 6 d, no matter how high the ratio of the core yarn was. On the other hand, when the single yarn fineness is 20d or more, the tension and stiffness become high, but not only does it result in a texture that deviates from the range of tension, stiffness, and stiffness of linen or worsted, which is the aim of the present invention, but it also creates a sheath yarn. It was found that irritation caused by the color difference between the two cannot be avoided. In addition, the cross-sectional shape of the extra-thick filament yarn of the present invention is one of the important points of the invention, and the effect as an extra-thick filament yarn, that is, the cross-sectional shape of the ultra-thick filament yarn, when made into a woven or knitted fabric, without impairing its high rigidity. The interlocking of the filaments with the yarn gives it the feel, touch, and luster of natural fibers. FIG. 6 is a diagram illustrating an example of a spunlike processed yarn according to the present invention, and is a tracing of an enlarged microscopic photograph of a cross section of the yarn. The example shown in this figure uses an H-shaped cross-section yarn of 75 denier-12 filaments (single yarn fineness 6.25 denier) as an extra-thick multifilament yarn with an irregular cross-section and a 100-denier-98 filament yarn as an ultra-fine multifilament yarn.
It uses filament (single yarn fineness 1.04 denier) round cross-section yarn. In addition, FIG. 7 is a tracing of an enlarged photograph of the side profile of the yarn of the present invention illustrated in FIG.
This figure shows a part of a real thread in the length direction, and explains the state in which the thread has a clear difference in thickness in the length direction. In addition, in the yarn of the present invention, the intertwining form and yarn appearance of the intertwined portions are basically the same as those of conventionally known intertwined yarns. In the present invention, a cross-sectional shape with protrusions refers to a cross-sectional shape in which there are at least two or more convex angles in the fiber cross section, and a concave angle between adjacent convex angles. In other words, there are at least two protrusions having a pointed shape, and the cross-sectional shape has a concave surface between adjacent protrusions. In the yarn of the present invention, the protrusion may be partially bent in the final yarn, such as a part of the yarn in the longitudinal direction. It is. In the present invention, this cross-sectional shape having convex angles and concave angles plays a very important role. First, although the convex angle is non-fused, it has rough frictional properties and contributes to the dry feel of the substrate. In addition, due to the coexistence of convex angles and concave angles, it has higher bending rigidity than a circular cross section for the same single yarn fineness, contributing to the tension of the fabric. Furthermore, the concave angle increases the amount of diffuse reflection within the single fiber for incident light, giving it a dull luster even though it is a transparent substrate.
It increases the apparent cover factor and gives a visually spun-like appearance. Furthermore, irritation due to differences in dyeing with the sheath components is also reduced. In the case of the present invention, it refers to an extra-thick filament yarn that, when viewed in any cross section, includes at least one or more irregularly shaped cross-sectional portions having the protrusions. As a result of various studies regarding the cross-sectional shape, we found that it was cross-shaped,
It has been found that those with relatively sharp protrusions such as V-shapes, U-shapes, H-shapes, and multilobed shapes of three or more leaves are preferred, with cross-shapes and octlobal shapes being particularly preferred. Also,
Sharp protrusions (convex angles) such as single-character shapes, triangles, and squares
It has been found that for a cross-sectional shape that does not have concave angles, the texture and luster of the present invention cannot be obtained, although the texture and luster of the present invention can be obtained. Specifically, an example of the present invention regarding an irregular cross section is shown in Figure 1.
In addition, examples other than the present invention are illustrated in FIG. On the other hand, ultrafine multifilament yarn, which is mainly used as a sheath yarn, has a single yarn fineness of at least 1.5 d or less, more preferably 1.1 d or less, and 0.5 d or more, in order to provide softness similar to natural fibers against light surface pressure. It is made of ultra-fine filaments that are intertwined with each other using an extra-thick multifilament yarn as the core yarn. The single yarn fineness ratio of the very thick filament to the very thin filament is 4 times or more in order to achieve the purpose of the present invention, that is, to realize the texture, touch, and luster of natural fibers, especially eyelid linen and worsted wool woven and knitted materials. Preferably, it is 6 times or more. In general, dyeing irritation due to differences in single yarn fineness becomes non-negligible when the single yarn fineness ratio is 1:10 or more when dyeing in the same bath. Because of the cross-sectional shape of the extra-thick multifilament yarn, there is a lot of scattered light, so the deep dyeing effect is less.
No irritation occurs even when the single yarn fineness ratio is around 1:20. Furthermore, in order to maintain glossiness, the ultrafine filament yarn needs to have as much transparency as possible as a substrate, and therefore it is desirable that it does not contain opacifying components such as TiO 2 . Also, even if it contains
It is preferably 0.2% by weight or less. In the case of SiO 2 particles that do not relatively impair transparency, the content is preferably 0.5% by weight or less. Further, for the same reason, the cross-sectional shape of the ultrafine multifilament yarn, which will mainly serve as the sheath yarn, is preferably round, flat, polygonal, or multilobed with three or five lobes, and complex shapes that cause large diffused reflection are not preferable. However, by diversifying or increasing the number of leaves within a range that does not impair the glossiness, a soft and delicate surface touch can be obtained. Further, in order to obtain a more spun-like touch and appearance, some or all of the filament yarns of the sheath yarn may be partially cut to become fluffy. Regarding the third point, entanglement, the softness of the present invention has a dry surface touch, flexibility,
In addition, in order to impart resilient bending properties, the extra-thick filament yarn and extra-fine filament yarn partially interlock with each other against lateral pressure or bending pressure, and sometimes they separate, and the ultra-fine multi-filament yarn It is necessary that the fibers are mixed with each other so that they mainly become sheath threads, and that the thick filaments with protrusions of the core threads are partially exposed while intertwining so that the two do not separate completely. Here, mixed refers to a state where both are mixed,
There may be a difference in yarn length between the two, or the sheath yarn may be partially wound in an alternately twisted manner, or may be a knotted yarn, or may form a loop. Furthermore, any type of entanglement may be used, such as fluid interlace, loop type entanglement, and electrostatic opening. If there is no entanglement at all, not only will the passability in higher-order processes be impaired, but also the migration of the core yarn and sheath yarn will be poor, so that the spunlike yarn of the present invention cannot be obtained. The degree of confounding is preferably 5 to 300 as determined by the measurement method described below. Synthetic fiber multifilament yarns used include polyester, polyamide, polyacrylic, polyolefin, acetate, etc.
Alternatively, they can be used in combination. Furthermore, the woven or knitted fabric of the present invention refers to a woven or knitted fabric in which the spunlike yarn of the present invention is used as it is or in combination with other yarns for all or part of the woven or knitted fabric. The measurement of the degree of confounding in the present invention is described in US Patent No.
The method is carried out according to the specification of No. 3290932. The outline is shown below. In the apparatus shown in FIG. 3, the sample 1 is unwound by a take-up roller 5 and wound around a waist roller 6. Thread 1cm/
sec., the magnetic tension applying device 2 is adjusted to set the tension between the tension applying device 2 and the take-up roller 5 to the initial tension. The initial tension is denier x 0.2 g, and is detected by a tension meter 4 fixedly provided between the tension applying device 2 and the take-up roller 5. After setting the initial tension, stop running the thread and set the fourth tension.
As shown in the figure, a measuring needle 3 is inserted at a position where the thread is roughly divided into two parts. Then, when the thread is run again at 1 cm/sec., the needle is caught at the interlacing point 7, and the tension between the needle 4 and the take-up roller 5 is increased. Above, the tension value is [initial tension + (single yarn denier of ultra-fine filament) x 1
g], the take-up roller 5 is set to stop, and the travel distance l i (mm) of the thread from when the needle is inserted until it stops again is read from the rotation angle of the take-up roller 5. Repeat the same operation 40 times, and calculate the degree of confounding using the following formula. The measurement is performed three times and the average value is displayed. The degree of entanglement in the present invention was measured using an entanglement tester (model R2040) manufactured by RHTHSCHILD based on the above principle. The present invention can achieve the object of the present invention as a comprehensive effect by using the three elements of the extra-thick multifilament yarn, the extra-fine filament yarn, and their entanglement, as detailed above. That is, first, the ultra-fine multifilament yarns become intertwined to form a sheath component, so there is almost no resistance to extremely light surface lateral pressure, resulting in a soft surface touch like feathers, but the lateral pressure increases slightly. This causes friction between the extra-fine multi-filament yarn and the extra-thick multi-filament yarn, resulting in a delicate squeak feeling, and when the lateral pressure is further increased, coarse friction occurs between the extra-thick multi-filament yarns, giving the appearance of pliability. As a result, a complex and tasteful texture with a soft yet dry feel is obtained. This corresponds to the tactile sensation produced by the fluff and scale of fine-grained fibers such as wool and linen, and the twisting and rough side structures of thick-fibers. Next, regarding bending, in the low curvature region, there is a degree of freedom between the ultra-fine multifilament yarn and the thick multifilament yarn with this level of entanglement. It is only filled between the gaps and between the protrusions of the extra-thick filament yarn, and hardly contributes to bending stress. Therefore, the bending stress mainly depends on the stress generated by the extremely thick multifilament yarn, which is a small component in terms of structure, and has soft bending characteristics within a moderate tension range. However, in the high curvature region, the combined bending stress and repulsion of the ultra-fine and thick multifilament yarns results in very stiff and resilient bending properties. This behavior is similar to the behavior of a bundle of split bamboo when it is bent, and it also corresponds to the bending properties of wool and eyelid linen, which have a wide range of fineness. In addition, the ultra-fine multifilament yarn is moderately intertwined with the thick multi-filament yarn and filled into the gaps, resulting in a bulky yet tight structure. Furthermore, regarding surface gloss properties, both ultra-fine multifilament yarn and extra-thick multifilament yarn have transparent substrates and have high reflective properties, and while ultra-fine multifilament yarn is glossy, it has a large specific surface area due to its fineness. Because the directionality is disturbed by entanglement, it is easy to emit scattered light,
In addition, the extra-thick multifilament yarn has a complicated cross-sectional shape, which causes a large amount of diffused reflection. Therefore, while it has a specular reflection gloss on the surface, complex light interference occurs between the ultra-fine multifilament yarn of the sheath component and the extra-thick multifilament yarn of the core component, resulting in an internally opaque dull surface. Becomes shiny.
In addition, because the core component is thick, it has high color development and exhibits a very deep color tone. Although wool and eyelid linen are spun yarns and have a dull luster at first glance, they are very transparent materials that can be used as substrates, which is consistent with the gist of the present invention. Furthermore, the spun-like processed yarn of the present invention, which is processed using Thick and Thin yarn for the core yarn and sheath yarn, has not only the appearance unevenness and taste due to the uneven thickness and the difference in shade of dyeing, which are unique to Thick and Thin yarn, but also the texture. However, in combination with the yarn structure of the present invention, a woven or knitted fabric that is more spun-like and has liveliness can be obtained. In addition, the spun-like processed yarn of the present invention, which is processed so that the intertwined parts mainly become knotted threads, has a spun-like, especially eyelid, linen-like texture, in addition to the difference in thickness between the knotted threads and other parts, as well as the strong luster of the knotted threads. It shows a typical appearance. In addition, if the length of the knotted yarn part is too short, when it is made into a woven or knitted fabric, it will look like a thread, and the quality will be poor. In order to obtain a high-quality woven or knitted fabric, the length of the knotted yarn portion is preferably 1 cm or more, more preferably 2 cm or more. The present invention will be specifically explained below using Examples. Example 1 A Processing of spun-like yarn The core yarn was polyester multifilament yarn 50D-16F (a mixed fiber yarn of different fineness consisting of two 6.8d eight-lobed cross-section extra-thick filament yarns and 14 2.3d round-section filament yarns). Polyester multifilament yarn 75D-72F (triangular cross section, TiO 2
was processed using the processing equipment shown in Fig. 5 under the following conditions. Processing speed: 150 m/min (surface speed of take-up roller) Overfeed rate (OFR): Core yarn 2%, sheath yarn 12% Liquid processing nozzle: Strongly entangled nozzle (prototype) Air pressure: 3.5 Kg/cm Rotation of 2 oscillators Number: 950r.pm The obtained yarn has a degree of entanglement of 184 and a length of 1m in the yarn axis direction.
It was a spun-like yarn with an average of 7.5 knotted yarns per yarn, with multifilament yarns including extra-thick filament yarns serving as core yarns, and ultra-fine multifilament yarns mainly serving as sheath yarns (total denier 141D, boiling water shrinkage rate). 4.4%). The overfeed rate (OFR, %) was calculated as follows. OFR (%) = FR-DR/DR×100 However, FR: Surface speed of feed roller 11 or 12 DR: Surface speed of take-up roller 15 B Weaving evaluation For the spunlike yarn of the present invention obtained in A above
It was given an additional twist of 300T/M, woven into a plain weave using warp and weft threads, and then finished according to the following conditions. Gray fabric: (density: book/in, vertical 67, horizontal 58) Scouring: 98℃ x 5 min “Sundetsudo” G-29 [nonionic activator,
Sanyo Chemical Industries Co., Ltd.] Soda ash 2g each/addition Intermediate set: 180℃ x 2min Alkali weight loss processing: 98℃ x 50min (reduction rate: 12%) Caustic soda 30g/Dyeing (immersion dyeing): 130℃ x 60min. (Firefly) Finishing set: 150℃ x 2 min. The resulting fabric has a glossy appearance and is a spun-like fabric with a slubby feel, especially the strong tension and soft waist and touch of an eyelid linen fabric. , and it has become a fabric with the characteristic wrinkles of linen (finish density: book/in,
Vertical 76, horizontal 65, area weight 86g/m2 ) . Also, sand the resulting fabric with sandpaper (#180)
When a light buffing process was carried out, only the ultra-fine threads, which were mainly sheath threads, became fluffy, resulting in a fabric that had the softness and suppleness of the touch, as well as tension and elasticity, just like a linen fabric (shearing). The anti-pilling property of this fabric was tested according to the JIS L 1076A method (method using an ICI type tester) and was found to be grade 4 (test 10HR), which was at a completely acceptable level. Furthermore, the spunlike yarn obtained above was knitted into a double knit (24G, interlock).
Finished under normal conditions. The resulting knitted fabric has tension and elasticity, and is a spun-like knitted fabric with a high-quality worsted wool feel that combines the softness and suppleness of tatsuchi. Example 2 and Comparative Example Various filament yarns were combined and yarn processed using the apparatus shown in FIG. 5 (however, the vibrator 13 was not used). In addition, none of the filament yarns used had a matting agent (TiO 2 ) added thereto. Taffeta was woven using each processed yarn thus obtained and finished under the same conditions as in Example 1. The alkali weight loss rate was approximately 12% in both cases. The raw yarn combination, yarn processing conditions, yarn quality of each processed yarn, product characteristics, etc. are as shown in Table 1. Product characteristic evaluation was conducted under the following conditions. (1) Bending work: 3cm x 6 pieces of fabric vertically and horizontally
Cut the fabric into strips (6 cm) and fix the ends of the long sides (6 cm) with thin double-sided tape so that the gap between the folding points on the inside of the fabric is
Constant compression speed (5mm/min) until 0.1mm
It is expressed as the amount of bending work when compressed to a high curvature. (2) Thickness, compression amount, compression ratio: When applying an initial load (50 g/cm 2 ) and constant load (300 g/cm 2 ) using a compression elasticity testing machine [manufactured by Maeda Seiki Co., Ltd.] The thickness, S 0 and S of each were measured and determined as follows. Thickness: S 0 (mm) Compression amount: S 0 -S (mm) Compression rate: S 0 -S/S100 (%) (3) Comparative gloss: 3D variable angle photometer JSG-21 (manufactured by Jonan Seisakusho) ) under the following conditions. Light source: 12V tungsten lamp Light projection slit: 4.8φ Projection angle: 45° Receiving angle: 45° (specular gloss) and 0° (diffuse gloss) Reflectance (receiving angle 45°) using a magnesium oxide white plate as a standard white plate ) was adjusted so that it was 100%. The contrast gloss was calculated as follows. Comparative gloss = Diffuse gloss / Specular gloss (4) Frequency of knotted threads: The knotted threads present in 10 m of the obtained processed yarn were counted (repeated 3 times, expressed as average). (Note) Explanation of Table 1 Single yarn fineness ratio: Ratio of extra-thick filament denier to extra-fine filament denier. (A) Extra-thick filament in the core yarn *1: Except for the extra-thick filament in the core yarn, other filament yarns are 48D-15F round cross-section yarn. Also,
Both the core yarn and sheath yarn are polyester filament yarns. *2: Same as Example 1 except for OFR. Vibrator 13 is not used. *3: Core yarn (101D) is simultaneously spun at high speed (2950
The POY obtained by the following method (m/min) was subjected to thick-and-thin yarn drawing under the following conditions. Stretching speed: 505 m/min Stretching pin: 22φ (1 turn) Stretching temperature: 85°C Stretching ratio: 1.38 times *4: Processing No. 8 used the same sheath yarn as the core yarn. *5: Comparative example sensory evaluation judgment ◎ Very good 〇 Good × Poor
【表】【table】
【表】
表−1にみられるように加工No.1〜4および7
が本発明によるものであつて、張り・腰とタツチ
のソフトさ、しやりみ、光沢を兼ね備え、スパン
ライクな外観、風合い、タツチを示した。
特に、シツクアンドシンヤーンを用いたNo.4は
張り・腰の中にもドレープ性とライブリネスのあ
る織物となつた。また、さや糸として五葉、三葉
断面糸を用いたNo.4、No.7はソフトさの中にもき
しみ感のある優れた風合いとなつた。
なお、No.5、6、No.8〜10は本発明の比較例で
あり、No.5は芯糸に用いた極太フイラメント糸が
丸断面のため、張り・腰は一応出るがしやりみが
なく、また曲げに対する柔軟性に欠ける平凡な風
合いとなつた。
No.6はさや糸のフイラメント糸のデニールが高
いため、張り腰はつよいが、ソフトさがなく、粗
硬な風合いとなつた。
No.8は張りが強すぎ、ゴワゴワした粗硬なもの
となつた。
No.9は極めてソフトであるが、張り・腰、しや
りみに欠け、全く興味のない風合いとなつた。
No.10は交絡がないため、芯糸とさや糸が分離
し、製織することさえ困難な、使用に耐えない糸
であつた。[Table] As shown in Table-1, processing No. 1 to 4 and 7
The fabric was made according to the present invention and exhibited a spun-like appearance, texture, and touch, as well as softness, suppleness, and luster. In particular, No. 4, which uses thick-and-thin yarn, has a fabric with drape and liveliness in the tension and waist. In addition, No. 4 and No. 7, which used five-lobed and three-lobed cross-section yarns as sheath yarns, had an excellent texture with a soft yet squeaky feel. In addition, No. 5, 6, and No. 8 to 10 are comparative examples of the present invention, and No. 5 has a round cross section of the extra-thick filament yarn used as the core yarn, so there is some tension and stiffness, but it is a little disappointing. It also lacked flexibility when bending, resulting in a mediocre texture. No. 6 has a high denier filament yarn, so it has good elasticity but lacks softness and has a rough and hard texture. No. 8 had too much tension and became stiff and rough. No. 9 was extremely soft, but lacked firmness, waist, and suppleness, giving it a completely uninteresting texture. No. 10 had no entanglement, so the core yarn and sheath yarn were separated, making it difficult to weave and making it unusable.
第1図は本発明の好ましい極太フイラメント糸
の断面形状の一例を示す。また、第2図は本発明
でない断面形状の一例を示す。第3図は交絡度測
定装置を示す概略図である。第4図は第3図にお
ける針部3の拡大図である。第5図は本発明のス
パンライク糸を得るための糸加工装置の概略図の
一例である。第6図は、本発明にかかるスパンラ
イク加工糸の1例を説明するものであり、糸断面
の顕微鏡拡大写真をトレースしたものである。ま
た、第7図は、第6図に例示した本発明糸の側面
形態拡大写真を同じくトレースしたものであり、
糸長さ方向に太細差を有している状態を説明する
ものである。
1:試料(加工糸)、2:張力付加装置、3:
針、4:張力計、5:引取ローラ、6:ウエスト
ローラ、7:交絡部、8:極太フイラメントを含
むマルチフイラメント糸、9:極細マルチフイラ
メント糸、10:ガイド、11:芯糸用送り出し
ローラ、12:さや糸用送り出しローラ、13:
振動子、14:流体加工ノズル、15:引取ロー
ラ、16:巻上げワインダー。
FIG. 1 shows an example of the cross-sectional shape of the preferred extra-thick filament yarn of the present invention. Moreover, FIG. 2 shows an example of a cross-sectional shape that is not the present invention. FIG. 3 is a schematic diagram showing an apparatus for measuring the degree of entanglement. FIG. 4 is an enlarged view of the needle portion 3 in FIG. 3. FIG. 5 is an example of a schematic diagram of a yarn processing device for obtaining spunlike yarn of the present invention. FIG. 6 is a diagram illustrating an example of a spunlike processed yarn according to the present invention, and is a tracing of an enlarged microscopic photograph of a cross section of the yarn. In addition, FIG. 7 is a tracing of an enlarged photograph of the side profile of the yarn of the present invention illustrated in FIG. 6,
This explains a state in which there is a difference in thickness in the yarn length direction. 1: Sample (processed yarn), 2: Tension adding device, 3:
Needle, 4: Tension meter, 5: Take-up roller, 6: Waist roller, 7: Interlacing section, 8: Multifilament yarn including extra-thick filament, 9: Extra-fine multifilament yarn, 10: Guide, 11: Delivery roller for core yarn , 12: Delivery roller for sheath yarn, 13:
Vibrator, 14: Fluid processing nozzle, 15: Take-up roller, 16: Winder.
Claims (1)
る異形断面極太マルチフイラメント糸が主として
芯糸として配置され、一方、単糸繊度が1.5デニ
ール以下の極細マルチフイラメント糸が主として
さや糸として配置されていて、かつ前記極太マル
チフイラメント糸と極細マルチフイラメント糸と
が互いに交絡してなることを特徴とする合成繊維
スパンライク加工糸。 2 芯糸やさや糸の一部または全部にシツクアン
ドシンヤーンを含むことを特徴とする特許請求の
範囲第1項記載の合成繊維スパンライク加工糸。 3 交絡部の一部が節糸となつていて、糸長さ方
向に太細差を有することを特徴とする特許請求の
範囲第1項または第2項記載の合成繊維スパンラ
イク加工糸。[Scope of Claims] 1. Extra-thick multifilament yarns with a single yarn fineness of 6 denier or more and irregular cross-sections with protrusions are mainly arranged as core yarns, while ultra-fine multifilament yarns with a single yarn fineness of 1.5 denier or less are mainly arranged as core yarns. A synthetic fiber spunlike processed yarn arranged as a sheath yarn, and characterized in that the extremely thick multifilament yarn and the extremely fine multifilament yarn are intertwined with each other. 2. The synthetic fiber spunlike processed yarn according to claim 1, characterized in that part or all of the core yarn and sheath yarn contain thick-and-thin yarn. 3. The synthetic fiber spunlike processed yarn according to claim 1 or 2, wherein a part of the intertwined portion is a knotted yarn and has a difference in thickness in the yarn length direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14918382A JPS5943136A (en) | 1982-08-30 | 1982-08-30 | Spun-like processed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14918382A JPS5943136A (en) | 1982-08-30 | 1982-08-30 | Spun-like processed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5943136A JPS5943136A (en) | 1984-03-10 |
JPS6235494B2 true JPS6235494B2 (en) | 1987-08-03 |
Family
ID=15469608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14918382A Granted JPS5943136A (en) | 1982-08-30 | 1982-08-30 | Spun-like processed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5943136A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201040A (en) * | 1985-02-28 | 1986-09-05 | 東洋紡績株式会社 | False twisted composite yarn and its production |
JPS62110934A (en) * | 1985-11-05 | 1987-05-22 | 日本エステル株式会社 | Different finness blended special irregular yarn |
JPS62133137A (en) * | 1985-11-29 | 1987-06-16 | 日本エステル株式会社 | Different fineness blended fiber yarn for twisted yarn fabric |
JPS62149927A (en) * | 1985-12-17 | 1987-07-03 | 日本エステル株式会社 | Different finness blended fiber yarn |
JPS63112742A (en) * | 1986-10-31 | 1988-05-17 | 東レ株式会社 | Polyester composite processed yarn |
JPH0819586B2 (en) * | 1987-04-01 | 1996-02-28 | 東レ株式会社 | Polyester composite processed yarn |
JPS63264929A (en) * | 1987-04-15 | 1988-11-01 | ユニチカ株式会社 | Silk spun yarn like processed yarn |
JPH01280036A (en) * | 1988-04-27 | 1989-11-10 | Toray Ind Inc | Polyester conjugated textured yarn |
JP2546332B2 (en) * | 1988-04-28 | 1996-10-23 | 東レ株式会社 | Polyester composite processed yarn |
JPH01280037A (en) * | 1988-04-30 | 1989-11-10 | Toray Ind Inc | Polyester conjugated textured yarn |
JP4986158B2 (en) * | 2007-11-01 | 2012-07-25 | 東レ株式会社 | Spunlike fabric |
-
1982
- 1982-08-30 JP JP14918382A patent/JPS5943136A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5943136A (en) | 1984-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6235494B2 (en) | ||
JPH0230462Y2 (en) | ||
JPH01168925A (en) | False-twist textured combined filament yarn having level dyeing property | |
JP2970416B2 (en) | Spun yarn and woven / knitted fabric using the same | |
JP4418281B2 (en) | Polyamide blended yarn and woven / knitted fabric | |
JP2018150629A (en) | Knitted fabric knitted with composite textured yarn | |
JPH0860470A (en) | Spun yarn and fabric made by using the same | |
JP3260327B2 (en) | Brushed fabric | |
JP3307118B2 (en) | Spun yarn and woven / knitted fabric using the same | |
JP3011241B2 (en) | Method for producing composite yarn fabric | |
JP7192328B2 (en) | Textile for tabi and tabi using the same | |
JP6969326B2 (en) | Polyester mixed yarn fabric | |
JP2006057205A (en) | Fabric and sportswear | |
JPH06184860A (en) | High twist polyester woven or knit fabric | |
JP3530303B2 (en) | High void structure processed yarn and fabric comprising the same | |
JP4745791B2 (en) | Adhesive interlining fabric, method for producing the same, and adhesive interlining | |
JPH09111566A (en) | Spun yarn for clothing and woven and knitted fabric | |
JPS60104543A (en) | Spun yarn-like filament yarn | |
JP2018062714A (en) | Water-absorbing and quick-drying woven or knitted fabric | |
JP2022057925A (en) | Woven and knitted fabric formed of nylon composite false twisted yarn | |
JP2022063987A (en) | Combined filament yarn, woven or knitted fabric using the same, manufacturing method thereof and black formal clothing | |
JPH0313341B2 (en) | ||
JPH04202821A (en) | Conjugate crimped yarn | |
JP2527212B2 (en) | Polyester yarn | |
JPH0390640A (en) | Silk-polyester blended yarn |