JPH0313341B2 - - Google Patents
Info
- Publication number
- JPH0313341B2 JPH0313341B2 JP57073425A JP7342582A JPH0313341B2 JP H0313341 B2 JPH0313341 B2 JP H0313341B2 JP 57073425 A JP57073425 A JP 57073425A JP 7342582 A JP7342582 A JP 7342582A JP H0313341 B2 JPH0313341 B2 JP H0313341B2
- Authority
- JP
- Japan
- Prior art keywords
- fabric
- fiber bundle
- cutting
- yarn
- tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 46
- 239000004744 fabric Substances 0.000 claims description 42
- 229920000742 Cotton Polymers 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 239000004753 textile Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Treatment Of Fiber Materials (AREA)
- Woven Fabrics (AREA)
Description
本発明は、優れた性能の目潰布帛を製造する方
法に関するものである。
従来より、羽根布団の側地、あるいは中綿にダ
ウンを使用したキルテイング等の防寒衣料用布帛
には特別に目の込んだいわゆる目潰布帛が使用さ
れている。
即ち、通常の木綿や合繊綿の布団あるいはキル
テイング等に用いられている布帛を使用したので
は、中に詰めたダウンが布帛の目のすき間から外
に出て来て商品価値を著しく害する欠点があるの
で、この対策として細い高級番手の糸条を用いた
高密度の織物を更に一対のローラーの間を通して
プレスして、織物の目を押しつぶした緻密な構造
の布帛が使用されている。
然しながら、この様な対策を施こした布帛は、
ダウンが出て来ない効果はあるものの、強い目潰
し加工を施す結果、従来の目潰布帛では、風合が
ペーパーライクで硬いものになり易く、着用中に
カサカサ音がしたり、身体へのフイツト性が悪
く、使用感の良い布帛とは言い難いものであつ
た。
本発明者等は前記欠点を解消すべくダウンの突
出防止時並びに風合共に優れた新規な目潰布帛を
開発することを目的に鋭意研究を行つた結果本発
明に到つたものである。
即ち、本発明は、単糸繊度0.8デニール以下の
高伸度、低収縮性の連続繊維束を1〜2段に牽切
を行う牽切域に供給して不連続繊維束となし、該
不連続繊維束に流体を作用せしめて得た無撚若し
くは、甘撚の結束糸を、経糸および/又は緯糸に
用いて織物カバー・フアクターCFが25〜35で、
かつ、目付が140g/m2以下の織物となし、しか
る後、該織物に高温、加圧加工をすることを特徴
とする目潰布帛の製造方法にある。
以下、本発明を詳細に説明する。
本発明方法に使用する連続繊維束は、単糸繊度
が0.8デニール以下のフイラメントからなるもの
であり、さらに好ましくは、0.5デニール以下の
フイラメントを使用することである。該単糸繊度
が0.8デニールを超える場合は、無撚結束糸の構
成繊維本数が少なくなり、目潰加工を施してもそ
の効果が半減してしまうことにある。
又、単糸繊度が0.8デニールを超えて太くなる
と、目潰加工の結果、布帛が、ごわごわと硬くな
るという欠点が強まるので、いずれにしても、単
糸繊度が0.8デニールを超えることは好ましくな
い。
さらに、前記の連続繊維束は、高伸度、且つ、
低収縮性であることが重要である。
具体的な伸度としては、40%以上であることが
好ましく、さらに好ましくは60%以上のものを使
用し、収縮率は、沸水収縮率で示して3%以下で
あることが好ましい。
又、該連続繊維束の種類としては、ポリプレロ
ピレン、ポリアミド、ポリエステル、アクリル等
の合成繊維が有効に使用され、風合や熱固定性の
うえで、特にポリエステル繊維を使用することが
好ましい。
次に、本発明方法において重要なポイントは、
該連続繊維束を1〜2段の牽切を行う牽切域に供
給して、不連続繊維となし、流体を作用せしめて
無撚若しくは甘撚の結束糸を用いることである。
第1図は、本発明方法に用いる連続繊維束を牽
切して、無撚結束糸とする工程の例を示す工程図
であつて、詳しく説明すると、1は単糸繊度0.8
デニールのフイラメント(切断伸度60%、沸水収
縮率2.8%)からなる連続繊維束であつて、該連
続繊維束1を供給ローラー2と牽切ローラー4の
間の牽切域3に供給して1回の牽切により不連続
繊維束5となし、引続き該不連続繊維束5を吸引
作用と旋回作用を有する引取ノズル6で引取り、
更にインターレース作用を有する抱合ノズルを通
して、不連続繊維5を抱合して、無撚結束糸9と
しワインダー10に巻取るものである。
第1図の例では、牽切域として、一回牽切(即
ち、一段牽切)のものを示したが、牽切域として
は、この他に数%以上の割合で牽切を行う予備的
な牽切域を連続的に、又は、ローラーの間を置い
て設けても差支えない。但し、予備牽切も含め
て、実質的に牽切を行う回数は1〜2回(即ち、
1〜2段)とする必要がある。
即ち、該牽切域が3段以上の場合は、牽切した
不連続繊維の1本の長さ方向に、同程度の牽伸を
付与する結果、長さ方向に連続的に変化する収縮
率を有する不連続繊維が得られない。その結果、
本発明方法で意向する嵩高性のある糸条や、その
糸条による布帛が得られず、本発明の目的を達成
することが出来ない。
第2図は、本発明方法に使用する無撚結束糸を
模式的に示した側面図であつて、該無撚結束糸を
構成する個々の繊維は、その長さ方向に沿つて異
る、且つ、変化する収縮率を有しているから、該
無撚結束糸条の中で、従来の高収縮繊維と、低収
縮繊維との混紡された嵩高糸とは異る形態の嵩高
糸条となる。
即ち、第2図において、1本の繊維は、aで示
す、1本の繊維のように、無撚結束糸のなかで、
糸条の中心部と、外層部に適宜マイグレーシヨン
しながら配置され、各繊維の交給、抱合が良好な
糸として、且つ、高収縮繊維による硬い芯も存在
せず良好な嵩高性を有する糸となる。
かかる無撚結束糸は、特に、高伸度、且つ、低
収縮の連続繊維束を用いて得たものであるから、
牽切に際しては、非常に高い牽伸と、且つ、この
高牽伸による牽切時の残留歪の変化が、1本の繊
維の中で、低い収縮率を有する部分と、高い収縮
率を有する部分とを出現せしめ、その収縮率差
(例えば沸水収縮率で3%以上)を拡大せしめた
結果得られるものなのである。
尚、本発明方法では、前記の無撚結束糸に、撚
係数2以下の甘撚を付与したものを用いることが
出来る。(ここに撚係数は、
撚係数=撚回数/2.54cm/√綿番手で表わ
す。
特に、該連続繊維束を牽切する際、供給ローラ
ー2と牽切ローラー4の間隙を長く設定してステ
ープル繊維の平均繊維長を150mm以上にしてやる
と結束糸の抱合性が強くなるため撚係数2以下の
極甘撚でも場合によつては無撚でも十分製織が可
能となり、該甘撚若しくは無撚とすることにより
糸が断面方向に変形し易く、且つ、繊維のマイグ
レーシヨンも容易となるため更に織物構造を緻密
にすることが出来る。
本発明は、かかる無撚若しくは甘撚結束糸を経
糸および/又は緯糸に用いて、高密度の織物に織
成し、高温、加圧加工して目潰布帛を得るもので
ある。
該高密度の織物としては、その織物カバー・フ
アクターCFが25〜35の範囲にあるものが有効で
ある。但し、ここに織物カバー・フアクターCF
は、
CF=経糸密度(本/2.54cm)/√経糸綿番手
+経糸密度(本/1.54cm)/√緯糸綿番手
で求める。該織物カバー・フアクターCFが25未
満であると、緻密表面の布帛が得られず、ダウン
の吹出し防止効果がなく本発明の目的を達成する
ことができない。一方、カバー・フアクターCF
が35を超える場合は、緻密表面の布帛は得られて
も、風合が不良となり、高密度に織成する結果、
製織効率を低下させるので使用しない。又、本発
明方法は、前記のような無撚若しくは甘撚結束糸
を用いるので、従来、この種の目潰布帛の製造
で、困難であつた目付の小さな織物(目付140
g/m以下)の製造を可能とした。即ち、単糸繊
度0.8デニール以下の細い繊維の使用、無撚若し
くは甘撚結束糸としたことにより、細番手の結束
糸を用い、目付の小さい織物にも、目潰布帛の機
能を付与したものである。
又、本発明方法により得られる目潰布帛は、高
温、加圧して行う目潰加工の程度が極く軽いもの
であつてもダウンの吹出し防止に効果があり、温
度140℃、綿圧5Kg1cmの加圧ローラに通したも
のでも、フラジール通気性(JIS L−1079)が3
cm3/cm2・sec以下のものを得ることが出来る。
以下、実施例について説明する。
実施例
単糸繊度0.7デニール、伸度54%、沸水収縮率
0.9%のポリエステルフイラメントからなる全デ
ニール2000デニールの連続繊維束を600mmの間隔
を有する供給ローラー2と、牽切ローラー4間で
15倍のドラフト比で1日で牽切し、平均繊維長
210mm任意断面における全繊維内に占める単繊維
内の沸水収縮率差3%以上の単繊維の割合が76%
の不連続繊維束を得、引続き該不連続繊維束に空
気抱合ノズルを作用せしめてインターレースを付
与し、綿番手40番手の無撚結束糸を得た。
次に該無撚結束糸に3.8回/2.54cm(撚係数≒
0.6)の撚を加え、織密度、経103本/2.54cm、緻
78本/2.54cm(カバーフアクター≒29)の平織物
を製織し、通常の方法で染色した後、通常のレベ
ルより軽い条件で目潰加工を行つた。
次表に上記で得られた目潰布帛の物性並びに該
目潰布帛を用いて羽根布団を造り1ヶ月間使用、
使用テストを行つた結果を示す。尚、比較用とし
て、ポリエステルと木綿を1:1で混紡して作つ
た綿番手40番手(撚係数3.3)の通常の紡績糸を
用いて、繊密度、経108本/inch、緯80本/inch
(カバーフアクター≒30)の平織物を製織し通常
の方法で染色、目潰加工した布帛についても同様
にテストを行つたのでその結果も示した。
The present invention relates to a method for manufacturing a closing fabric with excellent performance. BACKGROUND ART Conventionally, so-called closed-hole fabrics with special stitches have been used as fabrics for cold-weather clothing, such as quilting, in which down is used for the sides of duvets or for filling. In other words, when using regular cotton or synthetic cotton futons or fabrics used for quilting, there is a drawback that the down stuffed inside comes out through the gaps in the fabric, significantly damaging the product value. Therefore, as a countermeasure to this problem, a densely structured fabric is used, in which a high-density fabric using thin high-quality yarn is further pressed between a pair of rollers to crush the texture of the fabric. However, the fabrics with these measures are
Although it has the effect of preventing the down from coming out, as a result of the strong blinding process, traditional blind fabrics tend to have a paper-like and hard texture, making a rustling sound when worn, and being uncomfortable when worn. The fabric had poor elasticity and could hardly be described as a fabric that was easy to use. The present inventors have conducted extensive research with the aim of developing a new closing fabric that is excellent in preventing the protrusion of down and has excellent texture in order to eliminate the above-mentioned drawbacks, and as a result has arrived at the present invention. That is, in the present invention, a continuous fiber bundle with a single yarn fineness of 0.8 denier or less, high elongation, and low shrinkage is supplied to a stretch cutting area where stretch cutting is performed in one or two stages to form a discontinuous fiber bundle. A non-twisted or slightly twisted binding yarn obtained by applying a fluid to a continuous fiber bundle is used as the warp and/or weft, and the fabric cover factor CF is 25 to 35.
Further, there is provided a method for producing a closed-cut fabric, which is characterized in that the fabric has a basis weight of 140 g/m 2 or less, and then the fabric is subjected to high-temperature and pressure processing. The present invention will be explained in detail below. The continuous fiber bundle used in the method of the present invention is composed of filaments having a single filament fineness of 0.8 denier or less, and more preferably, filaments having a single filament fineness of 0.5 denier or less. If the single yarn fineness exceeds 0.8 denier, the number of fibers constituting the non-twist binding yarn decreases, and the effect of the closing process is halved. Furthermore, if the single yarn fineness exceeds 0.8 denier, the disadvantage that the fabric becomes stiff and stiff as a result of the blinding process will be increased, so in any case, it is not preferable for the single yarn fineness to exceed 0.8 denier. . Furthermore, the continuous fiber bundle has high elongation and
It is important that it has low shrinkage. Specifically, the elongation is preferably 40% or more, more preferably 60% or more, and the shrinkage percentage is preferably 3% or less, expressed as boiling water shrinkage percentage. As for the type of continuous fiber bundle, synthetic fibers such as polypropylene, polyamide, polyester, and acrylic fibers are effectively used, and it is particularly preferable to use polyester fibers in view of texture and heat fixability. Next, the important points in the method of the present invention are:
The continuous fiber bundle is supplied to a tension-cutting area where one or two stages of tension-cutting are performed to form discontinuous fibers, and a fluid is applied thereto to use a non-twisted or slightly twisted binding thread. FIG. 1 is a process diagram showing an example of the step of cutting a continuous fiber bundle used in the method of the present invention to make a non-twist binding yarn. To explain in detail, 1 is a single yarn fineness of 0.8.
The continuous fiber bundle 1 is made of a denier filament (cutting elongation 60%, boiling water shrinkage rate 2.8%), and the continuous fiber bundle 1 is supplied to a tension cutting area 3 between a supply roller 2 and a tension cutting roller 4. A discontinuous fiber bundle 5 is formed by one stretch cutting, and the discontinuous fiber bundle 5 is then taken up by a take-up nozzle 6 having a suction action and a swirling action,
Furthermore, the discontinuous fibers 5 are combined through a combination nozzle having an interlacing effect, and are wound into a winder 10 to form a non-twist binding yarn 9. In the example in Figure 1, the stretch cutting area is one-time tension cutting (that is, one-stage tension cutting), but the tension cutting area may also be a reserve in which the tension cutting is performed at a rate of several percent or more. There is no problem in providing the tension cutting area continuously or at intervals between the rollers. However, including preliminary tension cutting, the actual number of tension cutting is 1 to 2 times (i.e.,
1 to 2 stages). In other words, when the stretch-cut area is three or more stages, the shrinkage rate changes continuously in the length direction as a result of applying the same degree of draft in the length direction of one of the stretch-cut discontinuous fibers. It is not possible to obtain discontinuous fibers having . the result,
The purpose of the present invention cannot be achieved by the method of the present invention because the desired bulky yarns or fabrics made from the yarns cannot be obtained. FIG. 2 is a side view schematically showing a non-twisted binding yarn used in the method of the present invention, in which the individual fibers constituting the non-twisted binding yarn are different along its length. In addition, since the non-twist bound yarn has a variable shrinkage rate, the bulky yarn has a different form from the conventional bulky yarn that is a blend of high shrinkage fibers and low shrinkage fibers. Become. That is, in FIG. 2, one fiber, as shown by a, is one fiber in the non-twist binding yarn.
A yarn that is arranged with appropriate migration in the center and outer layer of the yarn, has good intermixing and conjugation of each fiber, and has good bulkiness without the presence of a hard core due to high shrinkage fibers. becomes. Such a non-twist binding yarn is particularly obtained using a continuous fiber bundle with high elongation and low shrinkage.
During stretch cutting, very high drafting is applied, and the change in residual strain during stretch cutting due to this high drafting results in parts having a low shrinkage rate and parts having a high shrinkage rate within one fiber. This is obtained by making the parts appear and increasing the difference in their shrinkage rates (for example, 3% or more in boiling water shrinkage rate). In addition, in the method of the present invention, it is possible to use the above-mentioned non-twist binding yarn which has been given a slight twist with a twist coefficient of 2 or less. (Here, the twist coefficient is expressed as twist coefficient = number of twists / 2.54 cm / √cotton count. In particular, when cutting the continuous fiber bundle, the gap between the supply roller 2 and the tension cutting roller 4 is set to be long and the staple is When the average fiber length of the fibers is set to 150 mm or more, the cohesiveness of the binding yarn becomes stronger, so it becomes possible to weave with a very soft twist with a twist coefficient of 2 or less, or even with no twist in some cases. By doing so, the yarn is easily deformed in the cross-sectional direction, and fiber migration is also facilitated, so that the woven structure can be further made dense. Alternatively, it is used as a weft to weave into a high-density fabric and processed at high temperature and pressure to obtain a closed fabric.The high-density fabric has a cover factor CF in the range of 25 to 35. Some are valid.However, here the textile cover factor CF
is determined by CF=warp density (pieces/2.54cm)/√warp cotton count + warp density (pieces/1.54cm)/√weft cotton count. If the fabric cover factor CF is less than 25, a fabric with a dense surface cannot be obtained, and there is no effect of preventing down from blowing out, making it impossible to achieve the object of the present invention. On the other hand, cover factor CF
If it exceeds 35, even if a fabric with a dense surface can be obtained, the texture will be poor, resulting in dense weaving.
Do not use as it reduces weaving efficiency. In addition, since the method of the present invention uses untwisted or lightly twisted binding yarns as described above, fabrics with a small fabric weight (fabric weight 140
g/m or less). In other words, by using thin fibers with a single yarn fineness of 0.8 denier or less, and by using non-twisted or lightly twisted binding yarns, we are able to use fine-count binding yarns and impart the function of a closed fabric even to fabrics with a small basis weight. It is. In addition, the closed fabric obtained by the method of the present invention is effective in preventing down from blowing out even if the degree of closing performed at high temperature and pressure is extremely small. Even when passed through a pressure roller, Frazier air permeability (JIS L-1079) is 3.
cm 3 /cm 2・sec or less can be obtained. Examples will be described below. Example Single yarn fineness 0.7 denier, elongation 54%, boiling water shrinkage rate
A continuous fiber bundle with a total denier of 2000 denier made of 0.9% polyester filament is fed between a supply roller 2 and a tension cutting roller 4 with an interval of 600 mm.
The average fiber length was cut in one day with a draft ratio of 15 times.
The proportion of single fibers with boiling water shrinkage rate difference of 3% or more in single fibers in all fibers in a 210 mm arbitrary cross section is 76%.
A discontinuous fiber bundle was obtained, and then an air binding nozzle was applied to the discontinuous fiber bundle to impart interlacing to obtain a non-twist binding yarn of cotton count 40. Next, apply 3.8 turns/2.54cm to the untwisted binding yarn (twist coefficient ≒
0.6) twist, weave density, warp 103/2.54cm, fine
A plain fabric of 78 strands/2.54 cm (cover factor ≒ 29) was woven, dyed using the usual method, and then subjected to a blinding process under lighter conditions than normal. The following table shows the physical properties of the fabric with the fabric obtained above, and how the fabric was used to make a feather futon and was used for one month.
The results of a usage test are shown. For comparison, a regular spun yarn with a cotton count of 40 (twist coefficient 3.3) made by blending polyester and cotton at a ratio of 1:1 was used. inch
A similar test was conducted on a plain woven fabric with a cover factor of 30 (cover factor ≒ 30), dyed and closed using the usual method, and the results are also shown.
【表】
尚、本発明方法による布帛を目潰加工せずにフ
ラジール通気性を測定してみたところ2.0cm3/
cm2・secの値を示し、目潰加工無でも使用出来る
性能を有していた。
以上のように、本発明方法によれば、目潰効果
が良くダウンプルーフ性能並びに風合共に良好な
目潰布帛を得ることが出来る。[Table] In addition, when the Frazier air permeability of the fabric produced by the method of the present invention was measured without being closed, it was 2.0 cm 3 /
It showed a value of cm 2 sec, and had the ability to be used even without blinding. As described above, according to the method of the present invention, it is possible to obtain a closed fabric with a good closing effect and good down proof performance and feel.
第1図は、本発明方法に用いる連続繊維束を牽
切して、無撚結束糸とする工程の例を示す工程
図、第2図は、本発明方法に使用する無撚結束糸
の形態を示す側面図である。
Fig. 1 is a process diagram showing an example of the step of cutting a continuous fiber bundle used in the method of the present invention into a non-twisted binding yarn, and Fig. 2 is a diagram showing the form of the non-twisted binding yarn used in the method of the present invention. FIG.
Claims (1)
性の連続繊維束を牽切域に供給して不連続繊維束
となす際、該牽切を1〜2段とすることにより一
本の繊維の長さ方向に沿つて収縮率の異なる不連
続繊維からなる繊維束となし、該不連続繊維束に
流体を作用せしめて得た無撚若しくは、甘撚の結
束糸を、経糸および/又は緯糸に用いて織物カバ
ー・フアクターCFが25〜35で、かつ目付が140
g/m2以下の織物となし、しかる後、該織物に高
温、加圧加工をすることを特徴とする目潰布帛の
製造方法。 〔但し、織物カバー・フアクターCFは、CF=
経糸密度(本/2.54cm)/√経糸綿番手+ 緯糸密度(本/2.54cm)/√緯糸綿番手で求める。〕[Claims] 1. When supplying a continuous fiber bundle with high elongation and low shrinkage with a single yarn fineness of 0.8 denier or less to a tension-cutting area to form a discontinuous fiber bundle, the tension-cutting is performed in one or two stages. By doing so, a single fiber is made into a fiber bundle consisting of discontinuous fibers with different shrinkage rates along the length direction, and a non-twisted or slightly twisted binding yarn is obtained by applying a fluid to the discontinuous fiber bundle. is used for the warp and/or weft, and the fabric cover factor CF is 25 to 35 and the basis weight is 140.
1. A method for producing a closed-cut fabric, characterized in that the fabric is made into a fabric with a weight of g/m 2 or less, and then the fabric is subjected to high-temperature and pressure processing. [However, for textile cover factor CF, CF=
Determine by warp density (pieces/2.54cm)/√warp cotton count + weft density (pieces/2.54cm)/√weft cotton count. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57073425A JPS58191268A (en) | 1982-05-04 | 1982-05-04 | Production of mesh collapsed fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57073425A JPS58191268A (en) | 1982-05-04 | 1982-05-04 | Production of mesh collapsed fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58191268A JPS58191268A (en) | 1983-11-08 |
JPH0313341B2 true JPH0313341B2 (en) | 1991-02-22 |
Family
ID=13517861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57073425A Granted JPS58191268A (en) | 1982-05-04 | 1982-05-04 | Production of mesh collapsed fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58191268A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60246842A (en) * | 1984-05-17 | 1985-12-06 | 東洋紡績株式会社 | Fabric having strong buddha's bones feeling |
JPH01148833A (en) * | 1987-12-01 | 1989-06-12 | Toyobo Co Ltd | Fabric using bundle spun yarn |
JPH01260035A (en) * | 1988-04-06 | 1989-10-17 | Toyobo Co Ltd | Spun fabric and production thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4321990Y1 (en) * | 1966-01-26 | 1968-09-16 | ||
JPS54147289A (en) * | 1978-05-08 | 1979-11-17 | Teijin Ltd | Production of polyester filament fabric |
JPS5713682B2 (en) * | 1977-05-13 | 1982-03-18 | ||
JPS58186633A (en) * | 1982-04-21 | 1983-10-31 | 帝人株式会社 | Mesh collapsed cloth |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126386Y2 (en) * | 1980-06-25 | 1986-08-07 |
-
1982
- 1982-05-04 JP JP57073425A patent/JPS58191268A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4321990Y1 (en) * | 1966-01-26 | 1968-09-16 | ||
JPS5713682B2 (en) * | 1977-05-13 | 1982-03-18 | ||
JPS54147289A (en) * | 1978-05-08 | 1979-11-17 | Teijin Ltd | Production of polyester filament fabric |
JPS58186633A (en) * | 1982-04-21 | 1983-10-31 | 帝人株式会社 | Mesh collapsed cloth |
Also Published As
Publication number | Publication date |
---|---|
JPS58191268A (en) | 1983-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08246282A (en) | Long and short conjugate yarn and its production | |
JPH0313341B2 (en) | ||
JP2816846B2 (en) | Interlaced multifilament multifilament composite yarn and method for producing bulky fabric using the yarn | |
JP2867245B2 (en) | Lofted fabric | |
JPH0711531A (en) | Spun composite bulky yarn | |
JP2874283B2 (en) | Manufacturing method of spun-like woven fabric | |
JPS60104543A (en) | Spun yarn-like filament yarn | |
JPS6323309B2 (en) | ||
JP2759205B2 (en) | High density fabric | |
JP2759206B2 (en) | Spun-tone high-density fabric | |
JP2654969B2 (en) | Bulky fabric and its manufacturing method | |
JPH09209224A (en) | Woven fabric using bulky spun yarn | |
JPH02264030A (en) | Production of spun yarn like woven fabric | |
JP2839294B2 (en) | Manufacturing method of composite yarn | |
JPS5943573B2 (en) | Georgette style knitted fabric | |
JP2021161550A (en) | Polyester conjugated false-twisted yarn | |
JPH0114695Y2 (en) | ||
JPS6214660B2 (en) | ||
JPS59179837A (en) | Production of spun yarn-like filament yarn | |
JPH03249231A (en) | Entangled composite yarn | |
JPS605692B2 (en) | Method for manufacturing brushed woven and knitted fabrics | |
JPS59179835A (en) | Spun yarn-like filament yarn | |
JPS6099030A (en) | Slab yarn and its production | |
JPH01221546A (en) | Fabric having specific feeling and production thereof | |
JPH0260771B2 (en) |