JPS623228B2 - - Google Patents

Info

Publication number
JPS623228B2
JPS623228B2 JP54018791A JP1879179A JPS623228B2 JP S623228 B2 JPS623228 B2 JP S623228B2 JP 54018791 A JP54018791 A JP 54018791A JP 1879179 A JP1879179 A JP 1879179A JP S623228 B2 JPS623228 B2 JP S623228B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
area
strength
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54018791A
Other languages
Japanese (ja)
Other versions
JPS55110753A (en
Inventor
Kinya Ogawa
Hitoshi Yanase
Sadao Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1879179A priority Critical patent/JPS55110753A/en
Publication of JPS55110753A publication Critical patent/JPS55110753A/en
Publication of JPS623228B2 publication Critical patent/JPS623228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はAl―Mg―Si系のアルミニウム合金導
体の製造法、更に詳しくは該合金の溶体化処理を
省略して連続鋳造圧延により低コストで経済的に
有利に製造しうる高導電率、高強度のアルミニウ
ム合金導体を製造する方法に関するものである。 近年導電材料としてAl―Mg―Si系合金の需要
が急速に増大しており、この合金は通常イ号アル
ミニウム合金として一般に知られているが、熱処
理合金であるため、その製造工程は鋳造―熱間加
工―溶体化処理―時効―伸縮加工―安定化処理と
いう一連の工程が必要であり、特に熱処理工程が
多いため製造コストが高いという問題があつた。 一方上記の如く鋳造した鋳塊を再加熱して熱間
圧延を行う展延法に代り、最近では連続鋳造圧延
法が採用され生産性の向上が図られている。しか
しこの方法の場合でも圧延後の荒引線を溶体化処
理―時効―伸線加工―安定化処理するという熱処
理工程を必要とし製造コストの充分な低減は期待
できない。 そこで溶体化処理工程を省略する対策として、
連続圧延機により鋳塊を圧延する工程で焼入れを
行い、鋳造時に強制固溶したMg、Siをできるだ
け析出させないで荒引線とする方法が提案されて
いる。 しかしこの方法では鋳造時に非平衡状態で晶出
したMg2Siはそのまゝ荒引線にまでもちこされる
と共に圧延中の冷却速度を速くしても圧延中の加
工歪により晶出物のまわりにMg2Siが凝縮してし
まい、従来法により熱間圧延後溶体化処理したア
ルミニウム合金導体に比べてその特性が不安定で
ある等の問題がある。 本発明はかゝる点に鑑み種々研究を行つた結
果、Al―Mg―Si系合金においてMgとSiの添加量
を適切に選び、更にこれらにFe、Cuを共存せし
めることにより連続鋳造圧延法により製造コスト
を低減せしめた高力アルミニウム合金導体を提供
しうることおよび上記の合金を連続鋳造圧延する
際にその製造条件として圧延温度等を規定するこ
とにより導電率、強度ともに優れた導体の得られ
ることを見出し、本発明法に至つたものである。 即ち本発明はMg0.3〜1.0wt%、Si0.3〜0.8wt
%、Fe0.15〜0.50wt%、Cu0.005〜0.1wt%、残
Alとその不純物とからなる合金を改めて溶体化
処理および時効処理することなく連続鋳造圧延法
によつて優れた性能の導体とするもので、合金の
組成を上記の如く限定したのは次の理由によるも
のである。 MgとSiは強度を向上させるための元素であ
り、その添加量がMg、Si共に夫々0.3%未満では
効果が少く、得られる導体の強度は低い。又Mg
は1.0%、Siは0.8%を夫々越えて添加すると導電
率が低くなりかつ鋳塊中のMgとSiの析出量が多
くなつて溶体化の効果が得られず耐疲労強度が大
巾に低下するからである。 一方Feは導電率をあまり下げることなく強度
を向上させる元素であり、強度向上に伴う伸びの
低下も少ない。Feは0.15%未満では強度向上の
効果が少なく、0.50%より多く添加してもより一
層の強度向上の効果はみられず、導電率および伸
びも低下し鋳造時に粗大な晶出物が生成して耐疲
労特性が大巾に低下することによる。 CuもFeと同様に強度を向上させるために添加
するものであり、0.005%未満ではその効果が認
められず、0.1%より多いと耐疲労特性、延性お
よび耐食性が悪くなつてしまうことによる。 本発明は上記の組成範囲に規定された合金を連
続鋳造圧延法によつてアルミニウム合金導体に製
造する場合に連続的に得られた鋳塊を引続き圧延
するに際し、400〜550℃の熱間圧延で40%以上の
減面加工後370℃以下に急冷し、370〜200℃より
温間圧延で引続き20%以上減面加工して圧延終了
時の温度が300〜160℃になるようにするアルミニ
ウム合金導体の製造法の係わるものであるが、こ
のように連続鋳造する際に圧延温度等を上記のよ
うに規定したのは次の理由によるものである。 先ず連続的に得られた鋳塊を引続き圧延するに
際して400〜550℃の熱間圧延で40%以上の減面加
工を行うのは凝固時に非平衡状態で晶出した
Mg2Siを溶体化し又圧延中の析出を防ぐためであ
る。 即ち圧延温度が400℃未満であると圧延中に
Mg2Siが析出してしまうため圧延温度は400℃以
上、好ましくは450℃以上、更に好ましくは500〜
550℃で圧延すると圧延中の析出を防ぎ、又凝固
時に晶出したMg2Siの溶体化を行うことができ
る。しかし550℃より高くなるとMg2Siの溶体化
は有利であるが、圧延中に鋳塊割れを起こし易く
なり良質な圧延材が得られない。又40%以上減面
加工するのは鋳造組織を破壊し鋳塊中のMg、
Si、Feなどの晶出物を微細に分散させ、均質な
圧延組織にすると共にこれによつてMg2Si晶出物
の圧延中の溶体化を容易にためである。そのため
には40%以上の減面加工することが必要であり、
40%未満では圧延組織の均質化およびMg2Siの溶
体化には加工度が不十分となる。 次にこれを370℃以下に急冷するのはこの後の
圧延工程で粗大なMg2Si相が析出し強度が低下す
るのを防ぐためで、370℃より高いと粗大な
Mg2Si相が析出して導体の強度更には耐疲労特性
をも低下させてしまう。 次の370〜200℃の温間圧延の工程において370
〜200℃の温度より20〜95%減面加工して圧延終
了時の温度が300〜160℃になるようにするのは、
圧延中に微細なMg2Si相を均一に析出させること
により析出効果を利用して導電率、引張強さとも
優れた性能を得るためである。またこゝで圧延終
了温度が250〜160℃になるように圧延すると加工
効果が付加され一層強度の高いものが得られる。
こゝで20〜95%減面加工するのは圧延中に転位を
多数発生させ、微細なMg2Si相を均一に多量に析
出させるためであり、これが20%未満では析出が
不十分であり、95%より大きいと粗大な析出物が
形成されてしまうからである。 又上記において圧延開始温度が370〜200℃、圧
延終了時の温度が300〜160℃としたのは微細な
Mg2Si相を析出させるためであり、ここで開始温
度が370℃より高い場合或いは圧延終了温度が300
℃より高い場合にはMg2Si相が粗大となる。又圧
延開始温度が200℃より低いとき或いは圧延終了
温度が160℃より低いときはMg2Si相の析出が不
十分で析出効果は現われない。 以上の如く本発明法によつてAl―Mg―Si系合
金導体を製造すると従来法に比較して熱処理及び
時効工程が省略されるため製造コストが低減され
ると共に高強度、高導電率の導体を得ることがで
きる。 尚本発明の実施において連続鋳造後の圧延条件
の中、500〜550℃で60〜90%減面加工後、320〜
250℃で40%以上減面加工することは、一層優れ
た性能を与えることができ有利である。 次に本発明を実施例により更に詳細に説明す
る。 実施例 99.70%の電気用アルミニウム地金を溶解し、
これにAl―25%Si母合金、Al―6%Fe母合金、
Al―50%Cu母合金およびMg単位を用いて各組成
のAl―Mg―Si系合金を溶製後、ベルト・アン
ド・ホイール型の連続鋳造機により断面積2000mm2
の鋳塊を連続的に鋳造した。 この鋳塊を引続き連続的に圧延するに際して各
圧延スタンド間に加熱及び冷却装置を装備しかつ
圧延温度を自由に制御できる連続圧延機を用いて
各種温度条件で圧延して荒引線を製造し、圧延終
了後室温時効することなく直ちに性能を測定し
た。第1表に化学組成と圧延条件を、又第2表に
荒引線の引張強さ、伸び、および導電率を示し
た。
The present invention relates to a method for producing Al--Mg--Si based aluminum alloy conductors, and more specifically, the present invention relates to a method for producing Al--Mg--Si based aluminum alloy conductors, and more specifically, the present invention relates to a method for producing Al--Mg--Si based aluminum alloy conductors, and more specifically, a high conductivity, high The present invention relates to a method of manufacturing a strong aluminum alloy conductor. Demand for Al-Mg-Si alloys as conductive materials has increased rapidly in recent years, and this alloy is commonly known as No. A series of steps are required: processing, solution treatment, aging, expansion and contraction, and stabilization treatment, and there was a problem in that the production cost was high, especially since there were many heat treatment steps. On the other hand, instead of the rolling method in which the cast ingot is reheated and hot rolled as described above, a continuous casting and rolling method has recently been adopted to improve productivity. However, even in this method, a heat treatment process is required to subject the rough drawn wire after rolling to solution treatment, aging, wire drawing, and stabilization treatment, and a sufficient reduction in manufacturing costs cannot be expected. Therefore, as a measure to omit the solution treatment process,
A method has been proposed in which quenching is performed during the process of rolling an ingot using a continuous rolling mill to produce a rough wire while minimizing the precipitation of Mg and Si that are forcibly dissolved during casting. However, with this method, the Mg 2 Si crystallized in a non-equilibrium state during casting is carried over to the rough drawing line as it is, and even if the cooling rate during rolling is increased, the Mg 2 Si crystallized around the crystallized material due to processing strain during rolling. 2 Si condenses, which causes problems such as unstable properties compared to aluminum alloy conductors that have been hot-rolled and then solution-treated using conventional methods. The present invention has been developed based on various studies in view of the above, and has been developed by appropriately selecting the amounts of Mg and Si added to Al--Mg--Si alloys, and by making them coexist with Fe and Cu. It is possible to provide a high-strength aluminum alloy conductor with reduced manufacturing costs, and to obtain a conductor with excellent conductivity and strength by specifying the rolling temperature, etc. as manufacturing conditions when continuously casting and rolling the above alloy. This is what led to the discovery of the method of the present invention. That is, in the present invention, Mg0.3-1.0wt%, Si0.3-0.8wt%
%, Fe0.15~0.50wt%, Cu0.005~0.1wt%, balance
The alloy consisting of Al and its impurities is made into a conductor with excellent performance by continuous casting and rolling without undergoing solution treatment or aging treatment.The reason why the composition of the alloy was limited as described above is as follows. This is due to Mg and Si are elements for improving strength, and if the added amounts of both Mg and Si are less than 0.3% each, the effect will be small and the strength of the obtained conductor will be low. Also Mg
If more than 1.0% and 0.8% of Si are added, the electrical conductivity will decrease and the amount of Mg and Si precipitated in the ingot will increase, making it impossible to obtain the effect of solution treatment and greatly reducing fatigue strength. Because it does. On the other hand, Fe is an element that improves strength without significantly lowering electrical conductivity, and there is little decrease in elongation due to improvement in strength. If Fe is less than 0.15%, it has little effect on improving strength, and even if it is added more than 0.50%, no further strength improvement effect is observed, and the conductivity and elongation also decrease, resulting in the formation of coarse crystallized substances during casting. This is due to the fact that the fatigue resistance properties deteriorate significantly. Like Fe, Cu is added to improve strength; if it is less than 0.005%, no effect will be observed, and if it is more than 0.1%, fatigue resistance, ductility, and corrosion resistance will deteriorate. The present invention provides hot rolling at 400 to 550°C when continuously rolling an ingot that is continuously obtained when producing an aluminum alloy conductor using an alloy defined in the above composition range by a continuous casting and rolling method. After reducing the area by 40% or more, the aluminum is rapidly cooled to 370℃ or less, and then warm rolled from 370 to 200℃ to reduce the area by 20% or more so that the temperature at the end of rolling is 300 to 160℃. Regarding the manufacturing method of alloy conductors, the reason why the rolling temperature etc. are specified as mentioned above during continuous casting is as follows. First, when continuously rolling the ingot obtained continuously, reducing the area by 40% or more by hot rolling at 400 to 550℃ is because crystallization occurs in a non-equilibrium state during solidification.
This is to make Mg 2 Si a solution and to prevent precipitation during rolling. In other words, if the rolling temperature is less than 400℃,
Since Mg 2 Si will precipitate, the rolling temperature should be 400°C or higher, preferably 450°C or higher, and more preferably 500°C or higher.
Rolling at 550°C prevents precipitation during rolling, and also enables solutionization of Mg 2 Si crystallized during solidification. However, when the temperature is higher than 550°C, although solutionization of Mg 2 Si is advantageous, cracking of the ingot tends to occur during rolling, making it impossible to obtain a high-quality rolled material. Also, reducing the area by more than 40% destroys the casting structure and reduces Mg in the ingot.
This is to finely disperse crystallized substances such as Si and Fe to create a homogeneous rolling structure, and thereby to easily dissolve the Mg 2 Si crystallized substances during rolling. To achieve this, it is necessary to reduce the surface area by more than 40%.
If it is less than 40%, the working degree will be insufficient for homogenizing the rolling structure and solutionizing Mg 2 Si. Next, this is rapidly cooled to below 370℃ to prevent coarse Mg 2 Si phase from precipitating in the subsequent rolling process and reducing the strength;
Mg 2 Si phase precipitates, reducing the strength and fatigue resistance of the conductor. 370 in the next 370-200℃ warm rolling process
The process of reducing the surface area by 20 to 95% from a temperature of ~200℃ so that the temperature at the end of rolling is 300 to 160℃ is as follows.
This is to obtain excellent performance in both electrical conductivity and tensile strength by uniformly precipitating a fine Mg 2 Si phase during rolling and utilizing the precipitation effect. Further, if the rolling is carried out at a rolling end temperature of 250 to 160°C, a processing effect is added and a product with even higher strength can be obtained.
The reason why the area is reduced by 20 to 95% is to generate a large number of dislocations during rolling and to uniformly precipitate a large amount of fine Mg 2 Si phase. If this is less than 20%, the precipitation is insufficient. , more than 95%, coarse precipitates will be formed. Also, in the above, the temperature at the start of rolling was set at 370-200℃ and the temperature at the end of rolling was set at 300-160℃.
This is to precipitate the Mg 2 Si phase, and if the starting temperature is higher than 370℃ or the rolling end temperature is 300℃.
When the temperature is higher than ℃, the Mg 2 Si phase becomes coarse. Furthermore, when the rolling start temperature is lower than 200°C or when the rolling end temperature is lower than 160°C, precipitation of the Mg 2 Si phase is insufficient and no precipitation effect appears. As described above, when an Al--Mg--Si alloy conductor is manufactured by the method of the present invention, the heat treatment and aging steps are omitted compared to the conventional method, so the manufacturing cost is reduced, and the conductor has high strength and high conductivity. can be obtained. In carrying out the present invention, among the rolling conditions after continuous casting, after 60-90% area reduction processing at 500-550℃, 320-
It is advantageous to reduce the surface area by 40% or more at 250°C because it can provide even better performance. Next, the present invention will be explained in more detail with reference to Examples. Example Melting 99.70% electrical aluminum ingot,
In addition, Al-25%Si master alloy, Al-6%Fe master alloy,
After melting Al-Mg-Si alloys of various compositions using Al-50% Cu master alloy and Mg units, they are cast into a cross-sectional area of 2000 mm 2 using a belt-and-wheel type continuous casting machine.
of ingots were continuously cast. When this ingot is continuously rolled, a continuous rolling mill equipped with a heating and cooling device between each rolling stand and capable of freely controlling the rolling temperature is used to roll the ingot under various temperature conditions to produce rough wire. Performance was measured immediately after rolling without aging at room temperature. Table 1 shows the chemical composition and rolling conditions, and Table 2 shows the tensile strength, elongation, and electrical conductivity of the rough wire.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例1〜10は本発明方法に従つて製造したも
ので導電率は53%IACS以上、引張強さは21Kg/
mm2以上、伸びは7%以上と優れた性能が得られ
る。 次に比較例として本発明と異つた組成、製造条
件によるものをNo.11〜26に示す。No.11〜18は圧延
条件は本発明に規定する範囲内にあるが合金組成
の異なるものであり、No.11〜14は夫々Mg、Si、
Fe、Cuが不足のため導電率は高いが引張強さが
低く、No.15〜18は夫々の元素が過剰のため導電率
が低い。又No.19〜26は組成は本発明で規定する範
囲に入つているが圧延温度或いは加工率など圧延
条件が異るため導電率と引張強さが共に優れた導
体を得ることはできない。 又従来法として従来から行われている連続鋳造
圧延法、展延法、および押出法により荒引線を製
造した。 従来の連続鋳造圧延法としては断面積2000mm2
鋳塊を450℃より圧延開始し、中間加熱をするこ
となく94.3%減面加工した後、200℃で圧延を終
了した。又展延法としては50×50×500mmの鋳塊
を450℃で2時間加熱後、熱間圧延により95.4%
加工し、押出法の場合には断面積962.5mm2の鋳塊
を450℃で2時間加熱後熱間押出により94.2%減
面加工した。これらのものについて第1表および
第2表にNo.27〜30として示した。 No.27の試料を従来の製造法に従つて520℃で2
時間溶体化処理後水冷したものをNo.30に示した。 第2表に示したように従来法で製造したものは
いずれも強度が低く、溶体化処理したNo.30は室温
で7日間程時効しても導電率49.5%IACS、引張
強さ18.9Kg/mm2と実施例No.1〜10に示したものよ
り低い。 以上のように本発明で規定された組成範囲内の
合金を本発明法で規定する条件に従つて製造する
ことにより一層強度、導電率の優れた導体を得る
ことができる。
[Table] Examples 1 to 10 were manufactured according to the method of the present invention, and the electrical conductivity was 53% IACS or higher, and the tensile strength was 21 Kg/
Excellent performance can be obtained with mm 2 or more and elongation of 7% or more. Next, as comparative examples, Nos. 11 to 26 have compositions and manufacturing conditions different from those of the present invention. Nos. 11 to 18 have rolling conditions within the range specified in the present invention, but have different alloy compositions, and Nos. 11 to 14 have Mg, Si,
Due to the lack of Fe and Cu, the conductivity is high but the tensile strength is low, and Nos. 15 to 18 have low conductivity due to excess of each element. Further, although the compositions of Nos. 19 to 26 are within the range specified by the present invention, it is not possible to obtain conductors with excellent conductivity and tensile strength because the rolling conditions such as rolling temperature and processing rate are different. In addition, rough drawn wires were manufactured using conventional continuous casting and rolling methods, rolling methods, and extrusion methods. In the conventional continuous casting and rolling method, rolling of an ingot with a cross-sectional area of 2000 mm 2 was started at 450°C, the area was reduced by 94.3% without intermediate heating, and then rolling was finished at 200°C. As for the rolling method, a 50 x 50 x 500 mm ingot is heated at 450°C for 2 hours and then hot rolled to 95.4%.
In the case of the extrusion method, an ingot with a cross-sectional area of 962.5 mm 2 was heated at 450° C. for 2 hours and then hot extruded to reduce the area by 94.2%. These are shown in Tables 1 and 2 as Nos. 27 to 30. Sample No. 27 was heated at 520℃ for 2 hours according to the conventional manufacturing method.
No. 30 shows what was water-cooled after time solution treatment. As shown in Table 2, all of the products manufactured by the conventional method have low strength, and the solution-treated No. 30 has an electrical conductivity of 49.5% IACS and a tensile strength of 18.9 kg/kg even after aging at room temperature for about 7 days. mm 2 and lower than those shown in Example Nos. 1 to 10. As described above, by manufacturing an alloy within the composition range specified by the present invention according to the conditions specified by the method of the present invention, a conductor with even better strength and electrical conductivity can be obtained.

Claims (1)

【特許請求の範囲】 1 Mg0.3〜1.0wt%、Si0.3〜0.8wt%、Fe0.15〜
0.50wt%、Cu0.005〜0.1wt%、残Alとその不純
物とからなる合金を連続的に鋳造し、得られた鋳
塊を引続き圧延するに際し、400〜550℃の熱間圧
延で40%以上の減面加工後370℃以下に急冷し、
370〜200℃より温間圧延で引続き20%以上減面加
工して圧延終了時の温度が300〜160℃になるよう
にしてAl―Mg―Si系合金導体を連続鋳造圧延法
により製造することを特徴とするアルミニウム合
金導体の製造法。 2 得られた鋳塊を引続き圧延するに際し、400
〜550℃の熱間圧延で40%以上減面加工した後370
℃以下に急冷し、引続き370〜200℃より温間圧延
で20〜95%減面加工して圧延終了時の温度が300
〜160℃になるようにする特許請求の範囲第1項
記載のアルミニウム合金導体の製造法。
[Claims] 1 Mg0.3~1.0wt%, Si0.3~0.8wt%, Fe0.15~
When an alloy consisting of 0.50 wt% Cu, 0.005 to 0.1 wt% Cu, residual Al and its impurities is continuously cast, and the resulting ingot is subsequently rolled, 40% reduction is achieved by hot rolling at 400 to 550°C. After the above surface reduction processing, it is rapidly cooled to below 370℃,
Producing Al--Mg--Si based alloy conductor by continuous casting and rolling method by continuing warm rolling from 370 to 200°C to reduce the area by 20% or more so that the temperature at the end of rolling is 300 to 160°C. A method for producing an aluminum alloy conductor characterized by: 2 When the obtained ingot is subsequently rolled, 400
370 after being hot rolled at ~550℃ to reduce the area by more than 40%
Rapid cooling to below ℃, followed by warm rolling from 370 to 200℃ to reduce the area by 20 to 95% until the temperature at the end of rolling reaches 300℃.
The method for manufacturing an aluminum alloy conductor according to claim 1, wherein the temperature is 160°C.
JP1879179A 1979-02-20 1979-02-20 Aluminum alloy conductor and producing method of the same Granted JPS55110753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1879179A JPS55110753A (en) 1979-02-20 1979-02-20 Aluminum alloy conductor and producing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1879179A JPS55110753A (en) 1979-02-20 1979-02-20 Aluminum alloy conductor and producing method of the same

Publications (2)

Publication Number Publication Date
JPS55110753A JPS55110753A (en) 1980-08-26
JPS623228B2 true JPS623228B2 (en) 1987-01-23

Family

ID=11981420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1879179A Granted JPS55110753A (en) 1979-02-20 1979-02-20 Aluminum alloy conductor and producing method of the same

Country Status (1)

Country Link
JP (1) JPS55110753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004814A1 (en) * 2009-07-06 2011-01-13 矢崎総業株式会社 Electric wire or cable

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU80656A1 (en) * 1978-12-14 1980-07-21 Lamitref TREATMENT AND STRUCTURE OF A WELL BASED ON NON-FERROUS METAL
JPS5839225B2 (en) * 1979-11-28 1983-08-29 古河電気工業株式会社 Manufacturing method of high strength aluminum alloy conductor
JPS60215751A (en) * 1984-03-19 1985-10-29 Furukawa Electric Co Ltd:The Manufacture of high-strength aluminum alloy wire for electric conduction
EP0743372B1 (en) * 1995-05-19 2002-01-23 Tenedora Nemak, S.A. de C.V. Method and apparatus for simplified production of heat-treatable aluminum alloy
CN103556016B (en) * 2013-11-19 2017-09-22 沈阳工业大学 A kind of middle intensity high conductivity electrician aluminum conductor material and preparation method thereof
EP3814544A1 (en) * 2018-06-29 2021-05-05 Hydro Aluminium Rolled Products GmbH Method for producing an aluminium strip having greater strength and greater electrical conductivity
CN110669966A (en) * 2019-09-23 2020-01-10 四川阳光坚端铝业有限公司 High-conductivity and high-strength aluminum alloy conductive profile and production process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154816A (en) * 1974-11-09 1976-05-14 Furukawa Electric Co Ltd KORYOKUDODENYOARUMINIUMUGOKINSENNO SEIZOHOHO
JPS51144320A (en) * 1975-05-28 1976-12-11 Pechiney Aluminium Conductor consist of aluminium based alloy and making it
JPS527315A (en) * 1975-05-28 1977-01-20 Pechiney Aluminium Making of wire consist of aluminium magnesiummsilicon alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154816A (en) * 1974-11-09 1976-05-14 Furukawa Electric Co Ltd KORYOKUDODENYOARUMINIUMUGOKINSENNO SEIZOHOHO
JPS51144320A (en) * 1975-05-28 1976-12-11 Pechiney Aluminium Conductor consist of aluminium based alloy and making it
JPS527315A (en) * 1975-05-28 1977-01-20 Pechiney Aluminium Making of wire consist of aluminium magnesiummsilicon alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004814A1 (en) * 2009-07-06 2011-01-13 矢崎総業株式会社 Electric wire or cable
JP5354815B2 (en) * 2009-07-06 2013-11-27 矢崎総業株式会社 Wire or cable

Also Published As

Publication number Publication date
JPS55110753A (en) 1980-08-26

Similar Documents

Publication Publication Date Title
CN109161730B (en) Aluminum alloy conductor material for bus duct and preparation method thereof
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
US4402763A (en) High conductive heat-resistant aluminum alloy
JPS5839225B2 (en) Manufacturing method of high strength aluminum alloy conductor
JP2017179445A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774199B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JPS623228B2 (en)
CN112522552B (en) Corrosion-resistant aluminum alloy and preparation method and application thereof
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
JPS6132386B2 (en)
JPS6358907B2 (en)
JPS6216269B2 (en)
JPS6123852B2 (en)
CN116426801A (en) Aluminum-zinc-magnesium-copper alloy bar for nut fastener and preparation method thereof
CN108884542B (en) Method for producing Al-Mg-Si alloy sheet
US4397696A (en) Method for producing improved aluminum conductor from direct chill cast ingot
US3347717A (en) High strength aluminum-bronze alloy
KR20000022514A (en) 6xxx series aluminium alloy
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) Manufacturing method of Al-Mg-Si based alloy plate
JPS6219501B2 (en)
KR900002197B1 (en) Process of manufacturing of aluminium wire rods
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
KR102555590B1 (en) Alluminum alloy having high strength and electrical conductivity, a conductor comprising the same and method for preparing the conductor