JPS6216269B2 - - Google Patents

Info

Publication number
JPS6216269B2
JPS6216269B2 JP14461483A JP14461483A JPS6216269B2 JP S6216269 B2 JPS6216269 B2 JP S6216269B2 JP 14461483 A JP14461483 A JP 14461483A JP 14461483 A JP14461483 A JP 14461483A JP S6216269 B2 JPS6216269 B2 JP S6216269B2
Authority
JP
Japan
Prior art keywords
strength
heat
stage
hours
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14461483A
Other languages
Japanese (ja)
Other versions
JPS5947365A (en
Inventor
Kinya Ogawa
Hitoshi Yanase
Sadao Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14461483A priority Critical patent/JPS5947365A/en
Publication of JPS5947365A publication Critical patent/JPS5947365A/en
Publication of JPS6216269B2 publication Critical patent/JPS6216269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電用耐熱アルミニウム合金として知
られるAl―Zr系合金の製造法の改良、具体的に
は合金組成と製造工程との組み合せにより導電率
を低下させることなく強度及び耐熱性を著しく向
上させた高力耐熱アルミニウム合金導体の製造法
に関するものである。 従来架空送電線には主として鋼芯アルミニウム
撚線(ACSR)が使用されているが、特殊な送電
条件の下ではアルミニウム導体に耐熱性を与えた
鋼芯耐熱アルミニウム合金撚線(TACSR)が用
いられて来た。このTACSR素線に用いられるア
ルミニウム合金には公知のようにAl―Zr系合金
が用いられて来た。 Al―Zr系合金はZr量の如何にかゝわらず導体
の引張強さは17〜20Kg/mm2とそれ程高くならない
ため長径間送電用導体には用いることができず又
全アルミニウム合金撚線(AAAC)として用い
ることもできなかつた。 このような目的のためには公知の如く5005合金
(Al―0.5〜1.1wt%Mg)が用いられていた。この
合金は引張強さは24Kg/mm2と強いが、耐熱性は普
通のアルミニウム電線(ECAl)と同じであり、
耐熱性がないため大容量送電ができなかつた。 しかるに最近電力需要の増大に伴い、導体に耐
熱性がありしかも強度の高い導体に要望されて来
ており、公知の5005合金については耐熱性の向上
が、又公知の耐熱アルミニウム合金においては強
度向上が夫々望まれている。 又一般に導電用耐熱アルミニウム合金として現
在使用されているAl―Zr系合金の耐熱性はZrの
添加量に応じて増大するが、導電率は低下してし
まい、従つてより耐熱性の優れた導体を得るため
にはZr量を多くすることになるが、導電率は著し
く低下して実用に適さないことになる。又強度を
向上させるために各種元素を添加するとやはり導
電率が低下してしまう。 本発明はかゝる点に鑑み導電率をあまり低下さ
せることなく強度及び耐熱性の優れた導体を提供
せんと、合金組成と製造工程の組合せについて研
究を進めた結果、本発明に至つたものである。 本発明に用いられるアルミニウム合金素材とし
てはZr0.15〜0.8wt%、Fe0.05〜0.6wt%、Si0.04
〜0.20wt%を含み、かつMg0.005〜0.5wt%、
Cu0.005〜0.5wt%、希土類元素0.01〜0.5wt%、
Sb0.005〜0.1wt%、Be0.005〜0.1wt%のうちのい
ずれか1種又は2種以上の元素を含み、残Alと
通常の不純物とからなるものである。 本発明法は上記合金素材を500〜645℃で加熱を
行なつた後、急冷し、冷間において65%以上減面
加工した後、250〜400℃で1〜400時間加熱処理
する方法(の方法)、あるいは()の方法に
おいて65%以上の減面加工後の熱処理工程を2段
階に分け、第1段階を200〜400℃で1〜400時間
加熱処理し次に第2段階を第1段階より30℃以上
高い温度でしかも250〜500℃の温度範囲内で1〜
400時間加熱処理する方法(の方法)に係わる
ものである。 本発明において合金組成を上記の如く限定した
のは次の理由による。 即ちZrは強度及び耐熱性を向上させるために添
加するものでこの添加量を0.15〜0.8wt%(以下
wt%を単に%と略記)としたのはこれが0.15%よ
り少ないと強度が低く耐熱性も改善されず、又
0.8%より多くなると強度及び耐熱性向上の効果
がなくなり、導電率も低下するからである。 FeもZrと同様強度及び耐熱性を向上させるた
めに添加するもので、この添加量を0.05〜0.6%
としたのは、これが0.05%より少ないとその効果
は少なく0.6%より多くなると強度及び耐熱性の
より一層の向上は認められず導電率が低下してし
まうためである。 Siの添加は強度を向上させるためであり、この
添加量を0.04〜0.20%としたのはこれが0.04%よ
り少ないと強度が低く、又0.20%より多くすると
導電率が低くなつてしまうからである。 Mg及びCuは強度を向上させるために添加する
もので、これらの添加量を夫々0.005〜0.5%とし
たのは夫々0.005%未満では強度改善の効果がな
く、又夫々0.5%を越えると導電率低下が大きく
なつてしまうからである。 希土類元素(以下単にREと記す)及びSb、Be
を添加するのは導電率を低下させることなく、強
度を向上させると共に曲げ加工性を改善するため
である。 REの添加量を0.01〜0.5%としたのは0.01%未
満ではその効果は殆んどなく、0.5%を越えると
強度向上効果はなくなり導電率は低下し曲げ加工
性もむしろ悪くなつてしまうからである。 又Sb、Beの添加量を夫々0.005〜0.1%としたの
は夫々0.005%未満ではその添加効果はなく、0.1
%を越えて添加してもより一層の強度向上は認め
られず、むしろ導電率が低下してしまうからであ
る。 本発明の実施に当り、Zr0.3〜0.6%、Fe0.2〜
0.4%、Si0.06〜0.08%を含有し、Mg0.05〜0.2
%、Cu0.05〜0.2%、RE0.1〜0.3%、Sb0.01〜
0.05%、Be0.01〜0.05%のうちの1種又は2種以
上の元素を添加した合金組成の合金素材を用いる
とより優れた性能の導体が得られる。 又、上記の合金組成の範囲でMgとCuのうちか
ら1種以上、RE、Sb、Beのうちから1種以上を
同時に添加すると更に一層優れた性能の導体が得
られる。 次に本発明の前記(I)〜()の製造工程に
おいて上記の合金素材を500〜645℃で加熱後、急
冷するのはZr、Fe、Mg及びCuを固溶させる(溶
体化処理)ためであり、その際合金素材としては
鋳塊でも熱間又は冷間加工材でもよい。 即ち本発明は溶体化処理後、冷間加工すること
により目標とする優れた性能の導体を得んとする
ものであり、溶体化処理前の素材は鋳塊でも加工
材でも略同等の性能が得られる。こゝで溶体化処
理温度が500℃より低いと固溶量が少ないため強
度及び耐熱性の向上が認められず、又645℃より
高くてもより一層の向上効果は認められず、しか
も溶融温度近くなるため製造作業が困難となる。 尚この溶体化処理後に急冷する手段としては空
冷でも水冷でもよい。 上記のように500〜645℃で加熱を行つた後、急
冷してから冷間で65%以上減面加工するのは加工
硬化とその後の加熱処理により強度を高くするた
めであり、その際65%以上の減面加工としたのは
これが65%より少ないと強度が低くなるからであ
る。 本発明の()の方法において冷間加工後、
250〜450℃で1〜400時間加熱処理するのは時効
による析出硬化と導電率の向上のためで、この処
理が250℃より低い場合或いは250〜400℃の温度
範囲内でも1時間より短かい場合には時効効果が
認められず導電率も低くなり、又400℃より高い
場合或いは400時間より長い場合には過時効現象
により強度が低下し耐熱性も悪くなるためであ
る。 本発明の()の方法において()の方法で
65%以上減面加工した素材を加熱処理するに際し
て熱処理工程を2段階に分けたのは微細な析出物
の形成を促進して析出硬化をより一層顕著なもの
とするためでこれによつて導電率及び強度は一層
向上する。 こゝで第1段階を200〜400℃で1〜400時間熱
処理すると規定したのは200℃未満あるいは加熱
時間が1時間未満ではその効果がなく、400℃よ
り高い温度では強度が低下してしまい、又400時
間より長く加熱してもより大きな効果は認められ
ず不経済である。又第2段階の加熱に際して第1
段階より30℃以上高い温度で加熱するのは第1段
階で形成された極微細な析出物あるいは析出核を
成長させるためで30℃未満ではその効果はなく単
に連続して加熱する場合と差異はない。 又こゝで250℃未満の温度あるいは1時間未満
の加熱では微細析出物の成長は遅く、導電率、強
度の改善は認められない。 又500℃より高い温度あるいは400時間より長時
間熱すると析出物が粗大化し強度、耐熱性とも低
下してしまうためである。 尚本発明の()の方法の実施に際して560〜
630℃で加熱を行なつた後、急冷し、冷間のおい
て80%以上減面加工してから300〜350℃で70〜
150時間加熱処理することにより優れた性能の導
体が得られる。 又本発明の()の方法の実施においては上記
条件範囲内で製造した素材を冷間加工後の熱処理
を行なう際に第1段階を300〜400℃で2〜100時
間加熱し第2段階を50〜100℃高い温度でしかも
380〜450℃の温度範囲で20〜100時間加熱するこ
とによりより優れた性能の導体が得られる。 次に本発明を実施例により詳しく説明する。 実施例 主に純度99.85〜99.95%の電気用アルミニウム
地金を用いてこれを溶解後、Al―6%Fe母合
金、Al―20%Si母合金、Al―50%Cu母合金、Al
―5%Zr母合金、Al―5%Be母合金、Al―5%
Sb母合金とMg単体を用い、又希土類元素として
ミツシユメタルを添加して各種組成のAl合金を
溶製した。 尚希土類元素(RE)としてはランタン、セリ
ウム、イトリウム等希土類元素はいずれも同一添
加効果を示すため、夫々単独で添加しても又2種
以上を一緒に添加しても全く同様の効果を示し、
ミツシユメタルとして添加してもよい。 これらの合金を25×25×400mmの金型に鋳造
後、圧延加工して8〜12mmφの荒引線とした。こ
れを480〜645℃の温度に加熱後、水冷し冷間で
60.9〜91.5%伸線加工し更に200〜450℃で0.5〜
500時間加熱処理した。また冷間加工後2段階に
分けて熱処理する際は第1段階を180〜490℃で
0.5〜500時間、第2段階を230〜550℃で0.5〜500
時間加熱処理した。 尚Fe添加量が0.08%以下のものは99.95%のア
ルミニウム地金を用いた。又はFe、Si等の添加
量についてはいずれの場合も配合値から不純物と
して地金中に含有される量を差引いた分だけ添加
した。 このようにして製造した試料について引張強
さ、導電率、耐熱性を測定した。 尚引張強さはインストロン型試験機により、導
電率はケルビン・ダブルブリツジにより電気抵抗
を測定して求めた。 又耐熱性は試料を350℃で1時間加熱し加熱前
の引張強さに対する加熱後の引張強さの割合で表
わした。これらの合金組成、製造条件及び性能を
第1表に示す。
The present invention improves the manufacturing method of Al-Zr alloy, which is known as a heat-resistant aluminum alloy for conductive use, and specifically, by combining the alloy composition and manufacturing process, it significantly improves strength and heat resistance without reducing conductivity. The present invention relates to a method for manufacturing a high-strength, heat-resistant aluminum alloy conductor. Traditionally, overhead power transmission lines mainly use steel-core aluminum stranded wires (ACSR), but under special power transmission conditions, steel-core heat-resistant aluminum alloy stranded wires (TACSR), which add heat resistance to aluminum conductors, are used. I came. As is known, Al--Zr alloys have been used as the aluminum alloys used in the TACSR wires. Regardless of the amount of Zr, the tensile strength of the conductor of Al-Zr alloys is not so high at 17 to 20 Kg/ mm2 , so it cannot be used as a conductor for long span power transmission, and all-aluminum alloy stranded wires cannot be used. (AAAC) could not be used. For this purpose, 5005 alloy (Al--0.5 to 1.1 wt% Mg) has been used as is known. This alloy has a high tensile strength of 24Kg/ mm2 , but its heat resistance is the same as ordinary aluminum wire (ECAl).
Large-capacity power transmission was not possible due to lack of heat resistance. However, with the recent increase in power demand, there has been a demand for conductors with heat resistance and high strength.The heat resistance of the known 5005 alloy has been improved, and the strength of the known heat resistant aluminum alloy has been improved. are desired by each. Furthermore, although the heat resistance of Al-Zr alloys, which are currently used as heat-resistant aluminum alloys for electrical conductivity, increases depending on the amount of Zr added, the electrical conductivity decreases, and therefore conductors with better heat resistance are not available. In order to obtain this, the amount of Zr must be increased, but the electrical conductivity will drop significantly, making it unsuitable for practical use. Furthermore, when various elements are added to improve strength, the electrical conductivity also decreases. In view of the above, the present invention was developed as a result of research into the combination of alloy composition and manufacturing process in order to provide a conductor with excellent strength and heat resistance without significantly reducing conductivity. It is. The aluminum alloy materials used in the present invention include Zr0.15-0.8wt%, Fe0.05-0.6wt%, Si0.04
Contains ~0.20wt%, and Mg0.005~0.5wt%,
Cu0.005~0.5wt%, rare earth elements 0.01~0.5wt%,
It contains one or more elements of 0.005 to 0.1 wt% Sb and 0.005 to 0.1 wt% Be, and consists of the remainder Al and normal impurities. The method of the present invention is a method in which the above alloy material is heated at 500 to 645°C, then rapidly cooled, cold processed to reduce the area by 65% or more, and then heat treated at 250 to 400°C for 1 to 400 hours. method), or in method (), the heat treatment process after 65% or more area reduction processing is divided into two stages, the first stage is heat treated at 200 to 400°C for 1 to 400 hours, and the second stage is the first stage. 1 to 30℃ higher than the stage and within the temperature range of 250 to 500℃
This relates to a method of heat treatment for 400 hours. The reason why the alloy composition is limited as described above in the present invention is as follows. In other words, Zr is added to improve strength and heat resistance, and the amount added is 0.15 to 0.8 wt% (hereinafter referred to as Zr).
wt% is simply abbreviated as %) because if it is less than 0.15%, the strength will be low and the heat resistance will not be improved.
This is because if it exceeds 0.8%, the effect of improving strength and heat resistance will be lost, and the electrical conductivity will also decrease. Like Zr, Fe is also added to improve strength and heat resistance, and the amount added is 0.05 to 0.6%.
This is because if the content is less than 0.05%, the effect will be small, and if it is more than 0.6%, no further improvement in strength or heat resistance will be observed and the electrical conductivity will decrease. The purpose of adding Si is to improve the strength, and the reason why the amount added is 0.04 to 0.20% is because if it is less than 0.04%, the strength will be low, and if it is more than 0.20%, the electrical conductivity will be low. . Mg and Cu are added to improve strength, and the amount of these added is set at 0.005 to 0.5%.If each is less than 0.005%, there is no strength improvement effect, and if each exceeds 0.5%, the electrical conductivity will decrease. This is because the decrease becomes large. Rare earth elements (hereinafter simply referred to as RE), Sb, Be
The purpose of adding is to improve strength and bending workability without reducing conductivity. The amount of RE added was set at 0.01 to 0.5% because if it is less than 0.01%, there is almost no effect, and if it exceeds 0.5%, the strength improvement effect disappears, the conductivity decreases, and the bending workability actually worsens. It is. In addition, the addition amount of Sb and Be was set to 0.005 to 0.1% each, but if it is less than 0.005% each, there is no effect of addition, and 0.1%.
This is because even if it is added in excess of %, no further improvement in strength will be observed, but rather the conductivity will decrease. In carrying out the present invention, Zr0.3~0.6%, Fe0.2~
Contains 0.4%, Si0.06~0.08%, Mg0.05~0.2
%, Cu0.05~0.2%, RE0.1~0.3%, Sb0.01~
A conductor with better performance can be obtained by using an alloy material having an alloy composition in which one or more of the following elements are added: 0.05% Be, and 0.01 to 0.05% Be. Further, if one or more of Mg and Cu and one or more of RE, Sb, and Be are simultaneously added within the above alloy composition range, a conductor with even more excellent performance can be obtained. Next, in the manufacturing steps (I) to () of the present invention, the above alloy material is heated at 500 to 645°C and then rapidly cooled in order to dissolve Zr, Fe, Mg, and Cu (solution treatment). In this case, the alloy material may be an ingot or a hot or cold worked material. In other words, the present invention aims to obtain a conductor with the target excellent performance by cold working after solution treatment, and the material before solution treatment has approximately the same performance whether it is an ingot or a processed material. can get. If the solution treatment temperature is lower than 500°C, no improvement in strength or heat resistance will be observed due to the small amount of solid solution, and if it is higher than 645°C, no further improvement will be observed, and the melting temperature Because they are so close together, manufacturing work becomes difficult. Note that air cooling or water cooling may be used as a means for rapidly cooling after this solution treatment. As mentioned above, the reason for heating at 500 to 645℃, rapid cooling, and then cold processing to reduce the area by 65% or more is to increase the strength through work hardening and subsequent heat treatment. The reason for reducing the surface area by more than 65% is because if it is less than 65%, the strength will be low. After cold working in the method () of the present invention,
Heat treatment at 250 to 450℃ for 1 to 400 hours is to improve precipitation hardening and conductivity due to aging, and if this treatment is lower than 250℃ or within the temperature range of 250 to 400℃, it is shorter than 1 hour. If the temperature is higher than 400°C or longer than 400 hours, the strength decreases due to the over-aging phenomenon and the heat resistance deteriorates. In the method () of the present invention, in the method ()
The reason why we divide the heat treatment process into two stages when heat treating a material whose area has been reduced by more than 65% is to promote the formation of fine precipitates and make precipitation hardening even more pronounced. The rate and strength are further improved. The reason why the first step was to be heat treated at 200 to 400℃ for 1 to 400 hours is because if the temperature is less than 200℃ or the heating time is less than 1 hour, the effect will not be achieved, and if the temperature is higher than 400℃, the strength will decrease. Also, heating for longer than 400 hours does not produce a greater effect and is uneconomical. Also, during the second stage of heating, the first
Heating at a temperature 30°C or more higher than the first stage is to grow the ultrafine precipitates or precipitation nuclei formed in the first stage, and below 30°C there is no effect and there is no difference from simply heating continuously. do not have. Furthermore, if the temperature is less than 250°C or the heating time is less than 1 hour, the growth of fine precipitates is slow and no improvement in electrical conductivity or strength is observed. Also, if heated at a temperature higher than 500°C or for a longer time than 400 hours, the precipitates will become coarse and both strength and heat resistance will decrease. In addition, when carrying out the method () of the present invention, 560~
After heating at 630℃, rapidly cool it, reduce the area by more than 80% in the cold, and then heat it at 300~350℃ for 70~
A conductor with excellent performance can be obtained by heat treatment for 150 hours. In addition, in carrying out the method () of the present invention, when performing heat treatment after cold working of the material manufactured within the above condition range, the first step is heated at 300 to 400 ° C. for 2 to 100 hours, and the second step is performed. Moreover, the temperature is 50 to 100℃ higher.
Conductors with better performance can be obtained by heating in the temperature range of 380-450°C for 20-100 hours. Next, the present invention will be explained in detail with reference to examples. Example Mainly using electrical aluminum ingots with a purity of 99.85 to 99.95% and melting them, Al-6% Fe master alloy, Al-20% Si master alloy, Al-50% Cu master alloy, Al
-5% Zr master alloy, Al-5% Be master alloy, Al-5%
Al alloys of various compositions were melted using Sb master alloy and Mg alone, and by adding Mitsushi metal as a rare earth element. Furthermore, as rare earth elements (RE), rare earth elements such as lanthanum, cerium, and yttrium all exhibit the same additive effect, so they exhibit exactly the same effect when added individually or when two or more types are added together. ,
It may be added as Mitsushi metal. These alloys were cast into a mold of 25 x 25 x 400 mm and then rolled into rough drawn wires with a diameter of 8 to 12 mm. After heating this to a temperature of 480 to 645℃, it is cooled with water.
60.9~91.5% wire drawing process and further 0.5~ at 200~450℃
Heat treated for 500 hours. In addition, when heat treatment is performed in two stages after cold working, the first stage is heated at 180 to 490°C.
0.5-500 hours, second stage at 230-550℃ for 0.5-500 hours
Heat treated for hours. In addition, 99.95% aluminum base metal was used for those with Fe addition amount of 0.08% or less. In any case, the amount of Fe, Si, etc. added was calculated by subtracting the amount contained in the base metal as an impurity from the blend value. The tensile strength, electrical conductivity, and heat resistance of the samples thus produced were measured. The tensile strength was determined using an Instron type tester, and the electrical conductivity was determined by measuring electrical resistance using a Kelvin double bridge. Heat resistance was determined by heating the sample at 350°C for 1 hour and expressing the ratio of the tensile strength after heating to the tensile strength before heating. Table 1 shows these alloy compositions, manufacturing conditions, and performances.

【表】【table】

【表】 実施例No.1〜10は本発明の()の方法で製造
したもので引張強さは23Kg/mm2以上、導電率は58
%IACS以上、耐熱性は98%以上と優れた性能を
示した。 実施例No.11、15は本発明の()の方法で製造
したもので、引張強さは25.5〜27.4Kg/mm2、導電
率59%IACS以上、耐熱性も94%以上と優れた性
能を有している。 次に比較例No.16〜30は加工及び熱処理条件は本
発明法に従つて製造したが、合金組成が本発明で
規定する範囲外のものである。 即ちNo.16〜29は()の方法に従つて製造した
ものであるが、No.16はZr量が少ないため強度及び
耐熱性が低く、No.17はZr量が過剰なため導電率が
低いうえ耐熱性も低下している。 No.18、19はFe量が、又No.20、21はSi量が不適
当であるため高性能が得られない。 No.22、25、26はMg、Cu、Sb、Be、RE等の添
加量が不十分なため、又No.23、24、27、28、29は
上記各元素が過剰なため、引張強さ、導電率、耐
熱性の3特性が共に優れた性能を示し得ない。又
No.30は()の方法に従つて製造したものである
が、いずれもSi、Mg、Cu、Sb、Beなど合金組成
が範囲外であるため高い性能は得られていない。 次に比較例No.31〜45は合金組成は範囲内にある
が、製造条件が()〜()とは異つた例であ
る。 No.31は溶体化処理温度が480℃と低く、No.32は
伸線加工率が60.9%と()の方法における条件
より低くなつており、又No.33〜36は伸線後の加熱
条件が異つているため高い性能は得られない。 No.37は()の方法のうち伸線後の2段目の加
熱温度が一段目より低いため2段階に分けて熱処
理する効果が認められず、この場合も()の方
法で製造したものと大差ない。 No.38も1段目の加熱温度が低いため、又No.40は
加熱時間が短いため2段階に分けて熱処理した効
果は顕著ではない。 No.39は伸線後の加熱温度が高過ぎるため強度、
耐熱性が低下してしまう。 No.41は1段目の加熱時間が長過ぎるため、No.
42、43は2段目の加熱温度が不適当であり、No.
44、45は2段目の加熱時間が夫々不適当なため、
いずれも強度、導電率、耐熱性の3特性の共に優
れた導体を製造することができない。 次に比較例No.48〜49として従来から行なわれて
いる展延法で製造した場合の性能を第2表に示
す。この展延法の場合は前述の実施例と同様にし
て製造し25×25×400mmの鋳塊を450℃で1時間加
熱後、熱間圧延して9.5mmφの荒引線としてこれ
をそのまゝ減面率で82.3〜91.5%伸線加工した。 これについて性能を測定した結果、従来法で製
造したものは強度は高いが、導電率が低く、特に
耐熱性は極めて悪い。
[Table] Examples Nos. 1 to 10 were manufactured by the method () of the present invention, and the tensile strength was 23 Kg/mm 2 or more and the electrical conductivity was 58
It showed excellent performance with %IACS or higher and heat resistance of 98% or higher. Example Nos. 11 and 15 were manufactured by the method () of the present invention, and had excellent performance with a tensile strength of 25.5 to 27.4 Kg/mm 2 , electrical conductivity of 59% IACS or higher, and heat resistance of 94% or higher. have. Next, Comparative Examples Nos. 16 to 30 were manufactured under processing and heat treatment conditions according to the method of the present invention, but their alloy compositions were outside the range specified by the present invention. That is, Nos. 16 to 29 were manufactured according to the method in (), but No. 16 had low strength and heat resistance due to the small amount of Zr, and No. 17 had low conductivity due to the excessive amount of Zr. Not only that, but the heat resistance is also low. Nos. 18 and 19 have an inappropriate amount of Fe, and Nos. 20 and 21 have an inappropriate amount of Si, so high performance cannot be obtained. Nos. 22, 25, and 26 have insufficient amounts of added Mg, Cu, Sb, Be, RE, etc., and Nos. 23, 24, 27, 28, and 29 have excessive amounts of each of the above elements, resulting in tensile strength. It cannot exhibit excellent performance in all three properties: electrical conductivity, heat resistance, and electrical conductivity. or
No. 30 was manufactured according to the method in (), but high performance was not obtained in either case because the alloy compositions such as Si, Mg, Cu, Sb, and Be were outside the range. Next, Comparative Examples Nos. 31 to 45 are examples in which the alloy composition is within the range, but the manufacturing conditions are different from () to (). No. 31 has a low solution treatment temperature of 480℃, No. 32 has a wire drawing processing rate of 60.9%, which is lower than the conditions in method (), and Nos. 33 to 36 have a low heating temperature after wire drawing. High performance cannot be obtained because the conditions are different. In No. 37, the heating temperature in the second stage after wire drawing was lower than that in the first stage, so the effect of heat treatment in two stages was not recognized, and in this case also, the product was manufactured using method (). There's no big difference. No. 38 also had a low heating temperature in the first stage, and No. 40 had a short heating time, so the effect of the two-stage heat treatment was not significant. No. 39 has poor strength because the heating temperature after wire drawing is too high.
Heat resistance will decrease. No. 41 has too long heating time in the first stage, so No.
Nos. 42 and 43 have inappropriate second-stage heating temperatures.
For 44 and 45, the second stage heating time is inappropriate, respectively.
In either case, it is not possible to produce a conductor that is excellent in all three properties of strength, electrical conductivity, and heat resistance. Next, Table 2 shows the performance of Comparative Examples Nos. 48 to 49 produced by the conventional spreading method. In the case of this rolling method, a 25 x 25 x 400 mm ingot was produced in the same manner as in the previous example, heated at 450°C for 1 hour, and then hot rolled to form a rough drawing wire of 9.5 mmφ. Wire drawing was performed with an area reduction rate of 82.3 to 91.5%. As a result of measuring the performance of this material, it was found that the material manufactured by the conventional method had high strength, but low electrical conductivity, and especially extremely poor heat resistance.

【表】 以上説明したように本発明法に規定する組成範
囲内の合金を本発明で規定する()〜()の
方法に従つて製造することにより強度、導電率、
耐熱性の3特性が共に優れた導体を得ることがで
きる。
[Table] As explained above, by manufacturing an alloy within the composition range specified in the method of the present invention according to the methods () to () specified in the present invention,
A conductor that is excellent in all three properties of heat resistance can be obtained.

Claims (1)

【特許請求の範囲】 1 Zr0.15〜0.8wt%、Fe0.05〜0.6wt%、Si0.04
〜0.20wt%を含み、かつMg0.005〜0.5wt%、
Cu0.005〜0.5wt%、希土類元素0.01〜0.5wt%、
Sb0.005〜0.1wt%、Be0.005〜0.1wt%のうちのい
ずれか1種又は2種以上の元素を含み、残Alと
通常の不純物とからなる合金素材を500〜645℃で
加熱を行なつた後、急冷し、冷間において65%以
上減面加工した後、250〜400℃で1〜400時間加
熱処理することを特徴とする高力耐熱アルミニウ
ム合金導体の製造法。 2 Zr0.15〜0.8wt%、Fe0.05〜0.6wt%、Si0.04
〜0.20wt%を含み、かつMg0.005〜0.5wt%、
Cu0.005〜0.5wt%、希土類元素0.01〜0.5wt%、
Sb0.005〜0.1wt%、Be0.005〜0.01wt%のうちの
いずれか1種又は2種以上の元素を含み、残Al
と通常の不純物とからなる合金素材を500〜645℃
で加熱を行なつた後、急冷し、冷間において65%
以上減面加工した後、加熱処理工程を2段階に分
け、第1段階では200〜400℃で1〜400時間加熱
処理し、次に第2段階では第1段階より30℃以上
高い温度でしかも250〜500℃の温度範囲内で1〜
400時間加熱処理する高力耐熱アルミニウム合金
導体の製造法。
[Claims] 1 Zr0.15-0.8wt%, Fe0.05-0.6wt%, Si0.04
Contains ~0.20wt%, and Mg0.005~0.5wt%,
Cu0.005~0.5wt%, rare earth elements 0.01~0.5wt%,
An alloy material containing one or more elements of 0.005 to 0.1 wt% Sb and 0.005 to 0.1 wt% Be, and consisting of residual Al and normal impurities is heated at 500 to 645°C. A method for producing a high-strength, heat-resistant aluminum alloy conductor, which is characterized in that the conductor is rapidly cooled, subjected to cold processing to reduce its area by 65% or more, and then heat-treated at 250 to 400°C for 1 to 400 hours. 2 Zr0.15-0.8wt%, Fe0.05-0.6wt%, Si0.04
Contains ~0.20wt%, and Mg0.005~0.5wt%,
Cu0.005~0.5wt%, rare earth elements 0.01~0.5wt%,
Contains one or more elements of Sb0.005-0.1wt% and Be0.005-0.01wt%, with the remainder Al
and normal impurities at 500 to 645℃.
After heating with
After the above area reduction processing, the heat treatment process is divided into two stages, the first stage is heat treatment at 200 to 400 °C for 1 to 400 hours, and the second stage is at a temperature 30 °C or more higher than the first stage. 1 to within the temperature range of 250 to 500℃
A method for manufacturing high-strength, heat-resistant aluminum alloy conductors that undergoes heat treatment for 400 hours.
JP14461483A 1983-08-08 1983-08-08 Production of aluminum alloy conductor having high strength and heat resistance Granted JPS5947365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14461483A JPS5947365A (en) 1983-08-08 1983-08-08 Production of aluminum alloy conductor having high strength and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14461483A JPS5947365A (en) 1983-08-08 1983-08-08 Production of aluminum alloy conductor having high strength and heat resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14672279A Division JPS5919183B2 (en) 1979-11-13 1979-11-13 Manufacturing method of high-strength heat-resistant aluminum alloy conductor

Publications (2)

Publication Number Publication Date
JPS5947365A JPS5947365A (en) 1984-03-17
JPS6216269B2 true JPS6216269B2 (en) 1987-04-11

Family

ID=15366121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14461483A Granted JPS5947365A (en) 1983-08-08 1983-08-08 Production of aluminum alloy conductor having high strength and heat resistance

Country Status (1)

Country Link
JP (1) JPS5947365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257381U (en) * 1988-02-10 1990-04-25
JP2520517Y2 (en) * 1990-10-25 1996-12-18 株式会社シマノ Hikifune

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148168A (en) * 1984-08-11 1986-03-08 Fujitsu Ltd Spindle unit assembling method
JPS6389640A (en) * 1986-10-01 1988-04-20 Sky Alum Co Ltd Conductive parts material for electronic and electrical equipment
CN102021442B (en) * 2010-09-21 2012-08-29 安徽亚南电缆厂 Ultra-fine aluminum alloy wire and preparation method thereof
CN104781433B (en) * 2013-03-29 2017-07-07 古河电器工业株式会社 The manufacture method of aluminium alloy conductor, aluminium alloy stranded conductor, coated electric wire, wire harness and aluminium alloy conductor
US9650706B2 (en) 2013-03-29 2017-05-16 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod
US9991024B2 (en) 2013-03-29 2018-06-05 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy wire rod
KR101910702B1 (en) 2013-03-29 2018-10-22 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy wire rod, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy wire rod
CN103276261B (en) * 2013-05-28 2015-04-22 江苏大学 Preparation method of high-conductivity aluminum alloy
CN103695736B (en) * 2013-12-20 2016-04-27 广西博士海意信息科技有限公司 Cable aluminium alloy conductor and preparation method thereof
CN114086033B (en) * 2021-11-25 2022-05-10 江苏亨通电力特种导线有限公司 Super heat-resistant aluminum alloy wire and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257381U (en) * 1988-02-10 1990-04-25
JP2520517Y2 (en) * 1990-10-25 1996-12-18 株式会社シマノ Hikifune

Also Published As

Publication number Publication date
JPS5947365A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
JPS6216269B2 (en)
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JPS6239235B2 (en)
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPH0125822B2 (en)
JPS6123852B2 (en)
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JPS6219501B2 (en)
JP2001254132A (en) Method of producing electrically conductive heat resistant aluminum alloy and alloy wire
JPH0152468B2 (en)
JPS6361380B2 (en)
JPS6357495B2 (en)
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JPS5983752A (en) Preparation of heat resistant aluminum alloy conductor
JPH0335373B2 (en)
JPS6144939B2 (en)
JPH036984B2 (en)
JPS6119697B2 (en)
JPH0215625B2 (en)
JPS63157843A (en) Manufacture of aluminum-alloy conductor
JPS63243252A (en) Manufacture of high-strength conductive aluminum-alloy conductor
JPS5931585B2 (en) Manufacturing method of conductive aluminum alloy
JPS6116421B2 (en)
JPH042664B2 (en)