JPH0152468B2 - - Google Patents
Info
- Publication number
- JPH0152468B2 JPH0152468B2 JP56127011A JP12701181A JPH0152468B2 JP H0152468 B2 JPH0152468 B2 JP H0152468B2 JP 56127011 A JP56127011 A JP 56127011A JP 12701181 A JP12701181 A JP 12701181A JP H0152468 B2 JPH0152468 B2 JP H0152468B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat resistance
- casting
- reduction rate
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 24
- 230000009467 reduction Effects 0.000 claims description 21
- 238000005266 casting Methods 0.000 claims description 20
- 238000011282 treatment Methods 0.000 claims description 17
- 238000005096 rolling process Methods 0.000 claims description 15
- 238000005482 strain hardening Methods 0.000 claims description 15
- 229910000838 Al alloy Inorganic materials 0.000 claims description 14
- 230000032683 aging Effects 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 238000009749 continuous casting Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Conductive Materials (AREA)
Description
本発明は耐熱性と導電性にすぐれた導電用耐熱
アルミニウム合金(以下アルミ合金と略称する)
線の製造方法に関するものである。
従来から導電用耐熱アルミ合金としてはAlに
Zrを微量添加し、製造工程中にZrを固溶させる
製造法をとることにより、耐熱性、導電性にすぐ
れたアルミ合金線を得ている(例えば特許第
842110号、第842111号)。
このような導電用耐熱アルミ合金は60%耐熱ア
ルミ合金(60TAl)として知られ、その導電率は
60%IACS以上、耐熱性は連続使用温度が150℃の
特性を有するものである。
近年導電用耐熱アルミ合金の耐熱性をさらに改
良し、同一サイズの電線での通電容量を増加しよ
うという要望が強い。
本発明は上述の耐熱性をさらに向上させるため
本発明者らが種々の合金、製法について検討した
結果得られたものであつて、特定組成範囲のAl
−Zr系合金を、特殊な加工、熱処理工程を施こ
すことにより、導電率が60TAlと同じく60%
IACS以上で、耐熱性の格段に優れた導電用耐熱
アルミ合金線を提供せんとするものである。
本発明はZr0.15〜0.35%、Fe0.05〜0.5%、
Si0.03〜0.25%を含み、残部Alと通常の不純物か
らなる合金溶湯より連続鋳造圧延する際に、鋳造
の鋳込温度を710〜750℃として行い、圧延の開始
温度を540〜580℃として行い、さらに、その後減
面率50%以上の冷間加工を施し、次いで300〜500
℃で5〜200時間の時効処理を施し、しかる後減
面率35%以上の冷間加工を施した後、さらに220
〜300℃で0.5〜20時間の熱処理を施すことによ
り、導電率60%IACS以上、硬アルミニウム線と
同等の強度を有し、かつ1時間加熱で300℃以上
の10%軟化温度を保有せしめたことを特徴とする
導電用耐熱アルミニウム合金線の製造方法にあ
る。
ここで10%軟化温度とは、1時間の加熱により
引張り強さが10%低下する最低加熱温度を意味す
る。
本発明において、Zr量を0.15〜0.35%と規定し
たのは、0.15%未満では耐熱性が充分でなく、ま
た0.35%をこえると析出物の粗大化がおこり、Zr
量が増加するに従つて逆に耐熱性が劣化すると共
に、コストも増加するからである。
又Fe量を0.05〜0.5%と規定したのは、0.05%未
満では伸線した線の強度が低く、又時効時間の短
縮に効果がなく、0.5%を越えると導電率、耐熱
性が低下するからである。
又Si量を0.03〜0.25%と規定したのは、0.03%
未満では地金のコストアツプが増大するばかり
か、又時効時間の短縮に効果がなく、0.25%を越
えると鋳造割れが著しく、又耐熱性も低下するか
らである。
次に本発明において、合金溶湯の連続鋳造圧延
は、プロペルチ法、SCR法など無端ベルトと回
転鋳造輪からなる鋳造機あるいはヘズレツト法、
3C法などの鋳造機と、連続して熱間圧延される
圧延機の組合わせが用いられる。
このような連続鋳造圧延方式によると、鋳造時
に強制固溶されたZrが析出することなく、熱間
圧延工程に持ち来たされるから、後の時効処理に
よりAl3Zrとして均一微細に析出し、耐熱性の大
幅な向上を果すことができる。
鋳造時の凝固条件としては、例えば3600mm2の鋳
型断面積をもつ回転鋳造輪からなる鋳造機では
5.0〜7.0ton/hrの範囲内で鋳造し、熱間圧延開
始温度を530℃以上とできるような冷却条件をと
ることにより、目的とする性能の合金が得られる
のである。
次に本発明において、鋳造機直前の溶湯温度
(鋳込温度)は700℃以上が好ましい。
その理由は、本発明のようにZr濃度が高い場
合には鋳込温度が700℃未満となるとAl3Zrの形
でZrが粗大粒子の形で晶出し、添加したZrの中
で耐熱性に効果を発揮できる量が減少すると同時
に、晶出した粗大粒子が耐熱性を低下させるから
である。
又熱間圧延機直前の鋳塊の温度(圧延開始温
度)は、530℃以上が好ましく、この温度が530℃
未満となると耐熱性が劣化する。外気温、鋳造条
件等で530℃未満となる場合は、圧延機以前にお
いて加熱することが行なわれる。
本発明において、連続鋳造圧延後減面率50%以
上の冷間加工を施すのは、爾後の時効処理および
熱処理と組合せることによつて、300℃以上の耐
熱性(10%軟化温度)を得るためのものであり、
さらには導電率をも改善するためのものである。
この冷間加工は、耐熱性改善に対して非常に大き
な効果を及ぼす。冷間加工は減面率が大きい程耐
熱性は改善される。例えば69%程度の減面率を与
え、その後の時効条件、熱処理条件を適当にとる
ことにより、耐熱性は10%軟化温度で360℃と極
めて高い値を示すが、50%未満の減面率の冷間加
工では、その後どのような時効処理、熱処理を施
しても300℃以上の10%軟化温度は得られない。
同時に、ここでの減面率50%以上の冷間加工
は、線の導電率に対しても好結果を生じ、減面率
が上昇する程導電率は改善される。減面率50%未
満でも若干の導電率改善は望めるが、効果的な改
善は望めない。
耐熱性と導電率は同時に満足されなければなら
ないものである故、本発明では上述の冷間加工の
減面率を50%以上と規定した。
次に本発明において、上記冷間加工後の時効処
理条件を300゜〜500℃で5〜200時間と規定したの
は、この熱処理によりZrをAl3Zrとして、均一微
細に析出させ、導電率を向上させると共に、微細
に析出したAl3Zrによる分散強化により、耐熱性
を向上させるためであり、300℃未満の温度では
熱処理時間が長くなつて生産性を阻害し、500℃
をこえると析出物の粗大化がおこり、耐熱性が劣
化するからである。
時効処理における温度と時間は、最適条件とし
ては相関関係にあり、温度が高いほど時間は短か
くてよいが、安定した耐熱性と比較的高い生産性
の得られる350゜〜400℃で50〜80時間の時効条件
が最適である。
又時効処理後、減面率35%以上の冷間加工を施
すのは、硬アルミニウム線と同等の強度を有する
ためには、減面率35%以上の冷間加工が必要であ
り、35%未満では所望の強度が得られないからで
ある。
又その後の熱処理を220〜300℃で0.5〜20時間
と規定したのは、これにより耐熱特性を大幅に改
善することが可能となるためであつて、この熱処
理により時効処理の温度と時間の範囲を広げ、さ
らに導電率をも改善することが可能となり、工業
生産上非常に有利となる。
温度が220℃未満では熱処理時間が長くなつて
生産性を阻害し、300℃を越えるとむしろ耐熱性
の改善は期待できない。熱処理における温度と時
間は最適条件としては相関関係にあり、温度が高
い程時間は短かくて良いが、安定した耐熱性の改
善と比較的高い生産性が得られる240〜280℃で1
〜5時間の熱処理条件が最適である。
又本発明において原料として使用するアルミ地
金は、通常の電気用アルミ地金を用いて差支えな
いが、耐熱性の劣化を防止する点から該アルミ地
金に含有する不純物はできるだけ僅少量に抑える
ことが望ましい。
本発明は、上述のように構成することにより、
耐熱性を1時間加熱で300℃以上の10%軟化温度
とすることができる。
これは連続使用温度210℃、短時間使用温度240
℃に相当するものである。ここで連続使用温度と
は36年間該温度で使用しても引張強さが初期の値
の90%未満とならない最高の温度のことであり、
また短時間使用温度とは400時間該温度で使用し
ても引張強さが初期の値の90%未満とならない最
高の温度のことである。以上耐熱性かつ導電率60
%IACS以上、硬アルミニウム線と同等の強度を
有すると共に、熱処理の温度、時間範囲が広いた
め、安定して容易に製造し得る効果がある。
以下、本発明を実施例により説明する。
実施例 1:
通常の不純物を含む電気用アルミ地金(JIS
H2110)に、表1に示す量のZr,Fe,Siを添加
し、脱ガス処理を施した後、鋳型断面積3200mm2の
回転ホイール式鋳造機により連続鋳造して鋳造棒
を得、引続き連続して熱間圧延、温間圧延を施し
て11.7mmφの荒引線を得た。この場合、鋳造機直
前の溶湯温度(鋳込温度)は、720〜750℃で、圧
延機直前の鋳造棒温度(圧延開始温度)は540〜
590℃となるようにした。
次いで荒引線に、冷間加工(加工と称す)、
時効のための熱処理(処理と称す)、さらに冷
間加工(加工と称す)、最後に熱処理(処理
と称す)を、表1に示す条件で施した。
得られたアルミ合金線の引張強さ、導電率、10
%軟化温度は表1に示す通りである。
The present invention is a conductive heat-resistant aluminum alloy (hereinafter abbreviated as aluminum alloy) that has excellent heat resistance and conductivity.
This invention relates to a method for manufacturing wire. Traditionally, Al has been used as a heat-resistant aluminum alloy for conductive use.
By adding a small amount of Zr and using a manufacturing method in which Zr is dissolved as a solid solution during the manufacturing process, an aluminum alloy wire with excellent heat resistance and conductivity has been obtained (for example, the patent
842110, 842111). This kind of heat-resistant aluminum alloy for conductive use is known as 60% heat-resistant aluminum alloy (60TAl), and its conductivity is
60% IACS or higher, and heat resistance is characterized by a continuous use temperature of 150℃. In recent years, there has been a strong desire to further improve the heat resistance of conductive heat-resistant aluminum alloys and increase the current carrying capacity of wires of the same size. The present invention was obtained as a result of studies conducted by the present inventors on various alloys and manufacturing methods in order to further improve the above-mentioned heat resistance.
-By applying special processing and heat treatment to Zr-based alloy, the conductivity is 60%, same as 60TAl.
The purpose is to provide a heat-resistant aluminum alloy wire for conductive use that has significantly superior heat resistance and is better than IACS. The present invention contains Zr0.15-0.35%, Fe0.05-0.5%,
When continuously casting and rolling a molten alloy containing 0.03 to 0.25% Si and the balance Al and normal impurities, the casting temperature is 710 to 750℃, and the rolling start temperature is 540 to 580℃. cold working with an area reduction rate of 50% or more, then 300~500
After applying aging treatment at ℃ for 5 to 200 hours, and then cold working with an area reduction rate of 35% or more,
By applying heat treatment at ~300℃ for 0.5 to 20 hours, it has an electrical conductivity of 60% IACS or higher, strength equivalent to hard aluminum wire, and a 10% softening temperature of 300℃ or higher when heated for 1 hour. A method of manufacturing a heat-resistant aluminum alloy wire for conductive use is characterized by the following. Here, the 10% softening temperature means the lowest heating temperature at which the tensile strength decreases by 10% after heating for 1 hour. In the present invention, the Zr content is specified as 0.15 to 0.35% because if it is less than 0.15%, the heat resistance is insufficient, and if it exceeds 0.35%, coarsening of precipitates will occur.
This is because as the amount increases, the heat resistance deteriorates and the cost also increases. In addition, the reason why the amount of Fe is specified as 0.05 to 0.5% is that if it is less than 0.05%, the strength of the drawn wire will be low and it will not be effective in shortening the aging time, and if it exceeds 0.5%, the electrical conductivity and heat resistance will decrease. It is from. Also, the amount of Si was specified as 0.03% to 0.25%, which is 0.03%.
If it is less than 0.25%, not only will the cost of the metal increase increase, but it will not be effective in shortening the aging time, and if it exceeds 0.25%, casting cracks will be noticeable and the heat resistance will also decrease. Next, in the present invention, continuous casting and rolling of the molten alloy can be carried out using a casting machine consisting of an endless belt and a rotary casting wheel, such as the Propelch method or the SCR method, or a Hezlett method.
A combination of a casting machine such as the 3C method and a rolling mill that performs continuous hot rolling is used. According to such a continuous casting and rolling method, the Zr that is forcibly dissolved in the solid solution during casting is brought to the hot rolling process without being precipitated, so that it precipitates uniformly and finely as Al 3 Zr during the subsequent aging treatment. , can significantly improve heat resistance. For example, the solidification conditions during casting are as follows:
By casting within the range of 5.0 to 7.0 ton/hr and using cooling conditions that allow the hot rolling start temperature to be 530°C or higher, an alloy with the desired performance can be obtained. Next, in the present invention, the temperature of the molten metal immediately before the casting machine (casting temperature) is preferably 700°C or higher. The reason for this is that when the Zr concentration is high as in the present invention, when the casting temperature is lower than 700℃, Zr crystallizes in the form of coarse particles in the form of Al 3 Zr, and the heat resistance becomes poor in the added Zr. This is because not only the effective amount decreases, but also the crystallized coarse particles lower the heat resistance. In addition, the temperature of the ingot immediately before the hot rolling mill (rolling start temperature) is preferably 530°C or higher;
If it is less than that, heat resistance will deteriorate. If the temperature is less than 530°C due to outside temperature, casting conditions, etc., heating is performed before the rolling mill. In the present invention, cold working with an area reduction rate of 50% or more after continuous casting and rolling is performed in combination with subsequent aging treatment and heat treatment to achieve heat resistance of 300°C or more (10% softening temperature). It is for the purpose of obtaining
Furthermore, it is also intended to improve electrical conductivity.
This cold working has a very large effect on improving heat resistance. In cold working, the larger the area reduction rate, the better the heat resistance. For example, by giving an area reduction rate of about 69% and then selecting appropriate aging and heat treatment conditions, the heat resistance will be extremely high at 10% softening temperature of 360°C, but if the area reduction rate is less than 50%. With cold working, a 10% softening temperature of 300°C or higher cannot be achieved no matter what kind of aging treatment or heat treatment is performed afterwards. At the same time, the cold working with an area reduction of 50% or more also produces good results on the electrical conductivity of the wire, and the higher the area reduction, the better the electrical conductivity. Even if the area reduction rate is less than 50%, a slight improvement in conductivity can be expected, but no effective improvement can be expected. Since heat resistance and electrical conductivity must be satisfied at the same time, the present invention specifies the area reduction rate of the cold working as 50% or more. Next, in the present invention, the aging treatment conditions after the cold working are specified as 300° to 500°C for 5 to 200 hours, because this heat treatment allows Zr to precipitate uniformly and finely as Al 3 Zr, and increases the electrical conductivity. This is to improve heat resistance through dispersion strengthening by finely precipitated Al 3 Zr. At temperatures below 300°C, the heat treatment time becomes longer and productivity is hindered.
This is because if it exceeds this, the precipitates will become coarser and the heat resistance will deteriorate. Temperature and time in aging treatment are correlated as optimal conditions; the higher the temperature, the shorter the time. Aging conditions of 80 hours are optimal. In addition, cold working with an area reduction rate of 35% or more is performed after aging treatment because cold working with an area reduction rate of 35% or more is required in order to have the same strength as hard aluminum wire. This is because if it is less than that, the desired strength cannot be obtained. The reason why we specified the subsequent heat treatment at 220 to 300℃ for 0.5 to 20 hours is because this makes it possible to significantly improve the heat resistance characteristics, and this heat treatment allows us to change the aging treatment temperature and time range. This makes it possible to expand the electrical conductivity and further improve the electrical conductivity, which is very advantageous in industrial production. If the temperature is less than 220°C, the heat treatment time becomes longer and productivity is hindered, and if it exceeds 300°C, no improvement in heat resistance can be expected. Temperature and time in heat treatment are correlated as optimal conditions, and the higher the temperature, the shorter the time.
Heat treatment conditions of ~5 hours are optimal. Further, the aluminum ingot used as a raw material in the present invention may be an ordinary electric aluminum ingot, but impurities contained in the aluminum ingot should be kept as small as possible in order to prevent deterioration of heat resistance. This is desirable. By configuring the present invention as described above,
Heat resistance can be increased to 10% softening temperature of 300℃ or higher by heating for 1 hour. This has a continuous use temperature of 210℃ and a short time use temperature of 240℃.
It corresponds to ℃. Here, the continuous use temperature is the highest temperature at which the tensile strength does not decrease to less than 90% of the initial value even if used at that temperature for 36 years.
Further, the short-time use temperature is the highest temperature at which the tensile strength does not decrease to less than 90% of the initial value even if used at that temperature for 400 hours. Heat resistance and electrical conductivity of 60 or more
%IACS or higher, which is equivalent to a hard aluminum wire, and the heat treatment can be performed over a wide temperature and time range, making it stable and easy to manufacture. The present invention will be explained below with reference to Examples. Example 1: Electrical aluminum ingot (JIS
H2110) was added with the amounts of Zr, Fe, and Si shown in Table 1, degassed, and then continuously cast using a rotating wheel type casting machine with a mold cross-sectional area of 3200 mm2 to obtain a cast bar. Then, hot rolling and warm rolling were performed to obtain a rough drawn wire of 11.7 mmφ. In this case, the temperature of the molten metal just before the casting machine (casting temperature) is 720 to 750°C, and the temperature of the cast rod just before the rolling machine (rolling start temperature) is 540 to 750°C.
The temperature was set to 590℃. Next, the rough drawing line is cold worked (referred to as processing),
Heat treatment for aging (referred to as treatment), further cold working (referred to as processing), and finally heat treatment (referred to as treatment) were performed under the conditions shown in Table 1. Tensile strength and conductivity of the obtained aluminum alloy wire, 10
The % softening temperatures are shown in Table 1.
【表】【table】
【表】
表1より、本発明によるNo.1〜12は、引張強さ
は硬アルミニウム線(No.13)と同等以上で、導電
率は60%IACS以上を有し、かつ300℃以上の10%
軟化温度を有することが分る。これに対し、比較
例No.14〜20は、導電率、10%軟化温度が何れか満
足せず、又Siの多いものは鋳造割れが発生した。
実施例 2:
表1に示すNo.8と同じ組成のアルミ合金を実施
例1と同様に連続鋳造圧延して11.7mmφの荒引線
を得た。ただし、鋳込温度は710〜740℃で、圧延
開始温度は540〜580℃となるようにした。
次いで荒引線に、表2〜表4にそれぞれ示す条
件で実施例1で示した加工,、処理および
を施した。
得られたアルミ合金線の10%軟化温度又は引張
強さは表2〜表4に示す通りである。[Table] From Table 1, Nos. 1 to 12 according to the present invention have a tensile strength equal to or higher than the hard aluminum wire (No. 13), a conductivity of 60% IACS or higher, and a temperature of 300℃ or higher. Ten%
It can be seen that it has a softening temperature. On the other hand, Comparative Examples Nos. 14 to 20 did not satisfy either the electrical conductivity or the 10% softening temperature, and those containing a large amount of Si suffered from casting cracks. Example 2: An aluminum alloy having the same composition as No. 8 shown in Table 1 was continuously cast and rolled in the same manner as in Example 1 to obtain a rough wire of 11.7 mmφ. However, the casting temperature was 710 to 740°C, and the rolling start temperature was 540 to 580°C. Next, the rough drawn wires were subjected to the processing and treatments shown in Example 1 under the conditions shown in Tables 2 to 4, respectively. The 10% softening temperature or tensile strength of the obtained aluminum alloy wires are shown in Tables 2 to 4.
【表】【table】
【表】【table】
【表】
表2に示す加工の減面率の影響では、50%以
上の本発明No.21〜26は10%軟化温度、300℃以上
が得られるが、50%未満の比較例は300℃以下と
なる。
表3に示す加工の減面率の影響では、35%以
上の本発明No.30〜35は、35%未満の比較例に比べ
引張強さが高い。
又表4に示す処理の有無の影響では、有りの
本発明No.39〜45は無しの比較例に比べ、高い10%
軟化温度が得られている。
以上述べたように、本発明の製造方法によるア
ルミ合金線は、Zr0.15〜0.35%、Fe0.05〜0.5%、
Si0.03〜0.25%を含み、残部Alと通常の不純物と
から成り、該合金溶湯を連続鋳造圧延するため、
鋳造時に強制固溶されたZrが析出することなく
固溶され、連続鋳造圧延後、減面率50%以上の冷
間加工を施し、次いで300゜〜500℃で5〜200時間
の時効処理を施すため、上記冷間加工と時効処理
との組合せにより導電率と耐熱性の改善が同時に
得られ、上記熱処理によりZrをAl3Zrとして均一
微細に析出分散させて、耐熱性を向上させ、時効
処理後、減面率35%以上の冷間加工を施すため、
所望の強度が得られ、その後さらに220゜〜300℃
で0.5〜20時間の熱処理を施すため、耐熱特性を
大幅に改善し、導電率をも改善することができる
ので、導電率60%IACS以上、硬アルミニウム線
と同等の強度を有し、かつ1時間加熱で300℃以
上の10%軟化温度というすぐれた耐熱性を保有す
る利点がある。
又熱処理は何れも温度と時間の範囲が広いの
で、安定した耐熱性が製造容易に得られる利点が
ある。[Table] Regarding the influence of the area reduction rate of processing shown in Table 2, the present invention Nos. 21 to 26 with a reduction rate of 50% or more can obtain a 10% softening temperature of 300℃ or higher, but the comparative examples with a reduction rate of less than 50% can achieve a softening temperature of 300℃ or higher. The following is true. Regarding the influence of the area reduction rate during processing shown in Table 3, the tensile strength of Invention Nos. 30 to 35 with a reduction rate of 35% or more is higher than that of the comparative example with a reduction rate of less than 35%. In addition, regarding the influence of the presence or absence of treatment shown in Table 4, Invention Nos. 39 to 45 with treatment had a 10% higher effect than comparative examples without treatment.
The softening temperature has been obtained. As described above, the aluminum alloy wire produced by the manufacturing method of the present invention contains Zr0.15-0.35%, Fe0.05-0.5%,
Containing 0.03 to 0.25% Si, the balance consists of Al and normal impurities, and the molten alloy is continuously cast and rolled.
The Zr that was forced into solid solution during casting is dissolved without precipitation, and after continuous casting and rolling, it is cold worked with an area reduction rate of 50% or more, and then aged at 300° to 500°C for 5 to 200 hours. Therefore, the combination of the cold working and aging treatment described above improves electrical conductivity and heat resistance at the same time. After treatment, we perform cold working with an area reduction rate of 35% or more.
After the desired strength is obtained, further heating is performed at 220° to 300°C.
Since heat treatment is performed for 0.5 to 20 hours, the heat resistance properties can be greatly improved, and the electrical conductivity can also be improved. It has the advantage of having excellent heat resistance, with a 10% softening temperature of 300°C or higher when heated for hours. Further, since the heat treatment has a wide range of temperature and time, there is an advantage that stable heat resistance can be obtained easily.
Claims (1)
0.25%を含み、残部Alと通常の不純物からなる合
金溶湯より連続鋳造圧延する際に、鋳造の鋳込温
度を710〜750℃として行い、圧延の開始温度を
540〜580℃として行い、さらに、その後減面率50
%以上の冷間加工を施し、次いで300〜500℃で5
〜200時間の時効処理を施し、しかる後減面率35
%以上の冷間加工を施した後、さらに220〜300℃
で0.5〜20時間の熱処理を施すことにより、導電
率60%IACS以上、硬アルミニウム線と同等の強
度を有し、かつ1時間加熱で300℃以上の10%軟
化温度を保有せしめたことを特徴とする導電用耐
熱アルミニウム合金線の製造方法。1 Zr0.15~0.35%, Fe0.05~0.5%, Si0.03~
When continuous casting and rolling is performed from a molten alloy containing 0.25% Al and the balance Al and normal impurities, the casting temperature is set to 710 to 750℃, and the rolling start temperature is
Conducted at 540-580℃, and then reduced area by 50
% or more cold working, then 500°C at 300~500°C.
After ~200 hours of aging treatment, the area reduction rate is 35.
% or more, then further heated to 220~300℃
By applying heat treatment for 0.5 to 20 hours, it has an electrical conductivity of 60% IACS or higher, strength equivalent to hard aluminum wire, and a 10% softening temperature of 300℃ or higher after 1 hour of heating. A method of manufacturing a conductive heat-resistant aluminum alloy wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12701181A JPS5827948A (en) | 1981-08-13 | 1981-08-13 | Electrically conductive heat-resistant aluminum alloy wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12701181A JPS5827948A (en) | 1981-08-13 | 1981-08-13 | Electrically conductive heat-resistant aluminum alloy wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5827948A JPS5827948A (en) | 1983-02-18 |
JPH0152468B2 true JPH0152468B2 (en) | 1989-11-08 |
Family
ID=14949470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12701181A Granted JPS5827948A (en) | 1981-08-13 | 1981-08-13 | Electrically conductive heat-resistant aluminum alloy wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5827948A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999032239A1 (en) * | 1997-12-19 | 1999-07-01 | Technalum Research, Inc. | Process and apparatus for the production of cold rolled profiles from continuously cast rod |
KR100755130B1 (en) | 2006-01-31 | 2007-09-04 | 엘에스전선 주식회사 | Method of manufacturing aluminum alloy having high electro-conductivity and heat resistance, Aluminum alloy wire and Overhead transmission line manufactured using the same |
KR100755128B1 (en) | 2006-01-31 | 2007-09-04 | 엘에스전선 주식회사 | Method of manufacturing aluminum alloy having high electro-conductivity and heat resistance, Aluminum alloy wire and Overhead transmission line manufactured using the same |
JP2010130709A (en) * | 2008-11-25 | 2010-06-10 | Furukawa Electric Co Ltd:The | Aluminum wire rod connector |
JP4986253B2 (en) * | 2010-02-26 | 2012-07-25 | 古河電気工業株式会社 | Aluminum alloy conductor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5565352A (en) * | 1978-11-10 | 1980-05-16 | Kansai Electric Power Co Inc:The | Manufacture of electrically conductive, highly heat resistant aluminum alloy |
JPS55125252A (en) * | 1979-03-19 | 1980-09-26 | Furukawa Electric Co Ltd:The | Heat resistant aluminum alloy conductor and manufacture thereof |
JPS56156741A (en) * | 1980-04-30 | 1981-12-03 | Dainichi Nippon Cables Ltd | Manufacture of electrically conductive aluminum alloy wire with high heat resistance |
-
1981
- 1981-08-13 JP JP12701181A patent/JPS5827948A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5565352A (en) * | 1978-11-10 | 1980-05-16 | Kansai Electric Power Co Inc:The | Manufacture of electrically conductive, highly heat resistant aluminum alloy |
JPS55125252A (en) * | 1979-03-19 | 1980-09-26 | Furukawa Electric Co Ltd:The | Heat resistant aluminum alloy conductor and manufacture thereof |
JPS56156741A (en) * | 1980-04-30 | 1981-12-03 | Dainichi Nippon Cables Ltd | Manufacture of electrically conductive aluminum alloy wire with high heat resistance |
Also Published As
Publication number | Publication date |
---|---|
JPS5827948A (en) | 1983-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS607701B2 (en) | Manufacturing method of highly conductive heat-resistant aluminum alloy | |
JPS6216269B2 (en) | ||
JPH0152468B2 (en) | ||
JPH0215625B2 (en) | ||
JP4144188B2 (en) | Manufacturing method of heat-resistant aluminum alloy wire for electric conduction | |
JP2582073B2 (en) | Method for producing high-strength heat-resistant aluminum alloy for electric conduction | |
JP4144184B2 (en) | Manufacturing method of heat-resistant Al alloy wire for electric conduction | |
JPH0125822B2 (en) | ||
JPS63243247A (en) | High-strength aluminum-based composite conductive wire and its production | |
JPS6123852B2 (en) | ||
JPS6219501B2 (en) | ||
JP2001254132A (en) | Method of producing electrically conductive heat resistant aluminum alloy and alloy wire | |
JPH0144781B2 (en) | ||
JP2628235B2 (en) | Method for producing high heat-resistant aluminum alloy wire for conductive use | |
JPS6357494B2 (en) | ||
JPS607702B2 (en) | Manufacturing method of heat-resistant aluminum alloy for conductive use | |
JPS6254185B2 (en) | ||
JP2932726B2 (en) | Manufacturing method of copper alloy wire | |
JPS6013046A (en) | Heat-resistant aluminum alloy for electric conduction and its manufacture | |
JPH01152248A (en) | Manufacture of high-strength and heat-resistant conductive aluminum alloy | |
JP3403763B2 (en) | Method for producing high heat-resistant aluminum alloy wire for conductive use | |
JPS5983752A (en) | Preparation of heat resistant aluminum alloy conductor | |
JPS6043905B2 (en) | Manufacturing method of highly conductive heat-resistant copper alloy material | |
JPH06158246A (en) | Manufacture of high heat resistant aluminum alloy wire for electric conduction | |
JPS6116421B2 (en) |