JPS6254185B2 - - Google Patents

Info

Publication number
JPS6254185B2
JPS6254185B2 JP55058460A JP5846080A JPS6254185B2 JP S6254185 B2 JPS6254185 B2 JP S6254185B2 JP 55058460 A JP55058460 A JP 55058460A JP 5846080 A JP5846080 A JP 5846080A JP S6254185 B2 JPS6254185 B2 JP S6254185B2
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
area reduction
reduction rate
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55058460A
Other languages
Japanese (ja)
Other versions
JPS56156741A (en
Inventor
Isataka Araki
Masakatsu Takahashi
Makoto Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP5846080A priority Critical patent/JPS56156741A/en
Publication of JPS56156741A publication Critical patent/JPS56156741A/en
Publication of JPS6254185B2 publication Critical patent/JPS6254185B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、強度、導電性を損なうことなく、従
来公知の合金よりも格段に耐熱性を向上させた高
耐熱性導電用アルミニウム合金線の製造方法に関
するものである。 従来耐熱アルミニウム合金としてはジルコニウ
ムを0.05〜0.1%程度に含有せしめたAl−Zr合金
がよく知られているが、この合金より製造された
耐熱アルミニウム合金線は鋼線とともにより線さ
れ、ケーブル体とされて、大容量・架空送電線と
して多方面に使用されて来ている。 しかしながら、大容量化に供なう電線の大サイ
ズ多導体化は、一方では鉄塔や付属品の大型化あ
るいは多大な労力の工事を必要とするため、この
種の問題を解消すべくさらに一層耐熱性を向上さ
せたいわゆる高耐熱性導電用アルミニウム合金線
が渇望されてきた。 本発明は上記の点に鑑みなされたもので、鉄
0.05〜0.20%、ケイ素0.10〜0.40%、ジルコニウ
ム0.15〜0.40%、アルミニウム残部より成る合金
を熱間加工後、40%以上の減面率で冷間加工を行
ない、そののち300〜500℃で4〜100時間加熱処
理し、次いで30〜80%の範囲の減面率で冷間加工
を行ない、さらに200〜400℃で30分〜10時間の加
熱処理を施すことを特徴とするものである。 本発明において、アルミニウムに添加する元
素、冷間加工度、あるいは加熱処理条件を上記範
囲に限定した理由は以下に示す通りである。すな
わち、鉄が0.05%以下であると強度が不足し、
0.20%以上であると導電率の低下が無視出来なく
なる。ケイ素は0.10%以下であると強度、耐熱性
が不足し、0.40%以上であると導電率低下が大き
いのみならず強度面、耐熱性面でもその向上傾向
が飽和する。ジルコニウムは0.15%以下であると
耐熱性が不足し、0.40%以上であると導電率が著
しく低下し、耐熱性向上効果も飽和する。熱間加
工後40%以上の減面率で冷間加工を行なう理由
は、減面率が40%以下であると鋳造、熱間加工時
に生じたAl3Fe、Al−Fe−Si、Al3Zr、Zr5Si3など
の金属間化合物のサイズが大きく、強度や耐熱性
向上に対する寄与が少ないのに対し、40%以上の
減面率であると冷間加工中に前述化合物が破砕さ
れてアルミマトリツクス中に均一分散して好まし
い状態となるからである。そののち300〜500℃で
4〜100時間の加熱処理を施す理由は、当該温
度、時間条件範囲内でないと、Al3Fe、Al3Zr、
Zr5Si3などの析出が微細かつ均一には起こらず、
耐熱性維持の点で好ましくないからである。な
お、上記加熱処理温度は300〜450℃の温度範囲内
とすると一層好ましい。さらに30〜80%の範囲の
減面率で冷間加工を施す理由は、30%以下の減面
率であると加工硬化量が少なく強度不足となり、
一方80%以上の減面率になると加工硬化が大きく
なりすぎ、次に施される加熱処理時の強度低下が
無視出来なくなるからである。こうして得られた
合金線に対し、さらに200〜400℃で30分〜10時間
の加熱処理を施す理由は次の通りである。すなわ
ち、当該範囲内で加熱処理すればAl3Fe、
Al3Zr、Zr5Si3などの析出が微細、均一に起こ
り、これら金属間化合物生成が導電率の回復が高
耐熱性の維持に寄与するのである。これに対し高
温、長時間の加熱処理を行なうと強度低下が大き
く、また前述析出物の粗大化が起こり耐熱性にと
つては好ましくない。一方低温、短時間の加熱処
理となると耐熱性維持に有効な前述析出物の析出
が十分には起こらず、さらには導電率回復も少な
いという不都合がある。 尚、本発明の合金においては、通常電気用アル
ミニウム地金に含まれる銅、マンガン、チタン、
バナジウム等をJIS H2110(1968年)に定める程
度含有しても何ら差支えない。 また、本発明の実施に際しては、荒引線は押出
法、圧延法、あるいは連続鋳造圧延法など、従来
公知の導電用アルミニウム合金と同様の方法によ
り製造し得る。 以下、本発明合金の効果を実施例により説明す
る。 実施例 純度約99.8%のJIS H2110電気用アルミニウム
地金を用いて、これにAl−5%Fe、Al−10%
Si、Al−5%Zr母合金を添加して付表に示す配合
組成の合金を得、通常の方法で鋳造してインゴツ
トとした。これから得られたビレツトを500℃に
加熱後、同温度で熱間押出し、直径12mmの荒引線
を得た。この荒引線を減面率88.9%で冷間伸線し
て4.0mm径にし、350℃で50時間、あるいは400℃
で20時間の加熱処理を施したのち、減面率66.9%
で冷間伸線して2.3mm径に仕上げ、さらに250℃で
2時間あるいは300℃で1時間の加熱処理を行な
い、これを試料として諸特性を調べた。結果は付
表に示す通りである。なお、試料3、4、7、
8、10、11、13、14、16、17、19、20、22、23は
特許請求の範囲に記載の本発明の実施例である。
試料1、2、5、6、9、12、15、18、21、24〜
26は比較例であり、このうち試料26は従来法で製
造された公知のAl−Zr系導電用耐熱アルミニウ
ム合金線である。 本表より、本発明合金は若干強度が低い目では
あるが、従来公知の合金、すなわち試料26に比
べ、極めて高水準の耐熱性を有していることがわ
かる。なお特許請求の範囲を外れた合金、すなわ
ち試料24、25はたとえ本発明合金と同一のプロセ
スを経て製造されても諸特性にバランスを欠き、
また比較例の試料1、2、5と実施例の試料3、
4との比較から、たとえ本発明合金と同一の合金
組成であつても、本発明の特許請求の範囲から外
れたプロセスで製造すれば特性バランスのくずれ
た合金線になつてしまうことも明白である。 このように本発明合金をその特許請求の範囲に
規定の条件に従つて製造すれば、若干強度は低い
目ながらも導電率59.5〜61.4%IACS、耐熱性
(260℃で4時間加熱後の引張強さの残存率)94〜
97%と、従来のAl−Zr系耐熱アルミニウム合金
線からは想像出来ぬ程の高特性水準の合金線が得
られ、架空送電線路や変電所用母線の大容量化達
成に大きく貢献するものと期待される。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a highly heat-resistant conductive aluminum alloy wire that has significantly improved heat resistance than conventionally known alloys without impairing strength or conductivity. Conventionally, Al-Zr alloy containing 0.05 to 0.1% zirconium is well known as a heat-resistant aluminum alloy, but the heat-resistant aluminum alloy wire manufactured from this alloy is twisted together with steel wire, and then used as a cable body. It has been used in many ways as a large-capacity, overhead power transmission line. However, increasing the size and multi-conductor of electric wires in order to increase capacity also requires larger steel towers and accessories, as well as a great deal of labor-intensive construction work. There has been a desire for so-called high heat-resistant conductive aluminum alloy wires with improved properties. The present invention has been made in view of the above points.
After hot working, an alloy consisting of 0.05 to 0.20% silicon, 0.10 to 0.40% silicon, 0.15 to 0.40% zirconium, and the balance aluminum is cold worked with an area reduction of 40% or more, and then 4 It is characterized by heat treatment for ~100 hours, followed by cold working with an area reduction rate in the range of 30~80%, and further heat treatment at 200~400°C for 30 minutes~10 hours. In the present invention, the reasons why the elements added to aluminum, the degree of cold working, or the heat treatment conditions are limited to the above ranges are as follows. In other words, if the iron content is less than 0.05%, the strength will be insufficient,
If it is 0.20% or more, the decrease in conductivity cannot be ignored. If the silicon content is 0.10% or less, strength and heat resistance will be insufficient, and if it is 0.40% or more, not only will the electrical conductivity decrease significantly, but the tendency for improvement in terms of strength and heat resistance will be saturated. When the content of zirconium is 0.15% or less, heat resistance is insufficient, and when it is 0.40% or more, the electrical conductivity decreases significantly and the heat resistance improvement effect is saturated. The reason why cold working is performed with an area reduction rate of 40% or more after hot working is that if the area reduction rate is 40% or less, Al3Fe , Al-Fe-Si, and Al3 produced during casting and hot working will be removed. While intermetallic compounds such as Zr and Zr 5 Si 3 are large in size and make little contribution to improving strength and heat resistance, when the area reduction rate is 40% or more, the aforementioned compounds are crushed during cold working. This is because it is uniformly dispersed in the aluminum matrix, resulting in a favorable state. The reason why heat treatment is then performed at 300 to 500°C for 4 to 100 hours is that unless the temperature and time conditions are within the range, Al 3 Fe, Al 3 Zr,
Precipitation of Zr 5 Si 3 etc. does not occur finely and uniformly,
This is because it is not preferable in terms of maintaining heat resistance. In addition, it is more preferable that the heat treatment temperature is within a temperature range of 300 to 450°C. Furthermore, the reason why cold working is performed at an area reduction rate in the range of 30 to 80% is that if the area reduction rate is less than 30%, the amount of work hardening will be small and the strength will be insufficient.
On the other hand, if the area reduction rate is 80% or more, work hardening becomes too large, and the decrease in strength during the subsequent heat treatment cannot be ignored. The reason why the alloy wire thus obtained is further subjected to heat treatment at 200 to 400°C for 30 minutes to 10 hours is as follows. In other words, if heat treatment is performed within this range, Al 3 Fe,
Precipitation of Al 3 Zr, Zr 5 Si 3 , etc. occurs finely and uniformly, and the formation of these intermetallic compounds contributes to recovery of electrical conductivity and maintenance of high heat resistance. On the other hand, heat treatment at a high temperature and for a long period of time results in a large decrease in strength and coarsening of the precipitates, which is not favorable for heat resistance. On the other hand, when heat treatment is performed at a low temperature and for a short time, the above-mentioned precipitates that are effective in maintaining heat resistance do not sufficiently precipitate, and furthermore, there is a disadvantage that recovery of electrical conductivity is also small. In addition, in the alloy of the present invention, copper, manganese, titanium,
There is no problem in containing vanadium etc. to the extent specified in JIS H2110 (1968). Furthermore, in carrying out the present invention, the rough drawn wire can be manufactured by the same method as conventionally known conductive aluminum alloys, such as extrusion method, rolling method, or continuous casting and rolling method. The effects of the alloy of the present invention will be explained below using examples. Example Using a JIS H2110 electric aluminum ingot with a purity of approximately 99.8%, Al-5%Fe, Al-10%
An alloy having the composition shown in the attached table was obtained by adding Si, Al-5% Zr master alloy, and cast into an ingot by a conventional method. The resulting billet was heated to 500°C and then hot extruded at the same temperature to obtain a rough wire with a diameter of 12 mm. This rough drawn wire is cold drawn with an area reduction rate of 88.9% to a diameter of 4.0 mm, and then heated at 350℃ for 50 hours or at 400℃.
After 20 hours of heat treatment, the area reduction rate was 66.9%.
The wire was cold drawn to a diameter of 2.3 mm, and then heat treated at 250°C for 2 hours or 300°C for 1 hour, and various properties were investigated using this as a sample. The results are shown in the attached table. In addition, samples 3, 4, 7,
8, 10, 11, 13, 14, 16, 17, 19, 20, 22, and 23 are examples of the present invention described in the claims.
Samples 1, 2, 5, 6, 9, 12, 15, 18, 21, 24~
26 is a comparative example, and sample 26 is a known Al-Zr conductive heat-resistant aluminum alloy wire manufactured by a conventional method. From this table, it can be seen that although the alloy of the present invention has a slightly lower strength, it has an extremely high level of heat resistance compared to the conventionally known alloy, that is, sample 26. It should be noted that alloys that are outside the scope of the claims, that is, samples 24 and 25, lack balance in various properties even if they are manufactured through the same process as the alloy of the present invention.
In addition, samples 1, 2, and 5 of comparative examples and sample 3 of examples,
From the comparison with No. 4, it is clear that even if the alloy wire has the same alloy composition as the alloy of the present invention, if it is manufactured by a process outside the scope of the claims of the present invention, the alloy wire will have unbalanced properties. be. If the alloy of the present invention is manufactured according to the conditions stipulated in the claims, it will have a conductivity of 59.5-61.4% IACS and a heat resistance (tensile strength after heating at 260℃ for 4 hours), although the strength is slightly low. Strength residual rate) 94~
97%, an alloy wire with a level of properties that is unimaginable from conventional Al-Zr heat-resistant aluminum alloy wire, and is expected to make a major contribution to increasing the capacity of overhead power transmission lines and substation busbars. be done. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 鉄0.05〜0.20%、ケイ素0.10〜0.40%、ジル
コニウム0.15〜0.40%、アルミニウム残部より成
る合金を熱間加工後、40%以上の減面率で冷間加
工を行ない、そののち300〜500℃で4〜100時間
加熱処理し、次いで30〜80%の範囲の減面率で冷
間加工を行ない、さらに200〜400℃で30分〜10時
間の加熱処理を施すことを特徴とする高耐熱性導
電用アルミニウム合金線の製造方法。
1 After hot working an alloy consisting of 0.05~0.20% iron, 0.10~0.40% silicon, 0.15~0.40% zirconium, and the balance aluminum, cold working with an area reduction rate of 40% or more, and then at 300~500℃ High heat resistance characterized by heat treatment at 200 to 400℃ for 4 to 100 hours, followed by cold working with an area reduction rate in the range of 30 to 80%, and further heat treatment at 200 to 400℃ for 30 minutes to 10 hours. A method for producing aluminum alloy wire for electrical conductivity.
JP5846080A 1980-04-30 1980-04-30 Manufacture of electrically conductive aluminum alloy wire with high heat resistance Granted JPS56156741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5846080A JPS56156741A (en) 1980-04-30 1980-04-30 Manufacture of electrically conductive aluminum alloy wire with high heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5846080A JPS56156741A (en) 1980-04-30 1980-04-30 Manufacture of electrically conductive aluminum alloy wire with high heat resistance

Publications (2)

Publication Number Publication Date
JPS56156741A JPS56156741A (en) 1981-12-03
JPS6254185B2 true JPS6254185B2 (en) 1987-11-13

Family

ID=13085029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5846080A Granted JPS56156741A (en) 1980-04-30 1980-04-30 Manufacture of electrically conductive aluminum alloy wire with high heat resistance

Country Status (1)

Country Link
JP (1) JPS56156741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230114525A (en) * 2022-01-25 2023-08-01 케이피엑스케미칼 주식회사 One-component thermosetting resin composition and function membrane comprising the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827949A (en) * 1981-08-12 1983-02-18 Tokyo Electric Power Co Inc:The Electrically conductive heat-resistant aluminum alloy wire
JPS5827948A (en) * 1981-08-13 1983-02-18 Tokyo Electric Power Co Inc:The Electrically conductive heat-resistant aluminum alloy wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558428A (en) * 1978-06-30 1980-01-22 Furukawa Electric Co Ltd:The Manufacture for electroconductive, heat resistant aluminum alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558428A (en) * 1978-06-30 1980-01-22 Furukawa Electric Co Ltd:The Manufacture for electroconductive, heat resistant aluminum alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230114525A (en) * 2022-01-25 2023-08-01 케이피엑스케미칼 주식회사 One-component thermosetting resin composition and function membrane comprising the same

Also Published As

Publication number Publication date
JPS56156741A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
US5045131A (en) Contact conductor for electric vehicles
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JPS6216269B2 (en)
JPS6130019B2 (en)
JPS6254185B2 (en)
JPS6239235B2 (en)
JP4144188B2 (en) Manufacturing method of heat-resistant aluminum alloy wire for electric conduction
JPH0125822B2 (en)
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPH0152468B2 (en)
JPS6254186B2 (en)
JPH07207392A (en) Heat resistant conductive aluminum alloy and manufacture of wire made of the alloy
JPS6219501B2 (en)
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPS63243247A (en) High-strength aluminum-based composite conductive wire and its production
JPH11350093A (en) Manufacture of heat resistant aluminum alloy conducting wire
JPH0215625B2 (en)
JPH0144781B2 (en)
JPS6212295B2 (en)
JP3403763B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPH036984B2 (en)
JPH0432146B2 (en)
JPH01152248A (en) Manufacture of high-strength and heat-resistant conductive aluminum alloy
JPS6116421B2 (en)
JPS59166660A (en) Preparation of high tensile heat resistant aluminum alloy for electric conduction