JPS6116421B2 - - Google Patents

Info

Publication number
JPS6116421B2
JPS6116421B2 JP21483382A JP21483382A JPS6116421B2 JP S6116421 B2 JPS6116421 B2 JP S6116421B2 JP 21483382 A JP21483382 A JP 21483382A JP 21483382 A JP21483382 A JP 21483382A JP S6116421 B2 JPS6116421 B2 JP S6116421B2
Authority
JP
Japan
Prior art keywords
heat treatment
conductor
conductivity
heat resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21483382A
Other languages
Japanese (ja)
Other versions
JPS59107067A (en
Inventor
Kinya Ogawa
Hitoshi Yanase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21483382A priority Critical patent/JPS59107067A/en
Publication of JPS59107067A publication Critical patent/JPS59107067A/en
Publication of JPS6116421B2 publication Critical patent/JPS6116421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は析出Zrの耐熱機構を利用したAl−Zr
−Fe−Si合金からなる耐熱アルミニウム合金導
体の製造方法に関するもので、特に導体の強度及
び耐熱性を損なうことなく、導電性を向上せしめ
たものである。 従来架空送電線には、導電用アルミニウム導体
を鋼芯に撚合せた鋼芯アルミニウム撚線が用いら
れ、特に耐熱性要求される場合にはAl−Zr合金
からなる耐熱アルミニウム合金導体を鋼芯に撚合
せた鋼芯耐熱アルミニウム合金撚線が用いられて
いる。しかるに近年送電線路の用地難と電力需要
の増大から、長径間大容量送電の必要にせまら
れ、Al−Zr合金にFe及びSiを添加して強度及び
耐熱性を改善した高力耐熱アルミニウム合金導体
が開発された。この合金はZrの固溶により耐熱性
を向上し、Fe及びSiの添加により強度を向上せ
しめたものであるが、導電性が劣る欠点があつ
た。 近年固溶Zrによる耐熱機構を利用したAl−Zr
系導体に代つて、析出Zrの耐熱機構を利用した熱
処理型のAl−Zr系導体が開発された。この導体
は連続または半連続鋳造圧延により、Zrを固溶さ
せた荒引線を冷間加工前または冷間加工後に、高
温、長時間、例えば350℃の温度で100時間効熱処
理し、Zrを微細かつ均一に分散析出させたもの
で、導電率58%IACS以上、あるいは60%IACS以
上の導体が得られる。しかしながら導電性の優れ
た導体とするためには、高温、長時間の加熱処理
を必要とするところから、Zr析出がいわゆる過時
効状態となり、強度及び耐熱性が低下する欠点が
あつた。これを改善するため比較的低温に加熱し
た後高温で加熱して、Zrの微細均一な析出を短時
間で完了させるいわゆる2段時効処理が提案され
た。しかしながらこの方法においても、導体の強
度及び耐熱性の低下を阻止することができなかつ
た。 本発明はこれに鑑み種々検討の結果、Zrの析出
と共にFe及びSiを析出させることにより、導体
の強度及び耐熱性を損なうことなく導電性を改善
し得ることを知見し、強度及び導電性の優れた耐
熱アルミニウム合金導体の製造方法を開発したも
ので、Zr0.15〜0.8wt%、Fe0.05〜0.8wt%、
Si0.04〜0.5wt%を含み、残部Alを通常の不純物
からなるアルミニウム合金を連続または半連続鋳
造圧延により荒引線とし、これを冷間加工前また
は加工後に時効熱処理を行なう導体の製造方法に
おいて、時効熱処理として250〜450℃の温度で5
〜200時間の1段は2段時効熱処理した後、200〜
350℃の温度範囲内で時効熱処理より低い温度に
0.5〜20時間加熱処理することを特徴とするもの
である。 しかして本発明において、合金組成を上記の如
く限定したのは、次の理由によるものである。 即ちZrは導体の強度及び耐熱性を向上させるた
めに添加するものであるが、その含有量が0.15wt
%(以下wt%を単に%と略記)未満では十分な
強度及び耐熱性が得られず、0.8%を越えると強
度及び耐熱性の向上効果が飽和するばかりか、導
電性の低下が著しくなるためである。Feは導体
の強度を向上させるために添加するものである
が、その含有量が0.05%未満ではその効果が小さ
く、0.8%を越えると強度の向上効果が飽和する
ばかりか、導電性の低下が著しくなるためであ
る。またSiは導体の強度を向上させると共に時効
熱処理におけるZrの析出を促進させて、導電性の
回復を早めるために添加するものであるが、その
含有量が0.04%未満では十分な強度が得られない
ばかりか、Zr析出を促進させる効果を小さく、
0.5%を越えると導電性の低下が著しくなるため
である。尚本発明において、Zr0.25〜0.5%、
Fe0.1〜0.4%、Si0.06〜0.2%を含み、残部Alと通
常の不純物からなるアルミニウム合金を用いれ
ば、特に性能の優れた導体を製造することができ
る。 本発明は上記組成範囲の合金を連続または半連
続鋳造圧延により、鋳造と熱間圧延を行なつてZr
を均一に固溶させた荒引線とし、これを冷間加工
前または加工後に時効熱処理してZrを均一微細に
析出せしめ、これを200〜350℃の温度範囲内で時
効熱処理より低い温度に0.5〜20時間熱処理する
ことにより、Fe及びSiを均一微細に析出させ、
導体の強度及び耐熱性を損なうことなく導電性を
向上せしめたものである。 しかして連続または半連続鋳造圧延により、多
量のZrを固溶する荒引線を得るためには、鋳造時
の注湯温度を750℃以上とすることが望ましい。
また時効熱処理としては、高温、長時間の加熱処
理または比較的低温で加熱処理した後高温で加熱
処理する2段時効処理が用いられるが、特にZr析
出の過時効を防止するため、250〜450℃の温度で
5〜200時間の時効熱処理することが望ましい。
その理由は加熱温度が250℃未満でも、加熱時間
が5時間未満でもZrの析出が不十分で導電性の向
上が望めず、加熱温度が450℃を越えても、加熱
時間が200時間を越えても析出Zrが粗大化または
過時効状態となつて耐熱性及び強度が低下するた
めである。 また時効熱処理後の加熱処理を200〜350℃の温
度範囲内で時効熱処理より低い温度に0.5〜20時
間加熱するのは、時効熱処理により平衡状態にあ
るFe及びSiを析出させるためで、加熱処理温度
が時効熱処理温度より高くなると、Fe及びSiが
固溶して導電性を低下するためであり、また加熱
温度が200℃未満でも、加熱時間が0.5時間未満で
もFe及びSiの析出量が少なく導電性の向上が望
めず、加熱温度が350℃を越えるとFe及びSiが再
固溶を起すため導電性が低下し、加熱時間が20時
間を越えるとFe及びSiの析出がほぼ飽和し、そ
れ以上の導電性の回復が望めず、逆に耐熱性を低
下するためである。 また本発明において、時効熱処理と加熱処理の
前また後に冷間加工を行なうのは、導体の強度を
向上させるためであり、特に性能の優れた導体を
得るためには、冷間加工により、60%以上の減面
加工を行ない、時効熱処理(2段時効熱処理を含
む)を300〜400℃の温度で40〜100時間行ない、
その後の加熱処理を250〜320℃の温度で4〜8時
間行なうことが望ましい。 以下本発明を実施例について詳細に説明する。 純度99.8%の電気用Al地金、フツ化ジルコンカ
リウム(K2ZrF6)、Al−6%Fe母合金、Al−20
%Si母合金を用い、第1表に示す組成の合金を溶
製して、ベルトアンドホイール型連続鋳造圧延機
により鋳造圧延し、直径9.5mmの荒引線を形成し
た。尚鋳造時の注湯温度を750〜830℃とした。 このようにして形成した荒引線を第2表に示す
条件で時効熱処理した後、加熱処理し、これを連
続伸線機により第2表に示す減面加工を行なつて
導体を製造した。 この導体について導電率、引張強さ及び耐熱性
を測定した。その結果を第2表に併記した。尚導
電率はケルビンダブルブリツジにより電気抵抗を
測定して求め、引張強さはインストロン型試験機
により測定した。また耐熱性は導体を270℃の温
度に1時間加熱処理し、該処理前後の引張強さの
比より求めた。
The present invention utilizes the heat resistance mechanism of precipitated Zr to produce Al-Zr
The present invention relates to a method for manufacturing a heat-resistant aluminum alloy conductor made of a -Fe-Si alloy, and particularly improves conductivity without impairing the strength and heat resistance of the conductor. Traditionally, overhead power transmission lines use steel-core aluminum stranded wires in which conductive aluminum conductors are twisted around a steel core.In cases where heat resistance is particularly required, heat-resistant aluminum alloy conductors made of Al-Zr alloy are used in steel cores. Stranded steel core heat-resistant aluminum alloy strands are used. However, in recent years, due to the shortage of land for power transmission lines and the increase in power demand, there has been a need for long-span, large-capacity power transmission, and high-strength, heat-resistant aluminum alloy conductors have been developed, which are made by adding Fe and Si to Al-Zr alloys to improve strength and heat resistance. was developed. This alloy had improved heat resistance by solid solution of Zr, and improved strength by adding Fe and Si, but it had the drawback of poor electrical conductivity. In recent years, Al-Zr has been developed using the heat resistance mechanism of solid solution Zr.
In place of the Al-Zr based conductor, a heat-treated Al-Zr based conductor has been developed that utilizes the heat resistance mechanism of precipitated Zr. This conductor is made by continuous or semi-continuous casting and rolling, and the rough drawn wire containing Zr as a solid solution is subjected to effective heat treatment at a high temperature for a long period of time, e.g. 350°C for 100 hours, before or after cold working, to finely form Zr. By uniformly dispersing and precipitating it, a conductor with a conductivity of 58% IACS or higher, or 60% IACS or higher can be obtained. However, in order to obtain a conductor with excellent electrical conductivity, heat treatment at a high temperature and for a long time is required, which has the disadvantage that Zr precipitation occurs in a so-called over-aged state, resulting in a decrease in strength and heat resistance. In order to improve this, a so-called two-stage aging treatment was proposed in which the material is heated to a relatively low temperature and then heated to a high temperature to complete fine and uniform precipitation of Zr in a short time. However, even with this method, it was not possible to prevent the strength and heat resistance of the conductor from decreasing. In view of this, as a result of various studies, the present invention has found that by precipitating Fe and Si together with the precipitation of Zr, the conductivity can be improved without impairing the strength and heat resistance of the conductor. We have developed a method for manufacturing an excellent heat-resistant aluminum alloy conductor, which contains Zr0.15~0.8wt%, Fe0.05~0.8wt%,
In a method for manufacturing a conductor, an aluminum alloy containing 0.04 to 0.5 wt% Si and the balance Al being normal impurities is made into a rough wire by continuous or semi-continuous casting and rolling, and the wire is subjected to aging heat treatment before or after cold working. , 5 at a temperature of 250 to 450℃ as aging heat treatment.
~200 hours 1st stage is 200~200 hours after 2 stage aging heat treatment
Lower temperature than aging heat treatment within the temperature range of 350℃
It is characterized by heat treatment for 0.5 to 20 hours. However, in the present invention, the alloy composition is limited as described above for the following reasons. In other words, Zr is added to improve the strength and heat resistance of the conductor, but its content is 0.15wt.
If it is less than 0.8% (hereinafter wt% is simply abbreviated as %), sufficient strength and heat resistance cannot be obtained, and if it exceeds 0.8%, not only the strength and heat resistance improvement effect will be saturated, but also the conductivity will decrease significantly. It is. Fe is added to improve the strength of conductors, but if its content is less than 0.05%, its effect is small, and if it exceeds 0.8%, not only the strength improvement effect is saturated, but also the conductivity decreases. This is because it becomes noticeable. Furthermore, Si is added to improve the strength of the conductor and promote the precipitation of Zr during aging heat treatment to hasten the recovery of conductivity, but if the content is less than 0.04%, sufficient strength cannot be obtained. Not only is it not possible, but it also reduces the effect of promoting Zr precipitation.
This is because if it exceeds 0.5%, the conductivity will drop significantly. In the present invention, Zr0.25 to 0.5%,
If an aluminum alloy containing 0.1 to 0.4% Fe, 0.06 to 0.2% Si, and the balance Al and normal impurities is used, a conductor with particularly excellent performance can be manufactured. The present invention casts and hot-rolls an alloy having the above composition range by continuous or semi-continuous casting and rolling.
This is made into a rough drawn wire with a uniform solid solution of Zr, which is subjected to aging heat treatment before or after cold working to uniformly and finely precipitate Zr, and then heated to a temperature lower than the aging heat treatment within the temperature range of 200 to 350℃ by 0.5 By heat-treating for ~20 hours, Fe and Si are precipitated uniformly and finely,
This improves conductivity without impairing the strength and heat resistance of the conductor. Therefore, in order to obtain a rough wire in which a large amount of Zr is dissolved in solid solution by continuous or semi-continuous casting and rolling, it is desirable that the pouring temperature during casting be 750°C or higher.
In addition, as aging heat treatment, two-stage aging treatment is used, in which heat treatment is performed at a high temperature and for a long time, or heat treatment is performed at a relatively low temperature and then at a high temperature. It is desirable to carry out aging heat treatment at a temperature of 5 to 200 hours.
The reason for this is that even if the heating temperature is less than 250°C or the heating time is less than 5 hours, Zr precipitation is insufficient and no improvement in conductivity can be expected, and even if the heating temperature exceeds 450°C, the heating time exceeds 200 hours. This is because the precipitated Zr becomes coarse or becomes over-aged, resulting in a decrease in heat resistance and strength. In addition, the reason why the heat treatment after the aging heat treatment is performed for 0.5 to 20 hours at a temperature lower than the aging heat treatment within the temperature range of 200 to 350°C is to precipitate Fe and Si that are in an equilibrium state due to the aging heat treatment. This is because when the temperature is higher than the aging heat treatment temperature, Fe and Si dissolve into solid solution and reduce the conductivity.Also, even if the heating temperature is less than 200°C or the heating time is less than 0.5 hours, the amount of Fe and Si precipitated is small. No improvement in conductivity can be expected, and if the heating temperature exceeds 350°C, Fe and Si will re-dissolve into solid solution, resulting in a decrease in conductivity, and if the heating time exceeds 20 hours, the precipitation of Fe and Si will be almost saturated. This is because no further recovery of conductivity can be expected and, on the contrary, heat resistance is reduced. In addition, in the present invention, cold working is performed before and after aging heat treatment and heat treatment in order to improve the strength of the conductor. % or more surface reduction processing, and aging heat treatment (including two-stage aging heat treatment) at a temperature of 300 to 400℃ for 40 to 100 hours.
It is desirable that the subsequent heat treatment be carried out at a temperature of 250 to 320°C for 4 to 8 hours. The present invention will be described in detail below with reference to examples. Electrical Al ingot with 99.8% purity, potassium zirconium fluoride (K 2 ZrF 6 ), Al-6% Fe master alloy, Al-20
%Si master alloy, an alloy having the composition shown in Table 1 was melted and cast and rolled using a belt-and-wheel type continuous casting and rolling mill to form a rough wire having a diameter of 9.5 mm. The pouring temperature during casting was 750 to 830°C. The rough drawn wires thus formed were subjected to aging heat treatment under the conditions shown in Table 2, followed by heat treatment, and subjected to the area reduction processing shown in Table 2 using a continuous wire drawing machine to produce conductors. The electrical conductivity, tensile strength, and heat resistance of this conductor were measured. The results are also listed in Table 2. The electrical conductivity was determined by measuring electrical resistance using a Kelvin double bridge, and the tensile strength was measured using an Instron type testing machine. The heat resistance was determined by heating the conductor at 270° C. for 1 hour and determining the tensile strength before and after the treatment.

【表】【table】

【表】【table】

【表】【table】

【表】 第1表及び第2表から明らかなように本発明方
法No.1〜12により製造した導体は、従来方法
No.23〜24に比較し、引張強さ及び耐熱性を劣化
せしめることなく、導電性がはるかに改善されて
いることが判る。 これに対し本発明方法により規定する合金組成
範囲より外れる合金H〜Mを用いた比較方法
No.13〜18及び、本発明方法で規定する合金組成
範囲内のものでも、時効熱処理後の加熱処理条件
の異なる比較方法No.19〜22では、導電性、強度
または耐熱性の何れかが低下していることが判
る。 実施例 2 実施例1と同様にして第1表に示す組成の合金
を溶製し、これを同様にして連続的に鋳造、熱間
圧延により荒引線とした。これを第3表に示す条
件で冷間で減面加工してから時効熱処理した後、
加熱処理を行なつて導体を製造した。 この導体について、実施例1と同様にして導電
率、引張強さ及び耐熱性を測定した。その結果を
第3に併記した。 尚耐熱性については、導体を420℃及び370℃の
温度に1時間加熱処理し、該処理前後の引張強さ
の比より求めた。
[Table] As is clear from Tables 1 and 2, the conductors manufactured by the methods No. 1 to 12 of the present invention were manufactured by the conventional method.
It can be seen that, compared to Nos. 23 to 24, the conductivity is much improved without deteriorating the tensile strength and heat resistance. In contrast, a comparative method using alloys H to M that fall outside the alloy composition range defined by the method of the present invention
In Nos. 13 to 18 and Comparative Methods Nos. 19 to 22, which have different heat treatment conditions after aging heat treatment, even though they are within the alloy composition range specified by the method of the present invention, either conductivity, strength, or heat resistance is It can be seen that it is decreasing. Example 2 An alloy having the composition shown in Table 1 was melted in the same manner as in Example 1, and was continuously cast and hot-rolled into rough drawn wire in the same manner. After cold area reduction processing and aging heat treatment under the conditions shown in Table 3,
A conductor was produced by heat treatment. Regarding this conductor, conductivity, tensile strength, and heat resistance were measured in the same manner as in Example 1. The results are also listed in the third column. The heat resistance was determined by heating the conductor at 420°C and 370°C for 1 hour, and calculating the ratio of the tensile strength before and after the treatment.

【表】【table】

【表】 第1表及び第3表から明らかなように本発明方
法No.25〜32により製造した導体は、導電率が60
%IACS以上であれば、370℃の加熱温度における
耐熱性が93.6%以上、導電率が58.7〜59.5%IACS
であれば、420℃の加熱温度における耐熱性が
94.2%以上の耐熱性を示し、従来方法No.43〜44
で製造した導体に比較し、はるかに導電性が優れ
ていることが判る。 これに対し、本発明で規定する合金組成範囲よ
り外れた合金H〜Mを用いた比較方法No.33〜38
及び本発明方法で規定する合金組成範囲内のもの
でも、時効熱処理後の加熱処理条件と異なる比較
方法No.39〜42では、実施例1を同様導電性、強
度または耐熱性の何れかが劣ることが判る。 このように本発明方法によれば、耐熱性を損な
うことなく、導電性の高い導体を製造することが
できるもので、長径間大送電用撚性等に使用し顕
著な効果を奏するものである。
[Table] As is clear from Tables 1 and 3, the conductors manufactured by methods No. 25 to 32 of the present invention have a conductivity of 60
%IACS or higher, heat resistance at 370℃ heating temperature is 93.6% or higher, conductivity is 58.7-59.5% IACS
If so, the heat resistance at a heating temperature of 420℃ is
Shows heat resistance of 94.2% or more, conventional method No. 43-44
It can be seen that the conductivity is far superior to that of the conductor manufactured in On the other hand, comparative methods Nos. 33 to 38 using alloys H to M outside the alloy composition range defined in the present invention
Even if the alloy composition is within the alloy composition range specified by the method of the present invention, comparative methods Nos. 39 to 42, which differ from the heat treatment conditions after aging heat treatment, show that the conductivity, strength, or heat resistance of Example 1 is inferior. I understand that. As described above, according to the method of the present invention, a highly conductive conductor can be manufactured without impairing heat resistance, and it can be used for twisting for long-span, large-scale power transmission, etc., with remarkable effects. .

Claims (1)

【特許請求の範囲】[Claims] 1 Zr0.15〜0.8wt%、Fe0.05〜0.8wt%、Si0.04
〜0.5wt%を含み、残部Alと通常の不純物からな
るアルミニウム合金を連続または半連続鋳造圧延
により荒引線とし、これを冷間加工前または加工
後に時効熱処理を行なう導体の製造方法におい
て、時効熱処理として250〜450℃の温度で5〜
200時間の1段又は2段時効熱処理した後、200〜
350℃の温度範囲内で時効熱処理より低い温度に
0.5〜20時間加熱処理することを特徴とする耐熱
アルミニウム合金導体の製造方法。
1 Zr0.15~0.8wt%, Fe0.05~0.8wt%, Si0.04
A conductor manufacturing method in which an aluminum alloy containing ~0.5wt% with the balance Al and normal impurities is made into a rough wire by continuous or semi-continuous casting and rolling, and then subjected to aging heat treatment before or after cold working. 5~ at a temperature of 250~450℃ as
After 200 hours of one-stage or two-stage aging heat treatment, 200~
Lower temperature than aging heat treatment within the temperature range of 350℃
A method for producing a heat-resistant aluminum alloy conductor, characterized by heat treatment for 0.5 to 20 hours.
JP21483382A 1982-12-08 1982-12-08 Production of heat resistant aluminum alloy conductor Granted JPS59107067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21483382A JPS59107067A (en) 1982-12-08 1982-12-08 Production of heat resistant aluminum alloy conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21483382A JPS59107067A (en) 1982-12-08 1982-12-08 Production of heat resistant aluminum alloy conductor

Publications (2)

Publication Number Publication Date
JPS59107067A JPS59107067A (en) 1984-06-21
JPS6116421B2 true JPS6116421B2 (en) 1986-04-30

Family

ID=16662289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21483382A Granted JPS59107067A (en) 1982-12-08 1982-12-08 Production of heat resistant aluminum alloy conductor

Country Status (1)

Country Link
JP (1) JPS59107067A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824809B2 (en) 1999-06-16 2006-09-20 古河電気工業株式会社 Automotive power cable and terminal for the power cable
KR100434617B1 (en) * 2001-03-01 2004-06-04 후루카와 덴끼고교 가부시키가이샤 Electric distribution assembly
KR20040095874A (en) * 2003-04-29 2004-11-16 현대자동차주식회사 Heat treatment method of aluminium alloy cylinder head for vehicle

Also Published As

Publication number Publication date
JPS59107067A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JPS6216269B2 (en)
JPS6116421B2 (en)
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JPH0125822B2 (en)
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPS63243247A (en) High-strength aluminum-based composite conductive wire and its production
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPH036984B2 (en)
JPH0152468B2 (en)
JPS5983752A (en) Preparation of heat resistant aluminum alloy conductor
JP3403763B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPH0335373B2 (en)
JPH0215625B2 (en)
JPS6054387B2 (en) Manufacturing method of high strength heat resistant aluminum alloy conductor
JPH042664B2 (en)
JPH0762221B2 (en) High-strength heat-resistant aluminum alloy conductor manufacturing method
JPH036983B2 (en)
JPH0313302B2 (en)
JPH0357176B2 (en)
JPS59166660A (en) Preparation of high tensile heat resistant aluminum alloy for electric conduction
JPH06158246A (en) Manufacture of high heat resistant aluminum alloy wire for electric conduction
JPH0335374B2 (en)
JPH036215B2 (en)
JPS59193255A (en) Preparation of conductive high tensile heat resistant aluminum alloy