JPH0313302B2 - - Google Patents

Info

Publication number
JPH0313302B2
JPH0313302B2 JP11087482A JP11087482A JPH0313302B2 JP H0313302 B2 JPH0313302 B2 JP H0313302B2 JP 11087482 A JP11087482 A JP 11087482A JP 11087482 A JP11087482 A JP 11087482A JP H0313302 B2 JPH0313302 B2 JP H0313302B2
Authority
JP
Japan
Prior art keywords
wire
content
temperature
aluminum alloy
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11087482A
Other languages
Japanese (ja)
Other versions
JPS591659A (en
Inventor
Hitoshi Yanase
Mototsugu Hoshino
Moritsugu Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11087482A priority Critical patent/JPS591659A/en
Publication of JPS591659A publication Critical patent/JPS591659A/en
Publication of JPH0313302B2 publication Critical patent/JPH0313302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Non-Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電用高耐熱アルミニウム合金撚線の
製造方法に関するもので、特に撚線として素線の
導電性、強度及び耐熱性を損なうことなく曲げ特
性を改善したものである。 従来、架空送電線には主にアルミニウム素線を
撚合せた鋼芯アルミニウム撚線(ASCR)が用い
られているが、特殊な送電条件のもとでは耐熱ア
ルミニウム合金素線を撚合せた鋼芯耐熱アルミニ
ウム合金撚線(TASCR)が用いられている。こ
のTASCR用素線にはAl−Zr系合金が用いられて
いるが、この合金はZr含有量の如何に拘わらず、
素線の引張強さがそれほど高くならないため、長
径間送電用には使用できず、また全アルミニウム
合金撚線(AAAC)にも使用できないものであ
つた。 そこで、長径間送電線には強度の優れた5005系
合金(Al−0.5〜1.1wt%Mg)からなる高力アル
ミニウム合金素線を撚合せた鋼芯高力アルミニウ
ム合金撚線が用いられている。しかるにこの合金
素線は引張強さが24Kg/mm2と優れているが、耐熱
性は通常のアルミニウム(ECAI)素線と同程度
であり、大容量送電線には使用できないものであ
つた。 近年、電力需要の増大に伴い、大容量送電用と
して耐熱性及び強度の優れた素線が要求されるよ
うになり、これに応じて上記Al−Zr系合金と同
等の導電性及び耐熱性を有し、上記5005系合金と
同等の強度を有するAl−Zr−Fe系合金線が開発
され、これを撚合せた導電用高力耐熱アルミニウ
ム合金撚線が用いられるようになつた。この撚線
はAl−Zr−Fe系合金溶湯を連続又は半連続鋳造
し、得られた鋳塊を再加熱することなく熱間圧延
により荒引線とし、これを冷間で伸線加工した素
線を複数本撚合せて撚線としたものであるが、素
線の曲げ特性が劣るため、架線工事における釣車
通し等において素線切れを起し易く、また長径間
大電流送電用撚線や鉄芯損のない全アルミニウム
合金撚線の素線としては更に性能の向上が強く望
まれている。 本発明はこれに鑑み種々研究の結果、素線の導
電性、強度、及び耐熱性を劣化せしめることなく
曲げ特性を向上し、長径間大電流送電用撚線や鉄
芯損のない全アルミニウム合金撚線としても使用
できる。撚線の製造方法を開発したもので、アル
ミニウム合金溶湯を連続又は半連続鋳造し、得ら
れた鋳塊を再加熱することなく熱間圧延により荒
引線とし、これを冷間伸線加工した素線を複数本
撚合せる撚線の製造において、Zr0.05〜0.2wt%
(以下wt%を単に%と略記)及びFe0.1〜0.8%を
含み、Cu0.03〜0.4%、Mg0.01〜0.2%の範囲内で
何れか1種又は2種をFe含有量との比(Fe含有
量/Cu+Mg含有量)で0.2〜20を含み、残部Al
と通常の不純物からなるアルミニウム合金溶湯を
10mm/sec以上の鋳造速度で超音波をかけながら
鋳造し、得られた鋳塊の熱間圧延を550〜350℃の
温度より開始し、300〜120℃の温度で終了し、そ
の間に80%以上の減面加工を加えて荒引線とし、
これを冷間伸線加工する伸線中の線材温度を100
℃以下に保持し、80%以上の減面加工を加えて素
線とし、該素線の撚合せにあたり、素線に1パス
レダクシヨンで5%以上の減面加工を加えながら
撚合せることを特徴とするものである。 即ち、本発明は上記組成範囲の合金を溶製し、
これを10mm/sec以上の鋳造速度で超音波をかけ
ながら連続又は半連続鋳造することにより、耐熱
性劣化の原因となるZr、Fe等の析出を阻止し、
結晶粒と晶出物を微細化して曲げ特性を改善す
る。この鋳塊を熱曲圧延により荒引線とするの
に、Zr、Fe等の析出の原因となる再加熱を行な
うことなく550〜350℃の温度より圧延を開始し、
300〜120℃の温度で圧延を終了するまでに80%以
上の減面加工を加えて荒引線の溶質元素を均質化
すると共にZr、Fe等の析出を阻止して耐熱性の
低下を防止し、かつ十分に加工硬化させる。 この荒引線を冷間で伸線加工して素線とするの
に、伸線加工中の線材温度を100℃以下に保持し
て80%以上の減面加工を加えることにより、加工
熱による低温焼鈍硬化現象により耐熱性が低下す
るのを防止し、かつ防止硬化により十分な強度を
付与する。 このようにして得た素線を複数本撚合せて撚線
とするのに、素線に1パスレダクシヨンで5%以
上の減面加工を加えながら撚合せることにより、
加工による発熱と撚合せ中の素線に加えられるね
じりの歪により撚線の曲げ特性を顕著に向上せし
めたものである。 本発明において合金組成を前記の如く限定した
のは次の理由によるものである。 Zr含有量を0.05〜0.2%と限定したのは、0.05%
未満ではFe含有量の如何にかかわらず耐熱性向
上の効果が少なく、0.2%を越えると耐熱性は向
上するも、導電率の低下が著しくなるためであ
り、Fe含有量を0.1〜0.8%と限定したのは、0.1%
未満ではZr含有量の如何にかかわらず、良好な
引張強さと耐熱性が得られず、0.8%を越えると
き導電率が著しく低下するためである。 またCu含有量を0.03〜0.4%、Mg含有量を0.01
〜0.4%と限定したのは、Cu又は/及びMgの含
有量が下限未満では曲げ性の改善が小さく、上限
を越えると導電率の低下が著しくなるためであ
り、Cu又は/及びMgの含有量をFe含有量との比
(Fe含有量/Cu+Mg含有量)で0.2〜20と限定し
たのは0.2未満では導電率の低下が著しく、20を
越えると曲げ特性の改善が認められないためであ
る。 尚、通常の不純物とは、Al地金に不可避的に
含まれるもので、一般のECAl地金に含まれる程
度の不純物であれば撚線としての特性を何等損な
うようなことはない。 次に本発明において、連続又は半連続鋳造にお
ける前記組成の合金溶湯の鋳造速度を10mm/sec
以上と限定したのは、10mm/sec未満ではZr、Fe
等が析出して耐熱性を低下するためであり、鋳造
時に超音波をかけたのは結晶粒及び晶出物を微細
化して曲げ特性を改善するためである。このよう
にして得た鋳塊を再加熱することなく熱間圧延す
るのは再加熱によりZr、Fe等が析出して耐熱性
が低下するのを防止するためで、鋳塊の熱間圧延
開始温度を550〜350℃と限定したのは、550℃よ
り高い温度で開始すると、冷間伸線加工における
加工硬化能が小さくなり、350℃より低い温度で
開始するとFeが均質化せず、耐熱性が低下する
ためである。また熱間圧延終了温度を300〜120℃
と限定したのは、300℃より高い温度で終了する
と、十分な強度が得られず、圧延後の冷却過程で
固溶したZrやFeが析出して耐熱性が低下し、120
℃より低い温度まで圧延を続けると、加工による
硬化現象が大きくなり、耐熱性が低下するためで
ある。また熱間圧延における減面加工率は80%以
上と限定したのは、80%未満の加工では十分な加
工硬化が得られず、強度が低下するためである。 更に冷間伸線加工における伸線中の線材温度を
100℃以下に保持したのは伸線中の線材温度が100
℃を越えると低温焼鈍硬化現象が起り、耐熱性を
著しく低下するためであり、冷間伸線加工におけ
る減面加工率を80%以上と限定したのは、80%未
満の加工では十分な加工硬化が得られず、素線の
強度が不十分となるためである。 このようにして得た素線を撚合せて撚線とする
のに、素線に加える1パスレダクシヨンの減面加
工を5%以上と限定したのは、前記の如く減面加
工による発熱と撚合せ中に加えられるねじりの歪
により曲げ特性を更に向上させるためで、減面加
工と撚合せを別工程で行なつたのでは曲げ特性の
向上は得られず、また減面加工率が5%未満では
減面加工による発熱が小さく、曲げ特性の向上が
得られない。更に2パス以上のレダクシヨンで5
%以上の減面加工を行なつても曲げ特性は改善さ
れるが、より大きな効果は得られず、しかも撚合
せ中の減面加工は1パスが限度であるためであ
る。 以下、本発明を実施例について説明する。純度
99.6%のECAl地金と、Al−5%Zr、Al−6%
Fe、Al−50%Cuの各母合金とMg単体とを用い、
第1表に示す組成の合金を溶製した。この溶湯に
超音波を加えながらベルトアンドホイール型連続
鋳造機により断面積200mm2の鋳塊を連続的に鋳造
し、これを再加熱することなく連続的に圧延する
連続圧延機により熱間圧延して荒引線とした。こ
の荒引線を冷間で連続的に伸線加工して素線とし
た。 この素線を6〜84本用い、それぞれダイスを通
して1パスで減面加工しながら鋼芯上に撚合せて
合芯高力熱アルミニウム合金撚線を製造した。
尚、比較のため同一素線を用いて減面加工するこ
となく鋼芯上に撚合せて鋼芯高力耐熱アルミニウ
ム合金撚線を製造した。これ等の撚線を1mの長
さに切断して解体し、各素線をそれぞれ整直した
後、引張強さ、導電率、耐熱性及び曲げ特性を測
定した。その測定結果と製造条件を第2表に示
す。 尚、引張強さはアムスラー型引張試験機により
測定し、導電率はケルビンダブルブリツジにより
電気抵抗を測定して算出した。また耐熱性は試料
を230℃の温度で1時間加熱した後引張強さを測
定し、加熱前の引張強さに対する加熱後の引張強
さの割合で表わした。また曲げ特性は試料を試料
の直径の2倍の曲面で挾持して左右交互に繰り返
し曲げを行ない、破断までの曲げ回数を測定し
た。曲げ回数は、左に90°曲げて1回、元の位置
に戻して2回、右に90°曲げて3回、元の位置に
戻して4回とし、これを破断するまでの回数を測
定した。
The present invention relates to a method for producing a highly heat-resistant aluminum alloy stranded wire for electrical conduction, and in particular, the stranded wire has improved bending properties without impairing the conductivity, strength, and heat resistance of the strands. Conventionally, steel-core aluminum stranded wires (ASCR), which are made by twisting aluminum wires together, have been mainly used for overhead power transmission lines, but under special transmission conditions, steel cores made by twisting heat-resistant aluminum alloy wires have been used. Heat-resistant aluminum alloy stranded wire (TASCR) is used. Al-Zr alloy is used for this TASCR wire, but regardless of the Zr content, this alloy
Because the tensile strength of the strands is not very high, it cannot be used for long-span power transmission, nor can it be used for all-aluminum alloy stranded wire (AAAC). Therefore, for long-span power transmission lines, steel-core high-strength aluminum alloy stranded wires are used, which are made by twisting high-strength aluminum alloy wires made of 5005 series alloy (Al-0.5 to 1.1 wt% Mg) with excellent strength. . However, although this alloy wire has an excellent tensile strength of 24 kg/mm 2 , its heat resistance is on the same level as ordinary aluminum (ECAI) wire, so it cannot be used in large-capacity power transmission lines. In recent years, with the increase in demand for electricity, wires with excellent heat resistance and strength have been required for large-capacity power transmission. Al--Zr--Fe alloy wires having the same strength as the 5005-based alloys have been developed, and high-strength, heat-resistant aluminum alloy stranded wires made by twisting these wires have come to be used. This stranded wire is made by continuous or semi-continuous casting of molten Al-Zr-Fe alloy, hot rolling the resulting ingot without reheating, and then cold drawing the resulting wire. However, due to the poor bending properties of the strands, the strands tend to break when passing through fishing wheels during overhead line construction, and they are also used as stranded wires for long-span, high-current power transmission. There is a strong desire to further improve the performance of all-aluminum alloy stranded wires with no iron core loss. In view of this, as a result of various studies, the present invention has been developed to improve bending properties without deteriorating the conductivity, strength, and heat resistance of the strands, and to create a stranded wire for long-span, high-current power transmission and an all-aluminum alloy with no iron core loss. Can also be used as twisted wire. A method for manufacturing stranded wire has been developed, in which molten aluminum alloy is continuously or semi-continuously cast, the resulting ingot is hot-rolled into rough wire without reheating, and this is then cold-drawn. Zr0.05-0.2wt% in the production of twisted wires in which multiple wires are twisted together.
(Hereinafter, wt% is simply abbreviated as %) and contains Fe0.1-0.8%, Cu0.03-0.4%, Mg0.01-0.2%, and one or both of them are combined with Fe content. The ratio (Fe content/Cu + Mg content) is 0.2 to 20, and the balance is Al.
molten aluminum alloy consisting of and normal impurities.
Casting is performed at a casting speed of 10 mm/sec or more while applying ultrasonic waves, and hot rolling of the obtained ingot starts at a temperature of 550 to 350°C and ends at a temperature of 300 to 120°C, during which time 80% Add the above surface reduction processing to create a rough drawing line,
This is subjected to cold wire drawing.The wire temperature during wire drawing is 100%.
℃ or less, the strands are subjected to an area reduction process of 80% or more, and when the strands are twisted, the strands are twisted while being subjected to an area reduction process of 5% or more in one pass reduction. It is something to do. That is, the present invention melts an alloy having the above composition range,
By continuous or semi-continuous casting while applying ultrasonic waves at a casting speed of 10 mm/sec or more, precipitation of Zr, Fe, etc., which causes heat resistance deterioration, is prevented.
Improves bending properties by making crystal grains and crystallized substances finer. In order to make this ingot into a rough wire by thermobending rolling, rolling was started at a temperature of 550 to 350°C without reheating, which causes precipitation of Zr, Fe, etc.
Before finishing rolling at a temperature of 300 to 120°C, an area reduction process of 80% or more is applied to homogenize the solute elements of the rough wire and prevent precipitation of Zr, Fe, etc., thereby preventing a decrease in heat resistance. , and sufficiently work hardened. In order to cold-draw this rough wire and make it into wire, the temperature of the wire during wire drawing is kept below 100℃ and the area is reduced by more than 80%. Prevents heat resistance from decreasing due to annealing hardening phenomenon, and provides sufficient strength through preventive hardening. In order to make a stranded wire by twisting a plurality of the strands obtained in this way, by twisting the strands while applying an area reduction process of 5% or more in one pass reduction,
The bending properties of the stranded wires are significantly improved by the heat generated during processing and the twisting strain applied to the strands during twisting. The reason why the alloy composition is limited as described above in the present invention is as follows. The Zr content is limited to 0.05-0.2%, which is 0.05%.
This is because if the Fe content is less than 0.2%, the effect of improving heat resistance will be small regardless of the Fe content, and if it exceeds 0.2%, the heat resistance will improve, but the conductivity will decrease significantly. The limit was 0.1%.
This is because if the Zr content is less than 0.8%, good tensile strength and heat resistance cannot be obtained regardless of the Zr content, and if it exceeds 0.8%, the electrical conductivity decreases significantly. In addition, the Cu content is 0.03-0.4% and the Mg content is 0.01%.
The reason why the content of Cu and/or Mg is limited to ~0.4% is that if the content of Cu or/and Mg is less than the lower limit, the improvement in bendability will be small, and if the content exceeds the upper limit, the conductivity will decrease significantly. The reason why the amount was limited to 0.2 to 20 in terms of the ratio to the Fe content (Fe content/Cu + Mg content) is that if it is less than 0.2, the conductivity will decrease significantly, and if it exceeds 20, no improvement in bending properties will be observed. be. Note that normal impurities are those that are unavoidably included in the Al base metal, and if the impurities are to the extent that they are included in the general EAl base metal, they will not impair the characteristics of the stranded wire in any way. Next, in the present invention, the casting speed of the molten alloy having the above composition in continuous or semi-continuous casting is set to 10 mm/sec.
The reason for limiting the above is that Zr, Fe and less than 10 mm/sec
etc. precipitate and deteriorate the heat resistance, and the reason why ultrasonic waves are applied during casting is to refine the crystal grains and crystallized substances and improve the bending properties. The reason why the ingot obtained in this way is hot rolled without being reheated is to prevent Zr, Fe, etc. from precipitating due to reheating and reducing the heat resistance. The reason why we limited the temperature to 550 to 350℃ is that if you start at a temperature higher than 550℃, the work hardening ability in cold wire drawing will decrease, and if you start at a temperature lower than 350℃, Fe will not be homogenized and the heat resistance will decrease. This is because the sexual performance decreases. In addition, the hot rolling end temperature is 300 to 120℃.
The reason for this limitation is that if the rolling process is finished at a temperature higher than 300°C, sufficient strength will not be obtained, and solid solution Zr and Fe will precipitate during the cooling process after rolling, resulting in a decrease in heat resistance.
This is because if rolling continues to a temperature lower than °C, the hardening phenomenon due to processing increases and heat resistance decreases. Further, the area reduction rate in hot rolling was limited to 80% or more because if the area reduction rate is less than 80%, sufficient work hardening cannot be obtained and the strength will decrease. Furthermore, the temperature of the wire during cold wire drawing is
The wire temperature during wire drawing was kept below 100℃.
If the temperature exceeds ℃, a low-temperature annealing hardening phenomenon occurs, which significantly reduces the heat resistance.The reason why the area reduction rate in cold wire drawing was limited to 80% or more was that a reduction of less than 80% would be insufficient. This is because hardening cannot be obtained and the strength of the wire becomes insufficient. The reason why the 1-pass reduction applied to the strands was limited to 5% or more when twisting the strands obtained in this way to form a stranded wire was due to the heat generation due to the area reduction and the twisting as described above. This is to further improve the bending properties through the torsional strain applied to the material, and if the area reduction process and twisting are performed in separate processes, the bending properties cannot be improved, and the area reduction rate is less than 5%. In this case, the heat generated by surface reduction processing is small, and no improvement in bending properties can be obtained. Furthermore, 5 with a reduction of 2 or more passes.
Although the bending properties are improved even if the area is reduced by more than %, a larger effect cannot be obtained, and moreover, the area reduction process during twisting is limited to one pass. Hereinafter, the present invention will be explained with reference to examples. purity
99.6% EAl base metal, Al-5% Zr, Al-6%
Using Fe, Al-50%Cu mother alloys and Mg alone,
An alloy having the composition shown in Table 1 was produced. While applying ultrasonic waves to this molten metal, an ingot with a cross-sectional area of 200mm2 is continuously cast using a belt-and-wheel type continuous casting machine, and then hot-rolled using a continuous rolling machine that continuously rolls the ingot without reheating. I made it a rough line. This roughly drawn wire was drawn continuously in a cold state to obtain a wire. Using 6 to 84 of these strands, each wire was passed through a die and subjected to an area reduction process in one pass, and then twisted onto a steel core to produce a cored high-strength thermal aluminum alloy stranded wire.
For comparison, a high-strength, heat-resistant aluminum alloy stranded wire with a steel core was manufactured by using the same strands and twisting them onto a steel core without undergoing area reduction processing. These stranded wires were cut into lengths of 1 m and disassembled, and after straightening each strand, tensile strength, electrical conductivity, heat resistance, and bending properties were measured. The measurement results and manufacturing conditions are shown in Table 2. The tensile strength was measured using an Amsler type tensile tester, and the electrical conductivity was calculated by measuring electrical resistance using a Kelvin double bridge. Heat resistance was determined by measuring the tensile strength after heating the sample at 230° C. for 1 hour, and expressing the tensile strength after heating as a ratio of the tensile strength before heating. The bending properties were determined by holding the sample between curved surfaces twice the diameter of the sample, repeatedly bending the sample left and right alternately, and measuring the number of bends until breakage. The number of bends was 1 time by bending 90 degrees to the left, 2 times returning to the original position, 3 times bending 90 degrees to the right, and 4 times returning to the original position, and measuring the number of times until it broke. did.

【表】【table】

【表】【table】

【表】 第1表および第2表から明らかなように本発明
万法No.1〜No.14により製造した撚線の素線は、導
電率56.1〜57.1%IACS、引張強さ26.6〜27.6Kg/
mm2、耐熱性94.9〜97.0%、曲げ回数25〜29回の特
性を示し、従来方法No.34〜No..36で製造した撚線
の素線と比較し、同等の導電率、引張強さ及び耐
熱性とはるかに高い曲げ回数を示し、2倍以上の
曲げ特性を有することが判る。 これに対して本発明方法で規定する合金組成又
は製造条件が外れる比較方法No.15〜No.33では導電
率、引張強さ、耐熱性、曲げ特性の何れかが劣る
ことが判る。即ち、Zr含有量の少ない比較合金
0を用いた比較方法No.15では耐熱性が悪く、Fe
含有の少ない比較合金Qを用いた比較方法No.17で
は引張強さ及び耐熱性が悪く、Mg又は/及びCu
含有量の少ない比較合金Sを用いた比較方法では
曲げ特性の改善が認められず、Zr含有量の多い
比較合金P、Fe含有量の多い比較合金R、Mg又
は/及びCu含有量の多い比較合金Tを用いた比
較方法No.16、No.18、No.20では何れも導電率が低く
なつている。またFe含有量とMg又は/及びCu含
有量の比が小さい比較合金Uを用いた比較方法No.
21では導電率が低下し、Fe含有量とMg又は/及
びCu含有量の比が大きい比較合金V.Wを用いた
比較方法No.22、No.23では曲げ特性の改善が認めら
れない。また製造条件において、鋳造速度が遅い
比較方法No.24では耐熱性が低く、超音波をかけな
い比較方法No.25では曲げ特性の改善が認められ
ず、熱間圧延の開始温度が高い比較方法No.26、熱
間圧延又は冷間伸線による加工率が小さい比較方
法No.30、No.32では何れも引張強さが低く、熱間圧
延の開始温度が低い比較方法No.27、熱間圧延の終
了温度が高い比較方法No.28、熱間圧延の終了温度
が低い比較方法No.29、冷間伸線加工中の温度が
100℃を越える方法No.31、撚合せの際の減面加工
率が小さい比較方法No.33では何れも引張強さ及び
耐熱性が低いことが判る。 このように本発明によれば従来の高力耐熱アル
ミニウム合金撚線の素線と同等の導電率、強度及
び耐熱性を有し、かつはるかに優れた曲げ特性を
有する素線を撚合せた高力耐熱アルミニウム合金
撚線を製造することができるので、長径間送電線
や鉄損失の全アルミニウム合金撚線としてその特
性を向上し得る等工業上顕著な効果を奏するもの
である。
[Table] As is clear from Tables 1 and 2, the stranded wires manufactured by the methods No. 1 to No. 14 of the present invention have a conductivity of 56.1 to 57.1% IACS and a tensile strength of 26.6 to 27.6. Kg/
mm 2 , heat resistance of 94.9 to 97.0%, bending times of 25 to 29 times, and conventional method No. 34 to No. It can be seen that compared to the stranded wire produced in No. 36, it shows the same electrical conductivity, tensile strength, and heat resistance, and a much higher number of bends, and has more than twice the bending properties. On the other hand, Comparative Methods No. 15 to No. 33, in which the alloy composition or manufacturing conditions specified by the method of the present invention were not met, were found to be inferior in electrical conductivity, tensile strength, heat resistance, and bending properties. In other words, comparative method No. 15 using comparative alloy 0 with low Zr content had poor heat resistance and
Comparative method No. 17 using comparative alloy Q with low content had poor tensile strength and heat resistance, and
No improvement in bending properties was observed in the comparative method using comparative alloy S with a low content, comparative alloy P with a high Zr content, comparative alloy R with a high Fe content, and comparison with a high Mg or/and Cu content. Comparative methods No. 16, No. 18, and No. 20 using Alloy T all have low conductivity. Comparative method No. 1 uses comparative alloy U with a small ratio of Fe content to Mg or/and Cu content.
In No. 21, the electrical conductivity decreased, and in Comparative Methods No. 22 and No. 23, which used comparative alloy VW with a large ratio of Fe content to Mg or/and Cu content, no improvement in bending properties was observed. In addition, regarding manufacturing conditions, comparative method No. 24, which has a slow casting speed, has low heat resistance, comparative method No. 25, which does not apply ultrasonic waves, shows no improvement in bending properties, and comparative method, which has a high hot rolling start temperature. Comparative methods No. 26, No. 30, and No. 32, which have a small processing rate by hot rolling or cold wire drawing, all have low tensile strength, and comparative method No. 27, which has a low starting temperature of hot rolling, and Comparison method No. 28 has a high end temperature of hot rolling, Comparison method No. 29 has a low end temperature of hot rolling, and method No. 29 has a low end temperature of hot rolling.
It can be seen that both method No. 31, in which the temperature exceeds 100°C, and comparative method No. 33, in which the area reduction rate during twisting is small, have low tensile strength and heat resistance. As described above, according to the present invention, a high-strength wire that has conductivity, strength, and heat resistance equivalent to that of conventional high-strength, heat-resistant aluminum alloy stranded wires, and has far superior bending properties. Since it is possible to produce a heat-resistant aluminum alloy stranded wire, it has significant industrial effects, such as improving the properties of long-span power transmission lines and iron-loss all-aluminum alloy stranded wires.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム合金溶湯を連続又は半連続鋳造
し、得られた鋳塊を再加熱することなく熱間圧延
により荒引線とし、これを冷間伸線加工した素線
を複数本撚合せる撚線の製造において、Zr0.05〜
0.2wt%及びFe0.1〜0.8wt%を含み、Cu0.03〜
0.4wt%、Mg0.01〜0.4wt%の範囲内で何れか1
種又は2種をFe含有量との比(Fe含有量/Cu+
Mg含有量)で0.2〜20を含み、残部Alと通常の不
純物からなるアルミニウム合金溶湯を10mm/sec
以上の鋳造速度で超音波をかけながら鋳造し、得
られた鋳塊の熱間圧延を550〜350℃の温度より開
始し、300〜120℃の温度で終了し、その間に80%
以上の減面加工を加えて荒引線とし、これを冷間
伸線加工により伸線中の線材温度を100℃以下に
保持し、80%以上の減面加工を加えて素線とし、
該素線の撚合せにあたり、素線に1パスレダクシ
ヨンで5%以上の減面加工を加えながら撚合せる
ことを特徴とする曲げ特性の優れた導電用高力耐
熱アルミニウム合金撚線の製造方法
1 Production of stranded wire by continuous or semi-continuous casting of molten aluminum alloy, hot rolling the resulting ingot into rough drawn wire without reheating, and twisting together multiple strands of cold drawn wire. In, Zr0.05~
Contains 0.2wt% and Fe0.1~0.8wt%, Cu0.03~
0.4wt%, any one within the range of Mg0.01 to 0.4wt%
The ratio of the species or two species to the Fe content (Fe content/Cu+
10mm/sec of molten aluminum alloy containing 0.2~20 (Mg content) with the balance Al and normal impurities
Hot rolling of the obtained ingot is started at a temperature of 550 to 350℃ and finished at a temperature of 300 to 120℃, during which 80%
The above area-reducing process is applied to make a rough drawn wire, which is then subjected to cold wire drawing to maintain the wire temperature during wire drawing to 100℃ or less, and an area-reduced process of 80% or more is applied to make a wire.
A method for producing a high-strength, heat-resistant aluminum alloy stranded wire for electrical conduction with excellent bending properties, characterized in that the wires are twisted while being subjected to an area reduction process of 5% or more in one pass reduction.
JP11087482A 1982-06-29 1982-06-29 Manufacture of twisted aluminum alloy wire with electrically conductivity, high strength and heat resistance Granted JPS591659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087482A JPS591659A (en) 1982-06-29 1982-06-29 Manufacture of twisted aluminum alloy wire with electrically conductivity, high strength and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087482A JPS591659A (en) 1982-06-29 1982-06-29 Manufacture of twisted aluminum alloy wire with electrically conductivity, high strength and heat resistance

Publications (2)

Publication Number Publication Date
JPS591659A JPS591659A (en) 1984-01-07
JPH0313302B2 true JPH0313302B2 (en) 1991-02-22

Family

ID=14546887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087482A Granted JPS591659A (en) 1982-06-29 1982-06-29 Manufacture of twisted aluminum alloy wire with electrically conductivity, high strength and heat resistance

Country Status (1)

Country Link
JP (1) JPS591659A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07456Y2 (en) * 1987-06-23 1995-01-11 日立電子エンジニアリング株式会社 Chip pushing device
JP5402279B2 (en) 2008-06-27 2014-01-29 株式会社リコー Electrophotographic photoreceptor, method for producing the same, and image forming apparatus using the same

Also Published As

Publication number Publication date
JPS591659A (en) 1984-01-07

Similar Documents

Publication Publication Date Title
JPS6216269B2 (en)
JPH0313302B2 (en)
JPS6239235B2 (en)
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JPH036983B2 (en)
JPH0125822B2 (en)
JPS63243247A (en) High-strength aluminum-based composite conductive wire and its production
JPS59104460A (en) Preparation of high strength and heat resistant aluminum alloy conductor
JPS6361380B2 (en)
JPH0432146B2 (en)
JPS6357495B2 (en)
JP2883495B2 (en) Method of manufacturing copper alloy conductor for electric train wire
JPS63293146A (en) Manufacture of high strength heat resistant aluminum alloy for electric conduction
JPH036984B2 (en)
JPH0335373B2 (en)
JPS6116421B2 (en)
JP2869617B2 (en) Manufacturing method of aluminum alloy wire
JPS59162260A (en) Production of heat-resisting aluminum alloy for electrical conduction
JPH0113170B2 (en)
JPS59166660A (en) Preparation of high tensile heat resistant aluminum alloy for electric conduction
JPS61270358A (en) Manufacture of high strength aluminum alloy conductor
JPS5825462A (en) Manufacture of heat resistant aluminum alloy conductor
JPS61238945A (en) Manufacture of heat resistant aluminum alloy conductor having high strength
JPS6047895B2 (en) High strength heat resistant aluminum alloy
JPS6144939B2 (en)