JPH036984B2 - - Google Patents

Info

Publication number
JPH036984B2
JPH036984B2 JP13921883A JP13921883A JPH036984B2 JP H036984 B2 JPH036984 B2 JP H036984B2 JP 13921883 A JP13921883 A JP 13921883A JP 13921883 A JP13921883 A JP 13921883A JP H036984 B2 JPH036984 B2 JP H036984B2
Authority
JP
Japan
Prior art keywords
strength
heat
heat resistance
conductor
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13921883A
Other languages
Japanese (ja)
Other versions
JPS6029456A (en
Inventor
Hitoshi Yanase
Michio Myauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13921883A priority Critical patent/JPS6029456A/en
Publication of JPS6029456A publication Critical patent/JPS6029456A/en
Publication of JPH036984B2 publication Critical patent/JPH036984B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高力耐熱アルミニウム合金導体の製造
法に関するもので、特に従来の高力耐熱アルミニ
ウム合金導体と同等の導電率及び強度を有し、か
つはるかに優れた耐熱性と可撓性を有する導体を
製造するものである。 従来架空送電線には電気用Al(ECAl)からな
る導体を用いた鋼芯アルミニウム撚線(ACSR)
が用いられ、特殊な送電条件のもとでは耐熱性を
付与したAl−Zr系合金からなる導体を用いた鋼
芯耐熱アルミニウム合金撚線(TACSR)が用い
られてきた。また長径間送電線には高力アルミニ
ウム合金、例えば5005系合金(Al−0.5〜1.1wt%
Mg)からなる導体を用いた鋼芯高力アルミニウ
ム合金撚線が用いられていた。 耐熱性を付与したAl−Zr系合金はZr量の如何
にかかわらず、導体の強度がそれ程高くならない
ため、長径間送電線の導体には用いることができ
ず、全アルミニウム合金撚線(AAAC)の導体
としても用いることができないものであつた。ま
た高力アルミニウム合金である5005系合金は引張
強さが24Kg/mm2と優れているが、耐熱性はECAl
と同程度で、耐熱性に乏しい欠点があつた。 近年電力需要の増大に伴い、大容量送電の見地
から耐熱性があり、しかも強度の高い導体が要望
されるようになつた。これに対処するため5005系
合金については耐熱性の向上が、またAl−Zr系
合金については強度の向上が検討され、Al−Zr
系合金にFeを添加することにより、導電性及び
耐熱性をあまり劣化させることなく強度を改善し
た高力耐熱アルミニウム合金が提案された。この
合金は導電率56%IACS、引張強さ25Kg/mm2、耐
熱性93%(230℃、1時間加熱)と優れた特性を
示すも、架空送電として重要な可撓性が劣る欠点
があり、耐熱性についてもより以上の改善が望ま
れている。 本発明はこれに鑑み種々検討の結果、従来の高
力耐熱アルミニウム合金導体と同等の導電率及び
強度を有し、かつはるかに優れた耐熱性と可撓性
を有する高力耐熱アルミニウム合金導体の製造法
を開発したもので、Zr0.1〜0.8wt%(以下wt%を
単に%と略記)、Fe0.07〜0.8%、Si0.05〜0.8%、
Cu0.005〜0.5%、Ni0.005〜0.5%を含み、残部Al
と通常の不純物からなるアルミニウム合金溶湯を
740℃以上の温度で連続又は半連続鋳造し、得ら
れた鋳塊を再加熱することなく直ちに熱間圧延し
て荒引線とし、これを200〜500℃の温度で0.5〜
200時間加熱処理した後、冷間で伸線加工するこ
とを特徴とするものである。 即ち本発明は上記組成範囲の合金溶湯を740℃
以上の温度で鋳造することにより、含有Zrを十
分に固溶させる。これを再加熱することなく直ち
に熱間圧延して荒引線とし、これを加熱処理する
ことによりZrを析出せしめ、Zrの析出による耐
熱性の向上と導電率の回復を図り、更にZrの析
出硬化により強度を向上せしめる。これを冷間で
伸線加工することにより更に強度を向上せしめた
ものである。このようにして製造した導体は従来
の高力耐熱アルミニウム合金導体と同等の導電率
と強度を有し、かつはるかに優れた耐熱性と可撓
性を示すもので、導体としてより多くの電流を流
すことができものである。またこの導体は通常の
鋼芯アルミニウム撚線にみられる鉄芯損のない全
アルミニウム撚線の導体としての使用を可能なら
しめたものである。 しかして本発明において合金組成を上記の如く
限定したのは、次の理由によるものである。 Zrは耐熱性を向上するために添加したもので
あるが、Zr含有量が0.1%未満では耐熱性の向上
効果が少なく、0.8%を超えると耐熱性の向上効
果より導電率の低下が著しくなり、導体として使
用できなくなるためである。Feは強度を向上さ
せるために添加したものであるが、その含有量が
0.07%未満では所望の強度が得られず、0.8%を
越えると導電率の低下が著しくなり、導体として
使用できなくなるためである。 SiはZrの析出を促進させるために添加したもの
であるが、その含有量が0.05%未満ではZr析出を
促進させる効果が小さく、0.8%を越えるとZr析
出を促進させる効果よりも導電率の低下が著しく
なり、導体として使用できなくなるためである。
Cuは導体の可撓性を向上するために添加したも
のであるが、その含有量が0.005%未満では可撓
性向上の効果が少なく、0.5%を越えると導電率
の低下が著しく、導体として使用できなくなるた
めである。またNiはAlマトリツクスの強度を高
めるために添加したものであるが、その含有量が
0.005%未満ではその効果が少なく、0.5%を越え
ると導電率の低下が著しくなり、導体として使用
することができなくなるためである。 尚その他の不純物としては通常の電気用Al地
金に含まれる程度であれば、導体の特性を損なう
ことはない。 このような組成範囲の合金溶湯を740℃以上の
温度で連続又は半連続鋳造するのは、鋳造時に
Zrを十分に固溶させるためであり、溶湯の鋳造
温度が、740℃未満ではZrの固溶量が少なく、そ
の後の熱間圧延及び荒引線の加熱処理条件をどの
ように選んでも十分な耐熱性が得られないためで
ある。また熱間圧延した荒引線を200〜500℃の温
度で0.5〜200時間加熱処理するのは、Zrの析出に
より耐熱性を付与し、導電率を回復させると共に
析出硬化により強度を向上させるためであり、
200℃未満の温度では十分な析出効果が得られず、
500℃の温度を越えると強度の低下が大きく、ま
た処理時間が0.5時間未満では導電率の回復が少
なく、200時間を越えると強度低下が大きくなる
ためである。このようにしてZrを析出させた後、
これを冷間伸線加工するのは、加工硬化により更
に強度を高めるためであり、この加工により従来
の高力アルミニウム合金と同等の強度とするもの
である。 以下本発明を実施例について詳細に説明する。 純度99.6%の電気用Al地金と、Al−5%Zr、
Al−6%Fe、Al−50%Cu、Al−20%Si、Al−10
%Niの各母合金を用い、第1表に示す組成に配
合して溶融し、この溶湯を第1表に示す温度でベ
ルトアンドホイール型連続鋳造圧延機に注湯し、
断面積2000mm2の鋳塊を連続的に鋳造し、この鋳塊
を再加熱することなく引続いて熱間圧延し、直径
9.5mmの荒引線とした。この荒引線を第1表に示
す温度で加熱処理した後、冷間で伸線加工して直
径4mmの導体を製造した。 このようにして製造した導体について導電率、
引張強さ、耐熱性及び可撓性を測定した。その結
果を従来の高力耐熱アルミニウム合金溶湯をベル
トアンドホイール型連続鋳造圧延機により連続的
に鋳造圧延し、直径9.5mmの荒引線とした後、冷
間で伸線加工した導体の特性と比較して第1表に
併記した。 尚導電率はケルビンダブルブリツジにより電気
抵抗を測定して算出し、引張強さはアムスラー型
試験機により測定し、耐熱性は試料を230℃の温
度に1時間加熱し、加熱前の引張強さに対する加
熱後の引張強さの割合で表わした。また可撓性は
試料を直径の2倍の曲面で挾持し、左右交互に
90゜繰返し曲げを行ない破断までの90゜曲げ回数を
測定した。
The present invention relates to a method for manufacturing a high-strength, heat-resistant aluminum alloy conductor, and in particular, a conductor that has conductivity and strength equivalent to that of conventional high-strength, heat-resistant aluminum alloy conductors, and far superior heat resistance and flexibility. It manufactures. Traditionally, overhead power transmission lines use steel-core aluminum stranded wires (ACSR) using conductors made of electrical grade Al (ECAl).
Under special power transmission conditions, steel-core heat-resistant aluminum alloy stranded wire (TACSR), which uses a conductor made of a heat-resistant Al-Zr alloy, has been used. In addition, high-strength aluminum alloys, such as 5005 series alloys (Al-0.5 to 1.1wt%) are used for long-span power transmission lines.
A steel-core high-strength aluminum alloy stranded wire with a conductor made of Mg) was used. Heat-resistant Al-Zr alloys cannot be used as conductors for long-span power transmission lines because the strength of the conductor is not that high regardless of the amount of Zr, and all-aluminum alloy stranded wire (AAAC) is used. It could not even be used as a conductor. In addition, the 5005 series alloy, which is a high-strength aluminum alloy, has an excellent tensile strength of 24Kg/ mm2 , but the heat resistance is
It had a drawback of poor heat resistance. BACKGROUND ART In recent years, as the demand for electric power has increased, there has been a demand for conductors that are heat resistant and strong from the standpoint of large-capacity power transmission. To deal with this, improvements in the heat resistance of 5005 series alloys and improvements in strength of Al-Zr series alloys have been investigated.
A high-strength, heat-resistant aluminum alloy has been proposed that improves strength without significantly deteriorating conductivity and heat resistance by adding Fe to the alloy. Although this alloy exhibits excellent properties such as electrical conductivity of 56% IACS, tensile strength of 25 Kg/mm 2 , and heat resistance of 93% (heated at 230°C for 1 hour), it has the disadvantage of poor flexibility, which is important for overhead power transmission. Further improvement in heat resistance is also desired. In view of this, as a result of various studies, the present invention has developed a high-strength heat-resistant aluminum alloy conductor that has conductivity and strength equivalent to conventional high-strength heat-resistant aluminum alloy conductors, and has far superior heat resistance and flexibility. The manufacturing method was developed to produce Zr0.1-0.8wt% (hereinafter wt% is simply abbreviated as %), Fe0.07-0.8%, Si0.05-0.8%,
Contains Cu0.005~0.5%, Ni0.005~0.5%, balance Al
molten aluminum alloy consisting of and normal impurities.
Continuous or semi-continuous casting is carried out at a temperature of 740°C or higher, and the resulting ingot is immediately hot-rolled into a rough wire without reheating, which is then cast at a temperature of 200 to 500°C to a
It is characterized by being heat treated for 200 hours and then cold drawn. That is, in the present invention, a molten alloy having the above composition range is heated to 740°C.
By casting at the above temperature, Zr contained is sufficiently dissolved in solid solution. This is immediately hot-rolled into a rough drawn wire without reheating, and then heat-treated to precipitate Zr to improve heat resistance and restore conductivity due to the precipitation of Zr, and further to harden the Zr by precipitation. This improves strength. The strength was further improved by cold wire drawing. Conductors manufactured in this way have conductivity and strength comparable to conventional high-strength, heat-resistant aluminum alloy conductors, but exhibit far superior heat resistance and flexibility, allowing them to carry more current as conductors. It is something that can be washed away. Furthermore, this conductor enables the use of an all-aluminum stranded wire as a conductor without the core loss found in ordinary steel-core aluminum stranded wire. However, the reason why the alloy composition is limited as described above in the present invention is as follows. Zr is added to improve heat resistance, but if the Zr content is less than 0.1%, the effect of improving heat resistance will be small, and if it exceeds 0.8%, the reduction in electrical conductivity will be more significant than the effect of improving heat resistance. This is because it cannot be used as a conductor. Fe is added to improve strength, but its content is
This is because if it is less than 0.07%, the desired strength cannot be obtained, and if it exceeds 0.8%, the conductivity will drop significantly and it will no longer be possible to use it as a conductor. Si is added to promote Zr precipitation, but if the content is less than 0.05%, the effect of promoting Zr precipitation is small, and if it exceeds 0.8%, the effect of promoting Zr precipitation is more than the effect of promoting conductivity. This is because the decrease becomes so significant that it cannot be used as a conductor.
Cu is added to improve the flexibility of conductors, but if the content is less than 0.005%, the effect of improving flexibility is small, and if it exceeds 0.5%, the conductivity decreases significantly, making it difficult to use as a conductor. This is because it becomes unusable. Also, Ni is added to increase the strength of the Al matrix, but its content is
This is because if it is less than 0.005%, the effect will be small, and if it exceeds 0.5%, the conductivity will drop significantly and it will no longer be possible to use it as a conductor. It should be noted that other impurities will not impair the characteristics of the conductor as long as they are contained in ordinary electrical aluminum metal. Continuous or semi-continuous casting of a molten alloy with such a composition range at a temperature of 740°C or higher is difficult at the time of casting.
This is to ensure sufficient solid solution of Zr.If the casting temperature of the molten metal is less than 740℃, the amount of solid solution of Zr will be small, so no matter how you choose the heat treatment conditions for subsequent hot rolling and rough drawing, sufficient heat resistance will be achieved. This is because they cannot obtain sex. In addition, the reason why hot-rolled rough drawn wire is heat-treated at a temperature of 200-500℃ for 0.5-200 hours is to impart heat resistance through the precipitation of Zr, restore electrical conductivity, and improve strength through precipitation hardening. can be,
At temperatures below 200℃, sufficient precipitation effect cannot be obtained,
This is because when the temperature exceeds 500° C., the strength decreases significantly, when the treatment time is less than 0.5 hours, there is little recovery of conductivity, and when the treatment time exceeds 200 hours, the strength decreases greatly. After precipitating Zr in this way,
The purpose of cold wire drawing is to further increase the strength through work hardening, and this process makes the strength equivalent to that of conventional high-strength aluminum alloys. The present invention will be described in detail below with reference to examples. 99.6% pure electrical Al ingot, Al-5% Zr,
Al-6%Fe, Al-50%Cu, Al-20%Si, Al-10
%Ni, the compositions shown in Table 1 were mixed and melted, and the molten metal was poured into a belt-and-wheel type continuous casting and rolling mill at the temperature shown in Table 1.
An ingot with a cross-sectional area of 2000 mm 2 is continuously cast and the ingot is subsequently hot rolled without reheating to reduce the diameter
I used a 9.5mm rough wire. This roughly drawn wire was heat treated at the temperature shown in Table 1 and then cold drawn to produce a conductor with a diameter of 4 mm. The electrical conductivity of the conductor manufactured in this way,
Tensile strength, heat resistance and flexibility were measured. The results were compared with the properties of a conductor made by continuously casting and rolling a conventional high-strength, heat-resistant aluminum alloy molten metal using a belt-and-wheel type continuous casting and rolling mill to obtain a rough drawn wire with a diameter of 9.5 mm, and then cold-drawing the wire. The results are also listed in Table 1. The electrical conductivity is calculated by measuring the electrical resistance with a Kelvin double bridge, the tensile strength is measured with an Amsler type tester, and the heat resistance is calculated by heating the sample to 230℃ for 1 hour, and calculating the tensile strength before heating. It is expressed as the ratio of tensile strength after heating to strength. In addition, flexibility is achieved by holding the sample between curved surfaces twice the diameter and alternating between the left and right sides.
90° bending was repeated and the number of 90° bends until breakage was measured.

【表】【table】

【表】 第1表から明らかなように本発明No.1〜12によ
り製造した導体は、導電率55.3〜57.6%IACS、
引張強さ24.1〜26.3Kg/mm2、耐熱性(230℃×1
時間)95.2〜99.9%、可撓性26〜32回の特性を示
し、従来法No.28〜30と比較し、導電率及び引張強
さはほぼ同等で耐熱性及び可撓性がはるかに優れ
ていることが判る。 これに対し合金組成、鋳造温度、加熱処理条件
の何れかが本発明により規定した範囲から外れる
比較法No.13〜27では導電率、引張強さ、耐熱性、
可撓性の何れかが劣ることが判る。即ちZr含有
量の少ない比較法No.13、鋳造温度が低い比較法No.
23では何れも耐熱性が劣り、Zr含有量の多い比
較法No.14、Fe含有量の多い比較法No.16、Si含有
量の多い比較法No.18、Cu含有量の多い比較法No.
20、Ni含有量の多い比較法No.22、加熱処理時間
の短い比較法No.26では何れも導電率の低下が著し
く、Fe含有量の少ない比較法No.15では引張強さ
及び耐熱性が劣る。またSi含有量の少ない比較法
No.17、加熱処理温度の低い比較法No.24では何れも
導電率及び引張強さが劣り、Cu含有量の少ない
比較法No.19では可撓性が改善されず、更にNi含
有量の少ない比較法No.21、加熱処理温度が高い比
較法No.25及び加熱処理時間が長い比較法No.27では
引張強さが劣ることが判る。 このように本発明によれば従来の高力耐熱アル
ミニウム合金導体とほぼ同等の導電率及び強度を
有し、かつはるかに優れた耐熱性及び可撓性を有
する高力耐熱アルミニウム合金導体を得ることが
できるもので、鋼芯高力耐熱アルミニウム合金撚
線や全アルミニウム合金撚線に使用し、送電容量
を増大し得る顕著な効果を奏するのである。
[Table] As is clear from Table 1, the conductors manufactured according to the present invention Nos. 1 to 12 had a conductivity of 55.3 to 57.6% IACS,
Tensile strength 24.1~26.3Kg/ mm2 , heat resistance (230℃ x 1
time) 95.2 to 99.9%, flexibility 26 to 32 times, and compared to conventional method No. 28 to 30, the conductivity and tensile strength are almost the same, and the heat resistance and flexibility are far superior. It can be seen that On the other hand, in comparative methods Nos. 13 to 27, in which any of the alloy composition, casting temperature, and heat treatment conditions are outside the range specified by the present invention, the electrical conductivity, tensile strength, heat resistance,
It can be seen that some of the flexibility is inferior. In other words, Comparative Method No. 13 has a low Zr content, and Comparative Method No. 1 has a low casting temperature.
Comparative method No. 14 with high Zr content, comparative method No. 16 with high Fe content, comparative method No. 18 with high Si content, and comparative method No. 23 with high Cu content were all inferior in heat resistance. .
20. Comparative method No. 22, which has a high Ni content, and comparative method No. 26, which has a short heat treatment time, both have a significant decrease in conductivity, and comparative method No. 15, which has a low Fe content, has poor tensile strength and heat resistance. is inferior. Comparative method with low Si content
Comparative method No. 17 and Comparative method No. 24 with a low heat treatment temperature are both inferior in electrical conductivity and tensile strength, Comparative method No. 19 with a low Cu content does not improve flexibility, and It can be seen that the tensile strength is inferior in Comparative Method No. 21, which has a lower heat treatment temperature, Comparative Method No. 25, which has a higher heat treatment temperature, and Comparative Method No. 27, which has a longer heat treatment time. As described above, according to the present invention, it is possible to obtain a high-strength heat-resistant aluminum alloy conductor that has almost the same conductivity and strength as conventional high-strength heat-resistant aluminum alloy conductors, and has far superior heat resistance and flexibility. It can be used for steel-core high-strength, heat-resistant aluminum alloy stranded wires and all-aluminum alloy stranded wires, and has the remarkable effect of increasing power transmission capacity.

Claims (1)

【特許請求の範囲】[Claims] 1 Zr0.1〜0.8wt%、Fe0.07〜0.8wt%、Si0.05〜
0.8wt%、Cu0.005〜0.5wt%、Ni0.005〜0.5wt%
を含み、残部Alと通常の不純物からなるアルミ
ニウム合金溶湯を740℃以上の温度で連続又は半
連続鋳造し、得られた鋳塊を再加熱することな
く、直ちに熱間圧延して荒引線とし、これを200
〜500℃の温度で0.5〜200時間加熱処理した後、
冷間で伸線加工することを特徴とする高力耐熱ア
ルミニウム合金導体の製造法。
1 Zr0.1~0.8wt%, Fe0.07~0.8wt%, Si0.05~
0.8wt%, Cu0.005~0.5wt%, Ni0.005~0.5wt%
Continuously or semi-continuously casting an aluminum alloy molten metal containing aluminum with the balance Al and normal impurities at a temperature of 740°C or higher, and immediately hot rolling the obtained ingot into a rough drawing wire without reheating, This is 200
After heat treatment at a temperature of ~500℃ for 0.5~200 hours,
A method for manufacturing a high-strength, heat-resistant aluminum alloy conductor, which is characterized by cold wire drawing.
JP13921883A 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy Granted JPS6029456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13921883A JPS6029456A (en) 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13921883A JPS6029456A (en) 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPS6029456A JPS6029456A (en) 1985-02-14
JPH036984B2 true JPH036984B2 (en) 1991-01-31

Family

ID=15240262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13921883A Granted JPS6029456A (en) 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6029456A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141209A (en) * 2017-02-28 2018-09-13 アイシン精機株式会社 Method for manufacturing aluminum alloy wire
JP7111073B2 (en) * 2019-07-04 2022-08-02 日立金属株式会社 Aluminum alloy wire rod and manufacturing method thereof
JP6683281B1 (en) * 2019-07-04 2020-04-15 日立金属株式会社 Aluminum alloy wire and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6029456A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
JPS6216269B2 (en)
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JPH036984B2 (en)
JPH0125822B2 (en)
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPH0335373B2 (en)
JPH0432146B2 (en)
JPS6116421B2 (en)
JPS6361380B2 (en)
JPH036983B2 (en)
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JPH0152468B2 (en)
JPS59166660A (en) Preparation of high tensile heat resistant aluminum alloy for electric conduction
JPS6054387B2 (en) Manufacturing method of high strength heat resistant aluminum alloy conductor
JPH0335374B2 (en)
JPS591659A (en) Manufacture of twisted aluminum alloy wire with electrically conductivity, high strength and heat resistance
JPS5989743A (en) High-strength copper alloy with high electric conductivity
JPS6119697B2 (en)
JPS6138253B2 (en)
JP2835042B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JPH042664B2 (en)
JPS6254185B2 (en)
JPS6144939B2 (en)
JPS6052547A (en) Heat-resistant aluminum alloy for electrical conduction and its production
JPS5839224B2 (en) Manufacturing method of heat-resistant, high-strength aluminum alloy for conductive use