JPS6029456A - Production of conductor consisting of high-strength heat-resistant aluminum alloy - Google Patents

Production of conductor consisting of high-strength heat-resistant aluminum alloy

Info

Publication number
JPS6029456A
JPS6029456A JP13921883A JP13921883A JPS6029456A JP S6029456 A JPS6029456 A JP S6029456A JP 13921883 A JP13921883 A JP 13921883A JP 13921883 A JP13921883 A JP 13921883A JP S6029456 A JPS6029456 A JP S6029456A
Authority
JP
Japan
Prior art keywords
wire
alloy
strength
heat
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13921883A
Other languages
Japanese (ja)
Other versions
JPH036984B2 (en
Inventor
Hitoshi Yanase
仁志 柳瀬
Michio Miyauchi
宮内 理夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13921883A priority Critical patent/JPS6029456A/en
Publication of JPS6029456A publication Critical patent/JPS6029456A/en
Publication of JPH036984B2 publication Critical patent/JPH036984B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce an Al alloy wire for power transmission having excellent strength and flexibility without decreasing conductivity and heat resistance by adding a small amt. of Fe to an Al-Zr alloy having excellent resistance to heat and subjecting the alloy to hot rolling and heat treatment under specific conditions then to cold drawing. CONSTITUTION:The melt of an Al alloy contg. 0.1-0.8% Zr, 0.07-0.8% Fe, 0.05-0.8% Si, 0.005-0.5% Cu and 0.005-0.5% Ni is continuously or semi- continuously cast at >=740 deg.C. The billet is immediately hot-rolled without heating the same to produce a roughly drawn wire. The roughly drawn wire is heated for 0.5-2.00hr at 200-500 deg.C to improve strength, etc. owing to precipitation of Zr and thereafter the wire is cold drawn to a wire rod. The Al alloy wire having excellent strength, heat resistance and flexibility as a steel cored Al alloy twisted wire to be used for a power transmission wire is obtd.

Description

【発明の詳細な説明】 本発明は高力耐熱アルミニウム合金導体の製造法に関づ
゛るもので、特に従来の高力耐熱アルミニウム合金導イ
ホと同等のう9電率及び強度を有し、かつはるかに優れ
た耐熱性ど可撓性を有する導体を製造−りるものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-strength, heat-resistant aluminum alloy conductor, and in particular, has conductivity and strength equivalent to that of conventional high-strength, heat-resistant aluminum alloy conductors; Furthermore, it is possible to produce a conductor having far superior heat resistance and flexibility.

従来架空送電線には電気用Δ、e (ECA犯)からな
る導体を用いた銅芯アルミニウム撚線(AC3R)が用
いられ、特殊な送電条(qのもどでは耐熱性を付与した
AJ2−Zr系合金からなる導体を用いた調芯耐熱アル
ミニウム台金撚線(TAC5R)が用いられてきた。ま
た長径間送電線には高力アルミニウム合金、例えば50
05系合金(△柔−0,5〜1.hvt%Mg)からな
る導体を用いた銅芯高カアルミニウム合金撚線が用いら
れていた。
Traditionally, overhead power transmission lines have been made of copper-core aluminum stranded wire (AC3R) using conductors made of electrical grade Δ, e (ECA wire), and special transmission wires (AJ2-Zr with heat resistance added at the end of q) have been used. Twisted heat-resistant aluminum core stranded wire (TAC5R) using a conductor made of a high-strength aluminum alloy, such as TAC5R, has been used for long-span power transmission lines.
A copper core high potassium aluminum alloy stranded wire using a conductor made of a 05 series alloy (Δsoft - 0.5 to 1.hvt% Mg) was used.

耐熱性を付与したAゑ一7r系合金はZr量の如何にか
かわらず、導体の強度がくれ程高くならないため、長径
間送電線の導体には用いることができず、全アルミニウ
ム合金撚線(AAAC)の導体としても用いることがで
きない乙のであった。
Heat-resistant A-7R alloys cannot be used as conductors for long-span power transmission lines, because the strength of the conductor does not become very high regardless of the Zr content, and all aluminum alloy stranded wires ( It could not be used as a conductor for AAAC).

また高力アルミニウム合金である5005系合金(j、
引張強さが24Kg/mm2と優れでいるが、耐熱性【
J、ECA!と同程度で、耐熱性に乏しい欠点があった
In addition, 5005 series alloy (j,
The tensile strength is excellent at 24Kg/mm2, but the heat resistance [
J.ECA! However, it had the disadvantage of poor heat resistance.

近年電力需要の増大に伴い、大容量送電の見地から耐熱
性があり、しかも強度の高い導体が要望されるようにな
った。これに対処するため5005系合金については耐
熱性の向上が、またA J! −Z r系合金について
は強度の向上が検討され1.l’1−Zr系合金にFe
を添加することにより、導電性及び耐熱性をあまり劣化
さけることなく強度を改善した高力耐熱アルミニウム合
金が提案された。
BACKGROUND ART In recent years, as the demand for electric power has increased, there has been a demand for conductors that are heat resistant and strong from the standpoint of large-capacity power transmission. To deal with this, the heat resistance of 5005 series alloys has been improved, and AJ! -Z For r-based alloys, improvement of strength has been studied.1. Fe in l'1-Zr alloy
A high-strength, heat-resistant aluminum alloy has been proposed that has improved strength without significantly deteriorating conductivity and heat resistance by adding .

この合金は導電率56%lAC3、引張強さ25Ku/
mm”、耐熱性93%(230℃、1時間加熱)と優れ
た特性を承りも、架空送電としC重要な可撓性が劣る欠
点があり、耐熱性についてもより以上の改善が望まれて
いる。
This alloy has a conductivity of 56% lAC3 and a tensile strength of 25 Ku/
Although it has excellent properties with a heat resistance of 93% (heated at 230°C for 1 hour), it has the disadvantage of poor flexibility, which is important for overhead power transmission, and further improvement in heat resistance is desired. There is.

本発明はこれに鑑み秤々検伺の結果、従来の高力耐熱ア
ルミニウム合金導体と同等の導電率及び強度を有し、か
つはるかに(’Wれた111熱性ど可撓性を有する高ツ
ノ&4熱アルミニウム合金尋休の製造法を開発したもの
で、Zr 0.1〜0.8wt%(以下wt%を単に%
ど略記) 、Fe O,07−0,8%、810.05
〜0.8%、Cu O,005〜0.5%、N i 0
−005〜0.5%を含み、残部へ(と通常の不純物か
らなるアルミニウム合金溶湯を740℃以上の温度で連
続又は半連続鋳造し、得られた鋳塊を再加熱することな
く直らに熱間圧延して荒引線とし、これを100〜50
0℃の温度で0.5〜200 [1′¥間加熱処理した
後、冷間で伸線加工することを特徴とするbのである。
In view of this, as a result of weighing and inspection, the present invention has been developed to have high-horn conductivity and strength equivalent to conventional high-strength, heat-resistant aluminum alloy conductors, but with far greater thermal flexibility. & 4 A method for producing heat-generating aluminum alloy was developed.
(abbreviation), FeO, 07-0.8%, 810.05
~0.8%, CuO,005~0.5%, Ni0
A molten aluminum alloy containing -005 to 0.5% and the remainder (and normal impurities) is continuously or semi-continuously cast at a temperature of 740°C or higher, and the resulting ingot is immediately heated without reheating. Roll it to make a rough wire, which is 100 to 50
Item b is characterized in that the wire is heated at a temperature of 0°C for 0.5 to 200 [1' yen] and then cold wire drawn.

即ち本発明は上記組成範囲の合金溶湯を740℃以上の
温度で鋳造することにより、含有Zrを十分に固溶させ
る。これを再加熱Jることなく直ちに熱間圧延して荒引
線とし、これを加熱処理りることによりZrを析出せし
め、Zrの析出による耐熱性の向上と導電率の回復を図
り、更にZrの析出硬化により強度を向上せしめる。こ
れを冷間で伸線加工することにより更に強度を向上せし
めたものである。このJ、うにして製j貴しlこS(木
は従来の高力耐熱アルミニウム合金導体と同等の導電率
と強度を有し、かつはるかに優れた耐熱性ど可撓性を示
すものr、S体とし−Cより多くの電流を流すことがで
きものである。またこの導体は通常の銅芯アルミニウム
撚線にみられる鉄芯損のない全アルミニウム撚線の導体
としCの使用を可能ならしめたものである。
That is, in the present invention, by casting a molten alloy having the above-mentioned composition range at a temperature of 740° C. or higher, Zr contained therein is sufficiently dissolved in solid solution. This was immediately hot-rolled into a rough wire without reheating, and then heat-treated to precipitate Zr, thereby improving heat resistance and recovering electrical conductivity due to the precipitation of Zr. Strength is improved by precipitation hardening. The strength was further improved by cold wire drawing. This J is made of sea urchin and has the same electrical conductivity and strength as conventional high-strength heat-resistant aluminum alloy conductors, but also exhibits far superior heat resistance and flexibility. This conductor is made of S body and can carry more current than C. Also, this conductor is an all-aluminum stranded wire conductor without the core loss found in ordinary copper-core aluminum stranded wire, making it possible to use C. It is something that has been trained.

しかして本発明において合金組成を上記の如く限定した
のは、次の理由によるものである。
However, the reason why the alloy composition is limited as described above in the present invention is as follows.

7rは耐熱性を向上するために添加したものであるが、
7r含有量が0.1%未満では耐熱性の向上効果が少な
く、0.8%を超えると耐熱性の向上効果より導電率の
低下が著しくなり、導体として使用できなくなるためで
ある。Feは強度を向上さゼるために添加したものであ
るが、その含有量が0.07%未満では所望の強度が1
9られす、0.8%を越えるど導電率の低下が若しくな
り、導体として使用できなくなるためである。
7r was added to improve heat resistance,
This is because if the 7r content is less than 0.1%, the effect of improving heat resistance is small, and if it exceeds 0.8%, the decrease in electrical conductivity becomes more significant than the effect of improving heat resistance, making it impossible to use it as a conductor. Fe is added to improve strength, but if its content is less than 0.07%, the desired strength will be reduced to 1.
This is because as the amount exceeds 0.8%, the conductivity decreases more rapidly and it becomes impossible to use it as a conductor.

81はZrの析出を促進させるために添加したものであ
るが、その含有量が0.05%未満ではZr析出を促進
させる効果が小さく、0.8%を越えるとZ「析出を促
進させる効果よりも導電率の低−トが箸しくなり、導体
として使用できなくなるためである。CLIは導体の可
撓性を向上するために添加したものであるが、その含有
量が0.005%未満では可撓性向上の効果が少なく、
0.5%を越えると導電率の低下が著しく、導体として
使用できなくなるためである。またNiは△(71〜リ
ツクスの強度を高めるために添加したものであるが、そ
の含有量が0.005%未満ではその効果が少なく、0
.5%を越えると導電率の低下が著しくなり、導体とし
て使用することができなくなるためである。
81 is added to promote the precipitation of Zr, but if its content is less than 0.05%, the effect of promoting Zr precipitation is small, and if it exceeds 0.8%, the effect of promoting Zr precipitation is This is because the conductivity of the conductor is lower than that of the conductor, and it becomes unusable as a conductor.CLI is added to improve the flexibility of the conductor, but its content is less than 0.005%. , the effect of improving flexibility is small,
This is because if it exceeds 0.5%, the conductivity will drop significantly and it will no longer be possible to use it as a conductor. In addition, Ni is added to increase the strength of △(71 to
.. This is because if it exceeds 5%, the conductivity will drop significantly and it will no longer be possible to use it as a conductor.

尚その伯の不純物としては通常の電気用A(地金に含ま
れる程度であれば、導体の特性を損イfうことはない。
Incidentally, the impurity is common electrical grade A (as long as it is contained in the base metal, it will not impair the characteristics of the conductor.

このような組成範囲の合金溶湯を7110℃以」−の温
度で連続又は半連続鋳造づるのは、vf造時にZrを十
分に固溶ざ氾るためであり、溶湯の鋳造温石が740℃
未満では7rの固溶量が少4fり、その後の熱間圧延及
び荒引線の加熱処理条件をどのように選/υでも十分な
耐熱性が得られないためである。また熱間圧延した荒引
線を100〜500℃の温度で0.5〜200時間加熱
処理りるのは、Zrの析出により耐熱性を(=J与し、
導電率を回復させると共に析出硬化により強度を向上さ
せるためで゛あり、100℃未満の温度では十分な析出
効果が得られず、500℃の温度を越えると強度の低下
が大きく、また処理時間が0.5時間未満では導電率の
回復が少なく、200時間を越えると強度低下が大きく
なるためである。このようにしてZrを析出させた後、
これを冷間伸線加工するのは、加工硬化により更に強度
を高めるためであり、この加工により従来の高力アルミ
ニウム合金と同等の強度どするものである。
The reason for continuous or semi-continuous casting of a molten alloy having such a composition range at a temperature of 7110°C or higher is to ensure that Zr is sufficiently dissolved in solid solution during VF production, and the casting hot stone of the molten metal is cast at a temperature of 740°C or higher.
This is because if it is less than 4f, the solid solution amount of 7r will be less than 4f, and sufficient heat resistance will not be obtained no matter how the subsequent hot rolling and rough wire heat treatment conditions are selected. In addition, heating the hot-rolled rough drawn wire at a temperature of 100 to 500°C for 0.5 to 200 hours imparts heat resistance (=J) due to the precipitation of Zr.
This is to restore electrical conductivity and improve strength through precipitation hardening. At temperatures below 100°C, a sufficient precipitation effect cannot be obtained, and at temperatures above 500°C, the strength decreases significantly and the processing time increases. This is because when the time is less than 0.5 hours, the recovery of the conductivity is small, and when the time exceeds 200 hours, the strength decreases greatly. After precipitating Zr in this way,
The reason why this material is subjected to cold wire drawing is to further increase its strength through work hardening, and through this processing, the strength is equivalent to that of conventional high-strength aluminum alloys.

以下本発明を実施例について詳細に説明する。The present invention will be described in detail below with reference to examples.

純度99.6%の電気用A(地金と、△(−5%7r、
Δ柔−6%Fe、Af−50%CLI、△柔−20%S
;、Aぶ一10%Niの各母合金を用い、第1表に示り
一組成に配合して溶融し、この溶湯を第1表に示′?l
温度でベルトアンドホイール型連続鋳造圧延機に注湯し
、断面積2000R,m2の鋳塊を連続的に鋳込し、こ
の鋳塊を再加熱することなく引続いて熱間圧延し、直径
9.5 nunの荒引線どした。この荒引線を第1表に
示す湿度で加熱処理した後、冷間で伸線加工して直径4
 nwnの導体を製造し7j 。
Electrical A with a purity of 99.6% (base metal, △(-5%7r,
ΔSoft-6%Fe, Af-50%CLI, ΔSoft-20%S
;, Al and 10% Ni were blended and melted to the composition shown in Table 1, and the molten metal was prepared as shown in Table 1. l
The ingot was poured into a belt-and-wheel continuous casting and rolling mill at a temperature of 2000 m2, and an ingot with a cross-sectional area of 2000 R, m2 was continuously cast. .5 I drew the rough line for nun. After heat-treating this rough drawn wire at the humidity shown in Table 1, it was cold-drawn to a diameter of 4.
7j manufactures nwn conductors.

このようにして製造した導体についてgJ導電率引張強
ざ、耐熱性及び可撓性を測定した。その結果を従来の高
力耐熱アルミニウム合金溶湯をベルトアンドホイール型
連続鋳造圧延機により連続的に鋳造圧延し、白径9.5
gの荒引線とした後、冷間で伸線加工した導体の特性と
比較しで第1表に併記した。
The gJ conductivity, tensile strength, heat resistance, and flexibility of the conductor thus manufactured were measured. The results were obtained by continuously casting and rolling a conventional high-strength, heat-resistant aluminum alloy molten metal using a belt-and-wheel type continuous casting and rolling machine.
A comparison is made in Table 1 with the characteristics of a conductor that was cold drawn after being made into a roughly drawn wire of g.

尚導電率はクルビンダブルブリッジにより電気抵抗を測
定して算出し、引張強さはアムスラー型試験機により測
定し、耐熱性は試お1を230℃の温度に1時間加熱し
、加熱前の引張強さに苅り−る加熱後の引張強さの割合
で表わした。また可撓性は試料を直径の2倍の曲面で挾
持し、か右交互に90°繰返し曲げを行ない破断までの
90°曲げ回数を測定した。
The electrical conductivity was calculated by measuring the electrical resistance using a Kulbin double bridge, the tensile strength was measured using an Amsler type tester, and the heat resistance was calculated by heating the sample to 230°C for 1 hour. It is expressed as the ratio of the tensile strength after heating to the tensile strength. Flexibility was measured by holding the sample between curved surfaces twice the diameter and repeatedly bending the sample at 90° alternately to the right and to the right to measure the number of times the sample was bent at 90° until it broke.

第1表 H)4造法 NO合 金 組 成 (%) 鋳造湿IZ
r Fe Si Cu Ni AJI! (’C)本発
明法 1 0,2 0.6 0.1 0.01 0,0
1 残 740!I2〃0.40.150.30.3I
ノア80〃3ノ、0.10,20,10,4J/ノll
14 n O,20,150,40,i n’ nI!
5 0.4 0,6 0,1 0.01 0.01 、
、 IIIj(’) IIO,40,150,3Q、3
 n n〃 7 ll 0.1 0.2 0.1 0.
4 〃 II8 lO120,40,40,1+、 、
11!9 0.6 0.G Oll 0.01 0,0
1 +、 800n 10 jJ O040,150,
30,3n II11 〃0.1 0.2 0.1 0
.4 、、 、。
Table 1 H) 4 manufacturing method NO alloy composition (%) Casting wet IZ
r Fe Si Cu Ni AJI! ('C) Method of the present invention 1 0,2 0.6 0.1 0.01 0,0
1 740 left! I2〃0.40.150.30.3I
Noah 80〃3ノ, 0.10,20,10,4J/noll
14 n O, 20, 150, 40, i n' nI!
5 0.4 0,6 0,1 0.01 0.01,
, IIIj(') IIO,40,150,3Q,3
n n〃 7 ll 0.1 0.2 0.1 0.
4 〃 II8 lO120,40,40,1+, ,
11!9 0.6 0. G Oll 0.01 0,0
1 +, 800n 10 jJ O040,150,
30,3n II11 〃0.1 0.2 0.1 0
.. 4.

112 、+ 0.2 0.6 0,4 0.1 +、
 I。
112, + 0.2 0.6 0,4 0.1 +,
I.

比較法 13 0.05 h O,20,1ll!78
0!!14 0.95 〃n II n 15 0.4 0.04 〃〃 IT 16 H1,OJJ JJ !ノ1711O,20,03〃 1118II〃0.901I u19ツノ〃0.20,001〃nu JJ 20 n n n Q、7 〃21〃II〃0,050.0O11II!JT 22
 Jr IT II JJ Q、7 II IIJ/2
3IIノJIINO,1n700II24II7/II
ノInIノア80n 25 n II 11 II n 26 IT Jr II JJ /7 27 II JJ 11 /7 (1) 1加熱処理 導電率 引張強さ耐熱性可撓性(℃) X
 (hr) (%IAC8) (K(1/mm2) (
%) (回)200x 184 55.7 25.8 
97,5 29200x 48 56.2 24.8 
97.0 30350x 12 56,8 25,6 
96,2 26350X 24 55,8 24,1 
95.2 30400x 96 55.9 25,0 
97.[i 26400x 48 、 56.0 25
.2 98.0 30350x 2/l 55.8 2
4.1 98.0 32400x 24 56.3 2
4.6 98.6 30500x 48 56,6 2
6,3 99,2 26500x 24 55.9 2
5J 99.6 28500x 1 55,3 24,
6 99.9 2B200x 184 57.6 24
.8 97.2 31350x 24 56,3 24
,7 76.3 2[)lIX I49,2 25,1
 99.6 29nX u 56,2 1Ci、2 7
4,3 30IIX n50,1 24.6 97,6
 27/IX u 52,3 17,2 96,6 3
1〃x 、n 49,6 25.6 97j 28n×
n 56,6 25.0 97.(i 14II×)1
50.62ノL891’1.129n×// 5G、9
 18,6 96.8 30〃x 1149.4 25
,4 97.2 27/IX u 55.9 25.1
 78.2 3080x 〃50.2 18,8 98
.3 31560x jJ 55.8 16,6 97
.6 30350x O,151,225,397,8
26// X 230 5B、3 15,6 97.1
 28製造法 No 合 金 、絹 成 〈り7r F
e Si Cu Ni 従従来 28 0,1 0.7 0.1 − −7!2
9 〃0.35 、、 0.2 −1130 IO,4
On 0.15 −第1表(2) 6) 鋳)仏法11度加熱処理 導電率 引張強ざ耐熱
性可撓性AJ! (℃) (℃) X (hr) (%
I AC8) 、 <Kq/mm2) (%)(印残 
730 − − 56.0 25.0 94.3 1G
−−55,625,692,120 −−56,125,293,618 第1表から明らかなJ:うに本発明法N o、 1〜1
2により製造した導体は、導電率55.3〜57.6%
IΔC8、引張強さ24.1〜26.3K g、 /薦
2、耐熱性(230℃×1時間) 95.2〜99.9
%、可撓性26〜32回の特性を示し、従来法N O,
28〜30と比較し、導電率及び引張強さはほぼ同等で
耐熱性及び可撓性がはるかに優れていることが判る。
Comparative method 13 0.05 h O,20,1ll! 78
0! ! 14 0.95 〃n II n 15 0.4 0.04 〃〃 IT 16 H1,OJJ JJ!ノ1711O,20,03〃 1118II〃0.901I u19horn〃0.20,001〃nu JJ 20 n n n Q, 7 〃21〃II〃0,050.0O11II! JT 22
Jr IT II JJ Q, 7 II IIJ/2
3IIノJIINO, 1n700II24II7/II
NoInI Noah 80n 25 n II 11 II n 26 IT Jr II JJ /7 27 II JJ 11 /7 (1) 1 Heat treatment Electrical conductivity Tensile strength Heat resistance flexibility (℃) X
(hr) (%IAC8) (K(1/mm2) (
%) (times) 200x 184 55.7 25.8
97.5 29200x 48 56.2 24.8
97.0 30350x 12 56,8 25,6
96,2 26350X 24 55,8 24,1
95.2 30400x 96 55.9 25,0
97. [i 26400x 48, 56.0 25
.. 2 98.0 30350x 2/l 55.8 2
4.1 98.0 32400x 24 56.3 2
4.6 98.6 30500x 48 56,6 2
6,3 99,2 26500x 24 55.9 2
5J 99.6 28500x 1 55, 3 24,
6 99.9 2B200x 184 57.6 24
.. 8 97.2 31350x 24 56,3 24
,7 76.3 2[)lIX I49,2 25,1
99.6 29nX u 56,2 1Ci, 2 7
4,3 30IIX n50,1 24.6 97,6
27/IX u 52,3 17,2 96,6 3
1〃x, n 49,6 25.6 97j 28n×
n 56,6 25.0 97. (i 14II×)1
50.62ノL891'1.129n×// 5G, 9
18,6 96.8 30 x 1149.4 25
,4 97.2 27/IX u 55.9 25.1
78.2 3080x 〃50.2 18,8 98
.. 3 31560x jJ 55.8 16,6 97
.. 6 30350x O,151,225,397,8
26//X 230 5B, 3 15,6 97.1
28 Manufacturing method No. Alloy, Silk 7r F
e Si Cu Ni Conventional 28 0,1 0.7 0.1 - -7!2
9 〃0.35,, 0.2 -1130 IO,4
On 0.15 - Table 1 (2) 6) Casting) Buddhist method 11 degree heat treatment Electrical conductivity Tensile strength Heat resistance Flexibility AJ! (℃) (℃) X (hr) (%
I AC8) , <Kq/mm2) (%) (mark remaining
730 - - 56.0 25.0 94.3 1G
--55,625,692,120 --56,125,293,618 J that is clear from Table 1: Sea urchin invention method No. 1 to 1
The conductor manufactured according to 2 has a conductivity of 55.3 to 57.6%.
IΔC8, tensile strength 24.1-26.3K g, /recommendation 2, heat resistance (230℃ x 1 hour) 95.2-99.9
%, flexibility of 26 to 32 times, conventional method NO,
It can be seen that compared with No. 28 to No. 30, the conductivity and tensile strength are almost the same, and the heat resistance and flexibility are far superior.

これに対し合金組成、鋳造温度、加熱処理条(’1の何
れかが本発明により規定した範囲から外れる比較法No
、13〜27では導電率、引張強さ、耐熱性、可撓性の
何れかが劣ることが判る。即ら7r含有但の少ない比較
法No、13、鋳造温度が低い比較法N o、23では
何れも耐熱性が劣り、7r含右量の多い比較法No、+
4、Fe含有量の多い比較法NO,1B、S1含有最の
多い1と較法No、IB、CuS右最の多い比較法No
、20.Ni含有量の多い比較沫N□、ツ9加熱処理時
間の短い比較法N o、26では何れも導率の低下が著
しく、Fe含有量の少ない比較法No、15では引張強
さ及び耐熱性が劣る。またS含有量の少ld−い比較法
N o、17、加熱処理温度のい比較法N o、24で
は何れも導電率及び引張強さが劣り、Cu含右量の少な
い比較法No、19では「す1尭性が改善されず、更に
Ni含有量の少ない比較法N O,21、加熱処理温度
が高い比較法N O,25及び加熱処理時間が長い比較
法N o、27では引張強さが劣ることが判る。
On the other hand, comparative method No.
, 13 to 27 are found to be inferior in any one of electrical conductivity, tensile strength, heat resistance, and flexibility. That is, Comparative Method No. 13, which contains less 7r, and Comparative Method No. 23, which has a lower casting temperature, both have poor heat resistance, while Comparative Method No., + which contains a large amount of 7r.
4. Comparative method No. 1 with the highest Fe content, 1B, Comparative method No. 1 with the highest S1 content, IB, Comparative method No. with the highest CuS content
, 20. Comparative method No. 26 with a high Ni content and Comparative method No. 26 with a short heat treatment time had a significant decrease in conductivity, while comparative method No. 15 with a low Fe content had poor tensile strength and heat resistance. is inferior. Furthermore, Comparative Method No. 17 with a low S content and Comparative Method No. 24 with a high heat treatment temperature were both inferior in conductivity and tensile strength, and Comparative Method No. 19 with a low Cu content. In ``Comparative method No. 21, which does not improve the tensile strength and has a lower Ni content, Comparative method No. 25, which has a higher heat treatment temperature, and Comparative method No. 27, which has a longer heat treatment time, the tensile strength is lower. It turns out that the quality is inferior.

このように本発明によれば従来の高)J耐熱アルミニウ
ム合金導体とほぼ同等の導電蜜及び強度を有し、かつは
るかに優れた耐熱性及び可1尭性を有する高力耐熱アル
ミニウム合金お7体を寄ることかできるもので、鋼芯高
力耐熱アルミニウム合金撚線や全アルミニウム合金撚線
に使用し、送電容斤を増大し得る顕箸な効果を奏するも
ぐある。
As described above, the present invention provides a high-strength heat-resistant aluminum alloy 7 that has conductivity and strength almost equivalent to conventional high heat-resistant aluminum alloy conductors, and has far superior heat resistance and flexibility. It can be used for steel-core high-strength heat-resistant aluminum alloy stranded wires and all-aluminum alloy stranded wires, and has a significant effect on increasing power transmission capacity.

手続補正歯(自発) 昭和59年7月17日 1、事件の表示 昭和58年 特許願 第139218号2、発明の名称 高力耐熱アルミウニム合金導体の製造法3、補正をする
者 事件との関係 特許出願人 住 所 東京都壬代田区丸の内2丁目6番1号名 称 
(529)古河電気工業株式会社4、代理人 住 所 東京都千代田区神田北乗物町16番地〒101
 英 ビル3階 6、補正の内容 (1)特許請求の範囲を別紙の通り訂正する。
Procedural amendment teeth (voluntary) July 17, 1980 1. Indication of the case 1988 Patent Application No. 139218 2. Name of the invention Method for manufacturing high-strength heat-resistant aluminum alloy conductor 3. Person making the amendment Relationship with the case Patent applicant address: 2-6-1 Marunouchi, Mibuyota-ku, Tokyo Name:
(529) Furukawa Electric Co., Ltd. 4, Agent address: 16 Kanda Kita Jorimono-cho, Chiyoda-ku, Tokyo 101
English Building 3rd Floor 6 Contents of amendment (1) The scope of claims is amended as shown in the attached sheet.

(2)発明の詳細な説明においで、第4頁第3行及び第
5頁第16行にそれぞれ「100〜500℃」とあるを
[200〜500℃jと訂正する。
(2) In the detailed description of the invention, the words "100-500°C" on page 4, line 3 and page 5, line 16 are corrected to "200-500°Cj."

(3)同第5頁第20行に「100℃未満」とあるを「
200℃未満」と訂正する。
(3) On page 5, line 20, the phrase “less than 100℃” has been replaced with “
"Less than 200 degrees Celsius".

特許請求の範囲 Zr O,1〜0.8wt%、Fe O,07〜0.8
wt%、3 i 0.05〜0,8wt%、CLI O
,,005〜0.5wt%、N io、005〜0.5
wt%を含み、残部へ(と通常の不純物からなるアルミ
ニウム合金溶湯を740℃以上の温度で連続又は半連続
鋳造し、得られ1こ鋳塊を再加熱することなく、直ちに
熱間圧延して荒引線トシ、コレラ200・” 500℃
の温度′co、5〜200時間加熱処理した後、冷間で
伸線加工することを特徴どする高力耐熱アルミウニム合
金導体の製造ン去。
Claims Zr O, 1 to 0.8 wt%, Fe O, 07 to 0.8
wt%, 3i 0.05-0.8wt%, CLI O
,,005~0.5wt%,Nio,005~0.5
% wt% and the remainder (and normal impurities) is continuously or semi-continuously cast at a temperature of 740°C or higher, and the resulting ingot is immediately hot-rolled without reheating. Arahiki line Toshi, cholera 200・” 500℃
The manufacturing process of a high-strength heat-resistant aluminum alloy conductor is characterized in that the conductor is heat-treated for 5 to 200 hours at a temperature of '0.

Claims (1)

【特許請求の範囲】 Z r O,1〜0.8wt%、F e O,07〜0
.8wt%、S i O,05〜0.8wt % 、 
Cu O,005〜0.5wt % 、N i O,0
05〜0.5wt%を含み、残部A(と通常の不純物か
らなるアルミニウム合金溶湯を740℃以上の温度で連
続又は半連続坊造し、得られ1〔鋳塊を再加熱すること
なく、直らに熱間圧延して荒引線とし、これを100〜
500℃の温度で0.5〜200時間加熱処理した後、
冷間r伸線加工することを特徴とりる高力耐熱アルミニ
ム合金導体のIi!il造法。
[Claims] Z r O, 1 to 0.8 wt%, F e O, 07 to 0
.. 8wt%, SiO, 05-0.8wt%,
CuO,005~0.5wt%, NiO,0
A molten aluminum alloy containing 05 to 0.5 wt% and the remainder A (and normal impurities) is continuously or semi-continuously boiled at a temperature of 740°C or higher to obtain 1. It is hot rolled to make a rough wire, which is 100~
After heat treatment at a temperature of 500°C for 0.5 to 200 hours,
Ii is a high-strength, heat-resistant aluminum alloy conductor that is characterized by cold wire drawing. IL construction method.
JP13921883A 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy Granted JPS6029456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13921883A JPS6029456A (en) 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13921883A JPS6029456A (en) 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPS6029456A true JPS6029456A (en) 1985-02-14
JPH036984B2 JPH036984B2 (en) 1991-01-31

Family

ID=15240262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13921883A Granted JPS6029456A (en) 1983-07-29 1983-07-29 Production of conductor consisting of high-strength heat-resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6029456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141209A (en) * 2017-02-28 2018-09-13 アイシン精機株式会社 Method for manufacturing aluminum alloy wire
JP2021011597A (en) * 2019-07-04 2021-02-04 日立金属株式会社 Aluminum alloy wire rod and manufacturing method thereof
JP2021011596A (en) * 2019-07-04 2021-02-04 日立金属株式会社 Aluminum alloy wire rod and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141209A (en) * 2017-02-28 2018-09-13 アイシン精機株式会社 Method for manufacturing aluminum alloy wire
JP2021011597A (en) * 2019-07-04 2021-02-04 日立金属株式会社 Aluminum alloy wire rod and manufacturing method thereof
JP2021011596A (en) * 2019-07-04 2021-02-04 日立金属株式会社 Aluminum alloy wire rod and manufacturing method thereof

Also Published As

Publication number Publication date
JPH036984B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
JP5486870B2 (en) Manufacturing method of aluminum alloy wire
JPS6029456A (en) Production of conductor consisting of high-strength heat-resistant aluminum alloy
JPS60155655A (en) Production of high tensile aluminum alloy conductor
JPS6033176B2 (en) Conductive copper alloy
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
JPS59104460A (en) Preparation of high strength and heat resistant aluminum alloy conductor
JPS5983752A (en) Preparation of heat resistant aluminum alloy conductor
JPH036983B2 (en)
JPH0335373B2 (en)
JPS591659A (en) Manufacture of twisted aluminum alloy wire with electrically conductivity, high strength and heat resistance
JPS5989743A (en) High-strength copper alloy with high electric conductivity
JPS6052547A (en) Heat-resistant aluminum alloy for electrical conduction and its production
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JPH0335374B2 (en)
JPS6116421B2 (en)
JPS61243159A (en) Production of heat resistant aluminum alloy conductor having high electric conductivity
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire
JP2835042B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JPS6361380B2 (en)
JPH01152248A (en) Manufacture of high-strength and heat-resistant conductive aluminum alloy
JPS59166660A (en) Preparation of high tensile heat resistant aluminum alloy for electric conduction
JPS6013046A (en) Heat-resistant aluminum alloy for electric conduction and its manufacture
JPS59162260A (en) Production of heat-resisting aluminum alloy for electrical conduction
JPS59211547A (en) Heat-resistant aluminum alloy conductor and its manufacture
JPS59123732A (en) Electrically conductive aluminum alloy with heat resistance and its manufacture