JPS61243159A - Production of heat resistant aluminum alloy conductor having high electric conductivity - Google Patents
Production of heat resistant aluminum alloy conductor having high electric conductivityInfo
- Publication number
- JPS61243159A JPS61243159A JP8199485A JP8199485A JPS61243159A JP S61243159 A JPS61243159 A JP S61243159A JP 8199485 A JP8199485 A JP 8199485A JP 8199485 A JP8199485 A JP 8199485A JP S61243159 A JPS61243159 A JP S61243159A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- heat resistance
- alloy
- electric conductivity
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高導電性耐熱アルミニウム合金導体の製造法に
関し、特に従来の耐熱アルミニウム合金導体と同等の引
張強さとより優れた耐熱性及び導電率を有する導体を製
造するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a highly conductive heat-resistant aluminum alloy conductor, and in particular, it relates to a method for producing a highly conductive heat-resistant aluminum alloy conductor, and in particular, it has a tensile strength equivalent to that of conventional heat-resistant aluminum alloy conductors and superior heat resistance and conductivity. The purpose is to manufacture a conductor having the following characteristics.
[従来の技術]
一般に架空送電線には、電気用アルミニウム地金(J
l5H2110)より造られた導電率62%lAC3以
上のアルミニウム導体が用いられている。しかしこの導
体は短時間使用温度を100℃以下に制限する必要があ
り、この温度以上では導体の強度を保証することができ
ないものであった。このため耐熱性を必要とする場合に
は、電気用アルミニウム地金にZrを0.06 wt%
程度添加した耐熱アルミニウム合金導体が用いられてい
る。[Prior art] Generally, overhead power transmission lines are made of electrical aluminum ingot (J
An aluminum conductor made from 15H2110) with a conductivity of 62% 1AC3 or higher is used. However, it is necessary to limit the short-time use temperature of this conductor to 100° C. or less, and the strength of the conductor cannot be guaranteed above this temperature. For this reason, when heat resistance is required, 0.06 wt% Zr is added to the electrical aluminum base metal.
A heat-resistant aluminum alloy conductor is used.
この導体は短時間使用温度を180℃まで上げることが
でき、230℃×1h「耐熱性(引張強さの残存率)で
90%保証することができる。This conductor can be used at temperatures up to 180°C for a short period of time, and can guarantee heat resistance (tensile strength retention rate) of 90% at 230°C for 1 hour.
[発明が解決しようとする問題点]
上記耐熱アルミニウム合金導体の導電率は60%程度と
低いため、その改善が強く望まれている。[Problems to be Solved by the Invention] Since the conductivity of the heat-resistant aluminum alloy conductor is as low as about 60%, improvement thereof is strongly desired.
即ち導体の導電率と耐熱性は含有lrの最によって決定
されるため、導電率を向上させるには含有Zr量を減少
させる必要があり、一方含有zr量を減少させると耐熱
性が低下する欠点がある。In other words, the electrical conductivity and heat resistance of a conductor are determined by the amount of lr contained, so in order to improve the electrical conductivity, it is necessary to reduce the amount of Zr contained, but on the other hand, reducing the amount of Zr contained has the disadvantage that heat resistance decreases. There is.
[問題点を解決するための手段]
本発明はこれに鑑み種々検討の結果、従来の耐熱アルミ
ニウム合金とほぼ同等の引張強さと、より優れた耐熱性
と、はるかに優れた導電率を有する高導電性耐熱アルミ
ニウム合金導体の製造法を開発したもので、Z r 0
.005〜0,05 wt%、l”eO105〜0,2
wt%、S i O,07wt%以下、残部A(と通常
の不純物からなるアルミニウム合金を連続鋳造し、続い
て熱間圧延を行なって荒引線とし、これを冷間加工によ
り導体とする方法において、熱間圧延前半を450〜6
00℃で行なった後、直ちに200℃以下に急冷し、引
き続き後半を200℃以下で連続的に圧延して荒引線と
し、これに冷間で60%以上の減面加工を加えることを
特徴とするものである。[Means for Solving the Problems] In view of this, as a result of various studies, the present invention has developed a high-temperature aluminum alloy that has almost the same tensile strength as conventional heat-resistant aluminum alloys, superior heat resistance, and far superior electrical conductivity. A method for manufacturing conductive heat-resistant aluminum alloy conductors has been developed, and Z r 0
.. 005~0,05 wt%, l"eO105~0,2
wt%, S i O, 07 wt% or less, the balance A (and normal impurities) is continuously cast, followed by hot rolling to form a rough wire, and cold working to form a conductor. , 450-6 for the first half of hot rolling
After being heated to 00°C, it is immediately quenched to 200°C or below, and then the latter half is continuously rolled at 200°C or below to form a rough drawn wire, which is then cold-rolled to reduce the area by 60% or more. It is something to do.
[作 用]
本発明において合金組成を上記の如く限定したのは次の
理由によるものである。[Function] The reason why the alloy composition is limited as described above in the present invention is as follows.
Z「は耐熱性を向上させるための添加元素であり、その
含有量が0.005wt%未満では十分な耐熱性が得ら
れず、o、os wt%を越えると導電率の低下が著し
くなる・。Feは強度を向上させると共に更に耐熱性を
向上させるための添加元素であり、その含有量がo、o
s wt%未満では十分な強度と耐熱性が得られず、0
,2wt%を越えると導電率の低下が著しくなる。また
3iは不純物として含まれるもので、導電率を低下させ
るところから少ない方が望ましく、0.07 wt%以
下に制限したものである。Z is an additive element to improve heat resistance, and if its content is less than 0.005wt%, sufficient heat resistance cannot be obtained, and if it exceeds o,os wt%, the electrical conductivity will decrease significantly. .Fe is an additive element to improve strength and further improve heat resistance, and its content is o, o
If it is less than s wt%, sufficient strength and heat resistance cannot be obtained, and 0
, 2 wt%, the conductivity decreases significantly. Further, 3i is contained as an impurity, and since it lowers the conductivity, it is desirable to have a small amount, and the content is limited to 0.07 wt% or less.
このような組成の合金を連続鋳造し、続いて熱間圧延を
行なって荒引線とし、これに冷間加工を加えて導体とす
る工程において、熱間圧延前半を450〜600℃で行
なうのは、Zr及びFeを十分に固溶させるためであり
、熱間圧延前半が450℃未満ではZr及びFeの固溶
量が不十分 ゛となり、600℃を越えると熱閤
圧延割れを生じて健全な導体が得られない。前半熱間圧
延後直ちに200℃以下まで急冷するのは固溶Z「と固
溶Feを析出させることなく、析出温度以下とするため
で、200℃以上ではFeの析出が起り、耐熱性が低下
する。また引き続き後半を200℃以下で連続的に圧延
するのは固溶Feの析出を防ぐと共に強度を向上させる
ためである。このようにして製造した荒引線を冷間で6
0%以上の減面加工するのは導体の強度を高めるためで
あり、加工度が60%未満では十分な強度が得られない
。In the process of continuously casting an alloy with such a composition, then hot rolling it into rough drawn wire, and cold working it to make a conductor, the first half of hot rolling is carried out at 450 to 600°C. This is to ensure sufficient solid solution of Zr and Fe. If the first half of hot rolling is less than 450°C, the amount of solid solution of Zr and Fe will be insufficient, and if it exceeds 600°C, hot rolling cracks will occur and the steel will not be healthy. I can't get a conductor. The reason for rapidly cooling to below 200°C immediately after the first half hot rolling is to keep the temperature below the precipitation temperature without causing solid solution Z and solid solution Fe to precipitate. Above 200°C, precipitation of Fe occurs and heat resistance decreases. The reason why the second half is continuously rolled at 200°C or less is to prevent the precipitation of solid solution Fe and to improve the strength.
The purpose of reducing the area by 0% or more is to increase the strength of the conductor, and if the degree of processing is less than 60%, sufficient strength cannot be obtained.
[実施例]
純度99.8%のアルミニウム地金を溶解し、これにフ
ッ化ジルコニウムカリ(Zr含有量30wt%)A、e
−6wt%Fe母合金、AJ!−10wt%3i母合金
を添加して第1表に示す組成の合金を溶製し、ベルトア
ンドホイール型連続鋳造機により断面積2000Ia2
の鋳塊に連続鋳造し、これを引続いて熱間圧延機により
第2表に示す条件で圧延して、直径9.5履の荒引線と
した。尚熱間圧延機の各ロールスタンドに加熱バーナー
を取付けて加熱し、又冷却には冷却槽及び圧延油の流量
、温度を調節した。[Example] An aluminum base metal with a purity of 99.8% was melted, and zirconium potassium fluoride (Zr content 30 wt%) A, e
-6wt% Fe master alloy, AJ! -10 wt% 3i master alloy was added to produce an alloy having the composition shown in Table 1, and a cross-sectional area of 2000 Ia2 was produced using a belt-and-wheel continuous casting machine.
This was continuously cast into an ingot, which was subsequently rolled in a hot rolling mill under the conditions shown in Table 2 to obtain a rough wire having a diameter of 9.5 mm. A heating burner was attached to each roll stand of the hot rolling mill for heating, and for cooling, the flow rate and temperature of the cooling tank and rolling oil were adjusted.
次に上記荒引線を冷間で伸線加工して導体を製造し、こ
れについて導電率、引張強さ及び耐熱性を測定し、その
結果を第3表に示す。尚引張強さはインストロン型引張
試験機により測定し、導電率はケルビンダブルブリッジ
により電気抵抗を測定して求めた。また耐熱性は導体を
230℃に1時間加熱処理後、引張強さを測定し、加熱
前の引張強さに対する割合で示した。Next, the rough drawn wire was cold drawn to produce a conductor, and the electrical conductivity, tensile strength, and heat resistance of the conductor were measured, and the results are shown in Table 3. The tensile strength was measured using an Instron type tensile tester, and the electrical conductivity was determined by measuring electrical resistance using a Kelvin double bridge. The heat resistance was determined by measuring the tensile strength of the conductor after heating it at 230° C. for 1 hour, and expressed as a percentage of the tensile strength before heating.
第1表
合金別 合金 組 成(wt%)B
O,0100,090,06#G 0901
B 0.18 0.04 IID O
,0270,140,05、## E
00037 0.10 0,05 #F
O,0440,080,05#II G
O,0390,160,04N比較用合金
HO,0010,150,05#1 0.08
0.10 0.05 、。Table 1 Alloy composition by alloy (wt%) B
O,0100,090,06#G 0901
B 0.18 0.04 IID O
,0270,140,05,##E
00037 0.10 0.05 #F
O,0440,080,05#II G
O, 0390, 160, 04N comparative alloy
HO,0010,150,05#1 0.08
0.10 0.05,.
J O,0310,020,04//K
O,0280,250,05#L O,0380
,160,09〃従来用合金 M 0005
0.20 0.13 #第2表
製造法 No、 合金 前半熱間圧延 急冷後の温
度 後半圧延温度 冷間加工率記号 温度(’C)
(”C) (’C) (%
)本発明法 1A480〜470 150
15シ〜130 66.52 B 475
〜580 185 185〜150 7
4,53 C51ト540 165 16
5〜150 80,54 0 560〜500
145 145〜125 74,55E
575〜460 140 140〜130
86.46F560〜550 160
160〜145 86.47 G 52ト5
40 155 155〜145 80.
5比較法 88480〜530 155
155〜140 74,59151ト5(9)
150 15F1話 帥、5”
10J 575〜480 140 14
()−12574,5〃 11に5ω〜520
165 165〜140 86.4#
121 480〜520 15
5 155〜135 74.5n
13B 400〜430 120
12ト115 B6.44# 14G
380〜470 135 135〜12
5 86.4II 15 E 56ト
625 195 195〜150 74
.5# 16F 620〜550 19
0 1ト180 74.5#17A480〜
520 250 195〜140 80.
5n 18E 510〜540 195
220〜180 74,5# 19
F 530−570 195 225〜
205 80.5〃 20C520〜540
175 175〜140 53.2従来
法 21 M
74.5第3表
3 61.2 17,6 93.4
4 61.4 17.4 92.6
5 61.3 17.8 92.8
6 61.5 17.6 92.6
7 61.2 17.8 94.1
比較法 8 62.4 17.0
88.19 60.3 17.4 93.2
10 61.3 15.9 88.41160゜0
18.2 91.8
12 60.5 17.5 92.113 61.5
17.6 89.014 61.2 17,4
89.215 59.9 16,4 91.416
59.9 16,3 92.217 61.9 1
7.4 88.918 61.4 17,0 88.
619 61.6 17.7 89.020 61.
3 15.4 91.4従来法 21 60
.4 17.4 90.6第1表〜第3表か
ら明らかなように、本発明法NQ1〜7により製造した
導体は、引張強さ16.9〜17.8Kg/am2、耐
熱性91.3〜94.1%、導電率61%lAC3以上
の優れた特性を示し、従来法順21により製造した導体
と比較し、引張強さはほぼ同等なるも、耐熱性及び導電
率がはるかに優れていることが判る。J O,0310,020,04//K
O,0280,250,05#L O,0380
,160,09〃Conventional alloy M 0005
0.20 0.13 #Table 2 Manufacturing method No. Alloy First half hot rolling Temperature after quenching Second half rolling temperature Cold working rate symbol Temperature ('C)
(”C) (’C) (%
) Method of the present invention 1A480-470 150
15shi~130 66.52 B 475
~580 185 185~150 7
4,53 C51 540 165 16
5-150 80,54 0 560-500
145 145-125 74,55E
575-460 140 140-130
86.46F560~550 160
160-145 86.47 G 52 to 5
40 155 155-145 80.
5 comparative method 88480-530 155
155-140 74,59151 5(9)
150 15F Episode 1 Marshal, 5”
10J 575-480 140 14
()-12574,5〃 5ω to 11 ~ 520
165 165~140 86.4#
121 480-520 15
5 155-135 74.5n
13B 400-430 120
12 To 115 B6.44# 14G
380~470 135 135~12
5 86.4II 15 E 56 625 195 195-150 74
.. 5# 16F 620~550 19
0 1 to 180 74.5#17A480~
520 250 195-140 80.
5n 18E 510-540 195
220~180 74,5# 19
F 530-570 195 225~
205 80.5〃 20C520~540
175 175-140 53.2 Conventional method 21 M
74.5 Table 3 3 61.2 17.6 93.4 4 61.4 17.4 92.6 5 61.3 17.8 92.8 6 61.5 17.6 92.6 7 61.2 17.8 94.1 Comparative method 8 62.4 17.0
88.19 60.3 17.4 93.2 10 61.3 15.9 88.41160゜0
18.2 91.8 12 60.5 17.5 92.113 61.5
17.6 89.014 61.2 17.4
89.215 59.9 16.4 91.416
59.9 16.3 92.217 61.9 1
7.4 88.918 61.4 17.0 88.
619 61.6 17.7 89.020 61.
3 15.4 91.4 Conventional method 21 60
.. 4 17.4 90.6 As is clear from Tables 1 to 3, the conductors manufactured by the methods NQ1 to 7 of the present invention have a tensile strength of 16.9 to 17.8 Kg/am2 and a heat resistance of 91.3. ~94.1%, electrical conductivity of 61% lAC3 or higher, and compared to the conductor manufactured by the conventional method 21, the tensile strength is almost the same, but the heat resistance and electrical conductivity are far superior. I know that there is.
これに対し本発明法で規定した合金組成範囲より外れる
比較法順8〜12、及び合金組成が規定した範囲内であ
っても、製造条件が外れる比較法Nn13〜20では、
何れも導電率、引張強さ及び耐熱性の何れか一つ以上が
劣ることが判る。即ちzr含有邑が少ない比較法順8で
は耐熱性が悪く、Z「含有量が多い比較法NC19では
導電率が低く、Fe含有量が少ない比較法NQ10では
強度が低く、耐熱性も劣り、Fe含有量が多い比較法随
11では導電率が低く、更に3i含有量が多い比較法順
12も導電率が低い。また本発明法で規制する合金組成
の範囲内であっても、熱間圧延温度が低い比較法NQ1
3.14では耐熱性が悪く、熱間圧延温度が高い比較法
NQ15.16では鋳塊の熱間圧延割れによる、素線表
面欠陥の為導電率及び引張強さが低く、急冷後の温度が
高い比較法N1117では耐熱性が悪く、再圧延温度が
^い比較法11に118.19では耐熱性が悪く、冷間
における減面率が少ない比較法1k120では引張強さ
が低いことが判る。On the other hand, in Comparative Methods Nos. 8 to 12, which fall outside the alloy composition range specified by the method of the present invention, and Comparative Methods No. 13 to 20, in which the manufacturing conditions deviate from the specified range even if the alloy composition is within the specified range,
It can be seen that all of them are inferior in one or more of electrical conductivity, tensile strength, and heat resistance. That is, Comparative Process No. 8, which has a low Zr content, has poor heat resistance, Comparative Process NC19, which has a high Zr content, has low conductivity, and Comparative Process NQ10, which has a low Fe content, has low strength and poor heat resistance. Comparative method No. 11, which has a high 3i content, has a low conductivity, and comparative method No. 12, which has a high 3i content, also has a low conductivity.Also, even if the alloy composition is within the range of the alloy composition regulated by the method of the present invention, the conductivity is low. Comparative method NQ1 with low temperature
Comparative method NQ15.16 has poor heat resistance and high hot rolling temperature in 3.14, which has low conductivity and tensile strength due to wire surface defects due to hot rolling cracks in the ingot, and the temperature after quenching is low. It can be seen that the comparative method N1117, which has a high temperature, has poor heat resistance, the comparative method 11, which has a high re-rolling temperature, and the comparative method 118.19, which has a low heat resistance, and the comparative method 1k120, which has a low area reduction in cold rolling, has a low tensile strength.
[発明の効果]
このように本発明によれば、従来の耐熱アルミニウム合
金導体と同等の強度とはるかに優れた導電率及び耐熱性
を有する導体の製造が可能となり、これを用いた架空送
電線等の送電容量を増大することができる等工業上顕著
な効果を奏するものである。[Effects of the Invention] As described above, according to the present invention, it is possible to manufacture a conductor that has strength equivalent to that of conventional heat-resistant aluminum alloy conductors and far superior conductivity and heat resistance, and overhead power transmission lines using this conductor can be manufactured. This has significant industrial effects, such as being able to increase power transmission capacity.
Claims (1)
2wt%、Si0.07wt%以下、残部Alと通常の
不純物からなるアルミニウム合金を連続鋳造し、続いて
熱間圧延を行なって荒引線とし、これを冷間加工により
導体とする方法において、熱間圧延前半を450〜60
0℃で行なった後、直ちに200℃以下に急冷し、引き
続き後半を200℃以下で連続的に圧延して荒引線とし
、これに冷間で60%以上の減面加工を加えることを特
徴とする高導電性耐熱アルミニウム合金導体の製造法。Zr0.005~0.05wt%, Fe0.05~0.
2wt% Si, 0.07wt% or less of Si, the balance Al and normal impurities are continuously cast, followed by hot rolling to form a rough wire, which is then cold worked into a conductor. 450-60 for the first half of rolling
After being heated at 0℃, it is immediately quenched to 200℃ or less, and then the second half is continuously rolled at 200℃ or less to form a rough drawn wire, which is then subjected to a cold area reduction process of 60% or more. A method for producing highly conductive, heat-resistant aluminum alloy conductors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8199485A JPS61243159A (en) | 1985-04-17 | 1985-04-17 | Production of heat resistant aluminum alloy conductor having high electric conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8199485A JPS61243159A (en) | 1985-04-17 | 1985-04-17 | Production of heat resistant aluminum alloy conductor having high electric conductivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61243159A true JPS61243159A (en) | 1986-10-29 |
Family
ID=13762022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8199485A Pending JPS61243159A (en) | 1985-04-17 | 1985-04-17 | Production of heat resistant aluminum alloy conductor having high electric conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61243159A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5733389A (en) * | 1993-07-07 | 1998-03-31 | Sumitomo Chemical Co., Ltd. | Method of manufacturing a micro-alloy high purity aluminum conductor for use at ultra low temperature |
CN104831127A (en) * | 2015-05-12 | 2015-08-12 | 无锡华能电缆有限公司 | High-conductivity heat-resistance aluminum alloy wire and preparation method thereof |
CN105063433A (en) * | 2015-08-17 | 2015-11-18 | 国网智能电网研究院 | High-conductivity heat-resisting aluminum alloy monofilament and preparation method thereof |
-
1985
- 1985-04-17 JP JP8199485A patent/JPS61243159A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5733389A (en) * | 1993-07-07 | 1998-03-31 | Sumitomo Chemical Co., Ltd. | Method of manufacturing a micro-alloy high purity aluminum conductor for use at ultra low temperature |
US5753380A (en) * | 1993-07-07 | 1998-05-19 | Sumitomo Chemical Co., Ltd. | High purity aluminum alloy conductor for use at ultra low temperatures |
CN104831127A (en) * | 2015-05-12 | 2015-08-12 | 无锡华能电缆有限公司 | High-conductivity heat-resistance aluminum alloy wire and preparation method thereof |
CN105063433A (en) * | 2015-08-17 | 2015-11-18 | 国网智能电网研究院 | High-conductivity heat-resisting aluminum alloy monofilament and preparation method thereof |
CN105063433B (en) * | 2015-08-17 | 2019-01-25 | 全球能源互联网研究院 | A kind of high conductivity and heat heat resistance aluminium alloy monofilament and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS607701B2 (en) | Manufacturing method of highly conductive heat-resistant aluminum alloy | |
JPH0154420B2 (en) | ||
JPS5964753A (en) | Manufacture of heat-resistant aluminium alloy wire for conducting electricity | |
JPS61243159A (en) | Production of heat resistant aluminum alloy conductor having high electric conductivity | |
JPS60221541A (en) | Copper alloy superior in hot workability | |
JPH01309219A (en) | Terminal for electric apparatus made of cu alloy | |
JPH0125822B2 (en) | ||
JPH0314896B2 (en) | ||
JPS62182238A (en) | Cu alloy for continuous casting mold | |
JPS61238944A (en) | Manufacture of heat resistant aluminum alloy conductor having high electric conductivity | |
JPS5983752A (en) | Preparation of heat resistant aluminum alloy conductor | |
JPH01180930A (en) | Cu alloy for terminal and connector | |
JPS6054387B2 (en) | Manufacturing method of high strength heat resistant aluminum alloy conductor | |
JPS5989743A (en) | High-strength copper alloy with high electric conductivity | |
JPS6043905B2 (en) | Manufacturing method of highly conductive heat-resistant copper alloy material | |
JPS6029456A (en) | Production of conductor consisting of high-strength heat-resistant aluminum alloy | |
JPH0335373B2 (en) | ||
JPH0313302B2 (en) | ||
JP2539478B2 (en) | Method for producing tellurium-containing copper alloy | |
JPS6052547A (en) | Heat-resistant aluminum alloy for electrical conduction and its production | |
JPS6317525B2 (en) | ||
JPS6149385B2 (en) | ||
JPS6116421B2 (en) | ||
JPS59162260A (en) | Production of heat-resisting aluminum alloy for electrical conduction | |
JPS61170550A (en) | Manufacture of copper alloy material for lead frame |