JPH0335374B2 - - Google Patents
Info
- Publication number
- JPH0335374B2 JPH0335374B2 JP58159233A JP15923383A JPH0335374B2 JP H0335374 B2 JPH0335374 B2 JP H0335374B2 JP 58159233 A JP58159233 A JP 58159233A JP 15923383 A JP15923383 A JP 15923383A JP H0335374 B2 JPH0335374 B2 JP H0335374B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- heat
- conductor
- aluminum alloy
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 33
- 229910000838 Al alloy Inorganic materials 0.000 claims description 17
- 238000003303 reheating Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 238000005491 wire drawing Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 12
- 238000012733 comparative method Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 5
- 229910018580 Al—Zr Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- -1 aluminum metals Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
本発明は高力耐熱アルミニウム合金導体の製造
法に関するもので、特に従来のAl−Zr系高力耐
熱アルミニウム合金導体とほぼ同等の導電率及び
強度を有し、はるかに優れた耐熱性と可撓性を有
する高力耐熱アルミニウム合金導体を提供するも
のである。
従来架空送電線には導電用Alからなる導体を
用いた鋼芯アルミニウム撚線が用いられており、
特殊な送電条件、例えば耐熱性が要求される送電
線にはAl−Zr系合金からなる耐熱導体を用いた
鋼芯耐熱アルミニウム合金撚線が用いられてい
る。また長径間送電線のように強度が要求される
送電線には5005系合金(Al−0.5〜1.1wt%Mg)
からなる高力導体を用いた鋼芯高力アルミニウム
合金撚線が用いられている。
近年電力需要の増大と架空送電線路の用地難か
ら長径間大容量送電に対する要求が強まつてい
る。しかしながら前記Al−Zr系合金からなる耐
熱導体は含有Zr量の如何に拘わらず、導体の強
度がそれほど高くならないため、長径間送電用導
体には用いることができず、通常の鋼芯アルミニ
ウム撚線にみられる鉄芯損をなくすための全アル
ミニウム合金撚線にも用いることができなかつ
た。また5005系合金からなる高力導体は、引張強
さが24Kg/mm3と優れているが、耐熱性は導電用
Alからなる導体と同程度であり、大容量送電に
は用いることができないものであつた。
このようにAl−Zr系合金からなる耐熱導体に
ついては強度の改善が、また5005系合金からなる
高力導体については耐熱性の向上が強く望まれて
おり、最近Al−Zr系合金にFe及びSiを添加して、
導電性をあまり損なうことなく強度を改善した高
力耐熱アルミニウム合金導体が開発された。しか
しながらこの合金導体は架空送電線としての重要
な特性である可撓性が劣る欠点があり、更に耐熱
性についても一層の改善が強く望まれている。
本発明はこれに鑑み種々検討の結果、従来の高
力耐熱アルミニウム合金導体とほぼ同等の導電率
及び強度を有し、かつはるかに優れた耐熱性及び
可撓性を有し、長径間大容量送電は勿論、全アル
ミニウム合金撚線の導体として使用することがで
きる高力耐熱アルミニウム合金導体の製造方法を
開発したもので、Zr0.1〜1.0wt%(以下wt%単に
%と略記)、Cu0.01〜0.8wt%を含み、残部Alと
通常の不純物からなるアルミニウム合金の溶湯
を、740℃以上の温度で連続又は半連続鋳造し、
得られた鋳塊を再加熱することなく直ちに熱間圧
延して荒引線とし、これを350℃を超え500℃以下
の温度で5〜200時間加熱処理した後、冷間で伸
線加工することを特徴とするものである。
即ち本発明は上記組成範囲内の合金を740℃以
上の温度で連続又は半連続鋳造することにより、
Zrを十分に固溶せしめ、得られた鋳塊を再加熱
することなく熱間圧延により荒引線とする。これ
を350℃を超え500℃以下の温度で5〜200時間加
熱することによりZrを析出せしめ、Zrの析出の
より導電率を回復させると共に析出硬化により強
度を向上せしめる。これを冷間で伸線加工するこ
とより所望線径に仕上げると共に、加工硬化によ
り更に強度を向上せしめたものである。
しかして本発明においてZr含有量を0.1〜1.0%
と限定したのは、0.1%未満ではその後の加工条
件及び加熱処理条件をどのように変えても良好な
耐熱性が得られず、1.0%を超えると耐熱性向上
の効果よりも導電率の低下が著しく、導体として
使用できなくなるためである。またCu含有量を
0.01〜0.8%と限定したのは、Cuの添加によりAl
マトリツクスの強度を向上させると共に導体の可
撓性を向上させるためであるが、0.01未満ではそ
の効果が少なく、0.8%を超えると導電率の低下
が著しくなり、導体として使用できなくなるため
である。尚、その他の不純物としては通常の電気
用Al地金に不可避的に含まれる程度の量であれ
ば、導体の特性を何等損なうことはない。
次に上記組成範囲内の合金を740%以上の温度
で連続又は半連続鋳造するのは、Zrを十分に固
溶させるためであり、鋳造温度が740%未満では
Zrの固溶量が少なく、その後の熱処理、その他
の条件をどのように選んでも十分な耐熱性は得ら
れない。またこのようにして連続又は半連続鋳造
した鋳塊を再加熱することなく直ちに熱間圧延し
て荒引線とし、これを350℃を超え500℃以下の温
度で5〜200時間加熱処理するのは、Zrを析出さ
せて導電率を回復させるると共に耐熱性を付与
し、更に析出硬化により強度を向上させるためで
あり、加熱温度が350℃以下では十分なZrの析出
が得られず、500℃を超えると過時効となつて強
度が低下するためである。また加熱時間が5時間
未満では導電率の回復が少なく、200時間を超え
ると強度の低下が著しくなるためである。このよ
うにして析出処理した荒引線を冷間で伸線加工す
るのは所望寸法の導体に仕上げるためと、加工硬
化により更に強度を向上させるためである。
以下本発明を実施例について詳細に説明する。
純度99.6%の電気用Al地金と、Al−5%Zr、
Al−50%Cuの各母合金を用い、第1表に示す組
成の合金を配合し溶製した。これをベルトアンド
ホイール型連続鋳造機を用い、第1表に示す温度
で鋳造して断面積2000mm3の台形状鋳塊を連続的に
製出した。これを再加熱することなく直ちに熱間
圧延して直径9.5mmの荒引線とした。この荒引線
を種々の温度で加熱処理した後、冷間で伸線加工
し、直径3.0mmの導体を製造した。
このようにして製造した導体につい導電率、引
張強さ、耐熱性及び可撓性を調べた。その結果を
従来のAl−Zr−Fe合金からなる高力耐熱アルミ
ニウム合金導体の特性と比較して第1表に併記し
た。
尚導電率はケルビンダブルブリツジにより抵抗
を測定して算出し、引張強さはアムスラー型引張
試験機により測定した。耐熱性は試料を230℃の
温度に1時間加熱し、加熱前の引張強さに対する
加熱後の引張強さの割合で示した。また可撓性は
試料を直径の2倍の曲面で挟持し、左右交互に90
℃繰返し曲げを行ない、破断までの90°曲げ回数
を測定した。
The present invention relates to a method for manufacturing a high-strength, heat-resistant aluminum alloy conductor, and in particular, it has almost the same conductivity and strength as conventional Al-Zr-based high-strength, heat-resistant aluminum alloy conductors, and far superior heat resistance and flexibility. The present invention provides a high-strength, heat-resistant aluminum alloy conductor with high properties. Traditionally, overhead power transmission lines use steel-core aluminum stranded wires with conductors made of conductive aluminum.
Steel-core heat-resistant aluminum alloy stranded wires using a heat-resistant conductor made of an Al-Zr alloy are used for power transmission lines that require special power transmission conditions, such as heat resistance. In addition, 5005 series alloy (Al-0.5~1.1wt%Mg) is used for power transmission lines that require strength such as long-span power lines.
A steel-core high-strength aluminum alloy stranded wire using a high-strength conductor is used. In recent years, there has been an increasing demand for long-span, high-capacity power transmission due to the increase in power demand and the shortage of land for overhead power transmission lines. However, regardless of the amount of Zr contained in the heat-resistant conductor made of the Al-Zr alloy, the strength of the conductor is not very high, so it cannot be used as a long-span power transmission conductor, and it cannot be used as a conductor for long-span power transmission. It also could not be used for all-aluminum alloy stranded wires to eliminate the core loss seen in steel wires. In addition, high-strength conductors made of 5005 series alloys have an excellent tensile strength of 24Kg/ mm3 , but their heat resistance is poor for conductive use.
It was comparable to a conductor made of Al, and could not be used for large-capacity power transmission. In this way, there is a strong desire to improve the strength of heat-resistant conductors made of Al-Zr alloys, and to improve the heat resistance of high-strength conductors made of 5005-based alloys. By adding Si,
A high-strength, heat-resistant aluminum alloy conductor with improved strength without significantly compromising conductivity has been developed. However, this alloy conductor has the disadvantage of poor flexibility, which is an important characteristic for overhead power transmission lines, and further improvements in heat resistance are strongly desired. In view of this, as a result of various studies, the present invention has been developed to have electrical conductivity and strength almost equivalent to conventional high-strength heat-resistant aluminum alloy conductors, far superior heat resistance and flexibility, and a long span and large capacity. We have developed a method for manufacturing high-strength, heat-resistant aluminum alloy conductors that can be used not only for power transmission but also as conductors for all-aluminum alloy stranded wires. A molten aluminum alloy containing .01 to 0.8 wt% and the remainder Al and normal impurities is continuously or semi-continuously cast at a temperature of 740°C or higher,
Immediately hot-roll the obtained ingot without reheating it to make a rough wire, heat it at a temperature above 350℃ and below 500℃ for 5 to 200 hours, and then cold-draw it. It is characterized by: That is, the present invention continuously or semi-continuously casts an alloy within the above composition range at a temperature of 740°C or higher.
Zr is sufficiently dissolved in solid solution, and the obtained ingot is hot rolled into a rough wire without reheating. By heating this at a temperature above 350°C and below 500°C for 5 to 200 hours, Zr is precipitated, the electrical conductivity is recovered by the Zr precipitation, and the strength is improved by precipitation hardening. This wire is drawn to a desired wire diameter by cold wire drawing, and its strength is further improved by work hardening. However, in the present invention, the Zr content is 0.1 to 1.0%.
The reason for this limitation is that if it is less than 0.1%, good heat resistance will not be obtained no matter how the subsequent processing and heat treatment conditions are changed, and if it exceeds 1.0%, the conductivity will decrease more than the effect of improving heat resistance. This is because it becomes unusable as a conductor. In addition, the Cu content
The reason why we limited it to 0.01 to 0.8% was because of the addition of Cu.
The purpose is to improve the strength of the matrix and the flexibility of the conductor, but if it is less than 0.01%, the effect will be small, and if it exceeds 0.8%, the conductivity will drop significantly, making it impossible to use it as a conductor. It should be noted that other impurities will not impair the characteristics of the conductor in any way if they are present in amounts that are unavoidably contained in ordinary electrical aluminum metals. Next, the alloy within the above composition range is continuously or semi-continuously cast at a temperature of 740% or higher in order to sufficiently dissolve Zr into solid solution.
Since the amount of solid solution of Zr is small, sufficient heat resistance cannot be obtained no matter how the subsequent heat treatment and other conditions are selected. In addition, it is best to immediately hot-roll the continuous or semi-continuously cast ingot into a rough wire without reheating it, and then heat-treat it at a temperature above 350°C and below 500°C for 5 to 200 hours. The purpose is to precipitate Zr to restore conductivity and impart heat resistance, and further improve strength through precipitation hardening. Sufficient Zr precipitation cannot be obtained at heating temperatures below 350°C; This is because if it exceeds this, it becomes over-aged and the strength decreases. Further, if the heating time is less than 5 hours, the recovery of electrical conductivity will be small, and if the heating time exceeds 200 hours, the strength will be significantly reduced. The reason why the rough drawn wire subjected to the precipitation treatment is cold drawn is to finish it into a conductor of desired dimensions and to further improve the strength through work hardening. The present invention will be described in detail below with reference to examples. 99.6% pure electrical Al ingot, Al-5% Zr,
Using each master alloy of Al-50% Cu, alloys having the compositions shown in Table 1 were blended and melted. This was cast using a belt-and-wheel type continuous casting machine at the temperatures shown in Table 1 to continuously produce a trapezoidal ingot with a cross-sectional area of 2000 mm 3 . This was immediately hot rolled without reheating to obtain a rough drawn wire with a diameter of 9.5 mm. This roughly drawn wire was heat treated at various temperatures and then cold drawn to produce a conductor with a diameter of 3.0 mm. The electrical conductivity, tensile strength, heat resistance, and flexibility of the conductor manufactured in this manner were examined. The results are also listed in Table 1 in comparison with the characteristics of a conventional high-strength, heat-resistant aluminum alloy conductor made of an Al--Zr--Fe alloy. The conductivity was calculated by measuring resistance using a Kelvin double bridge, and the tensile strength was measured using an Amsler type tensile tester. Heat resistance was determined by heating the sample to 230° C. for 1 hour and expressing the ratio of the tensile strength after heating to the tensile strength before heating. In addition, for flexibility, the sample is held between curved surfaces twice the diameter, and the left and right sides are alternately
Celsius was repeatedly bent, and the number of 90° bends until breakage was measured.
【表】
第1表から明らかなように本発明法No.1〜6に
より製造した導体は導電率55.6〜57.1%IACS、
引張強さ24.9〜26.9Kg/mm2、耐熱性95.9〜99.0%、
可撓性27〜34回の特性を示し、従来法による高力
耐熱アルミニウム合金導体No.16〜18と比較し、ほ
ぼ同等の導電率及び引張強さを有し、かつはるか
に優れた耐熱性と可撓性を有することが判る。
これに対し製造条件(合金組成、鋳造温度、加
熱処理条件)が本発明で規定する条件より外れる
比較法によるものは導電率、引張強さ、耐熱性及
び可撓性の何れか一つ以上が劣ることが判る。即
ちZr含有量の少ない比較法No.7及び鋳造温度の
低い比較法No.11は何れも耐熱性が劣り、Zr含有
量の多い比較法No.8Cu含有量の多い比較法No.10及
び加熱処理時間が短い比較法No.14では導電率が劣
つている。またCu含有量の少ない比較法No.9で
は引張強さと可撓性が劣り、加熱処理温度の低い
比較法No.12では導電率と引張強さが劣り、更に加
熱処理温度が高い比較法No.13及び加熱処理時間が
長い比較法No.15では引張強さが劣ることが判る。
このように本発明によれば合金組成範囲、鋳造
温度及び加熱処理条件を規定することにより、従
来の高力耐熱アルミニウム合金導体とほぼ同等の
導電率及び強度を有し、かつはるかに優れた耐熱
性及び可撓性を有する導体を得ることができるも
ので、長径間大容量送電や全アルミニウム合金撚
線の導体として使用することができる顕著な効果
を奏するものである。[Table] As is clear from Table 1, the conductors manufactured by the methods No. 1 to 6 of the present invention have a conductivity of 55.6 to 57.1% IACS,
Tensile strength 24.9~26.9Kg/ mm2 , heat resistance 95.9~99.0%,
It exhibits a flexibility of 27 to 34 times, and has almost the same conductivity and tensile strength as conventional high-strength heat-resistant aluminum alloy conductors No. 16 to 18, and far superior heat resistance. It can be seen that it has flexibility. On the other hand, those produced by a comparative method whose manufacturing conditions (alloy composition, casting temperature, heat treatment conditions) deviate from the conditions specified in the present invention have one or more of electrical conductivity, tensile strength, heat resistance, and flexibility. It turns out to be inferior. In other words, Comparative Method No. 7 with a low Zr content and Comparative Method No. 11 with a low casting temperature both have inferior heat resistance, and Comparative Method No. 10 with a high Zr content and Comparative Method No. 10 with a high Cu content and heating Comparative method No. 14, which requires a short processing time, has poor conductivity. Comparative method No. 9, which has a low Cu content, has inferior tensile strength and flexibility, comparative method No. 12, which has a low heat treatment temperature, has inferior conductivity and tensile strength, and comparative method No. 9, which has a higher heat treatment temperature. It can be seen that tensile strength is inferior in Comparative method No. 13 and Comparative method No. 15, which requires a long heat treatment time. As described above, according to the present invention, by specifying the alloy composition range, casting temperature, and heat treatment conditions, it is possible to create a material that has almost the same conductivity and strength as conventional high-strength heat-resistant aluminum alloy conductors, and has far superior heat resistance. It is possible to obtain a conductor having good properties and flexibility, and it has a remarkable effect that it can be used for long-span, large-capacity power transmission and as a conductor for all-aluminum alloy stranded wire.
Claims (1)
残部Alと通常の不純物からなるアルミニウム合
金の溶湯を740℃以上の温度で連続又は半連続鋳
造し、得られた鋳塊を再加熱することなく直ちに
熱間圧延して荒引線とし、これを350℃を超え500
℃以下の温度で5〜200時間加熱処理した後、冷
間で伸線加工することを特徴とする高力耐熱アル
ミニウム合金導体の製造法。1 Contains Zr0.1~1.0wt%, Cu0.01~0.8wt%,
A molten aluminum alloy containing the balance Al and normal impurities is cast continuously or semi-continuously at a temperature of 740°C or higher, and the resulting ingot is immediately hot rolled into rough drawn wire without reheating. over 500℃
A method for producing a high-strength, heat-resistant aluminum alloy conductor, which comprises heat-treating at a temperature of 5 to 200 hours at a temperature below °C, followed by cold wire drawing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15923383A JPS6052564A (en) | 1983-08-31 | 1983-08-31 | Production of high-strength heat-resistant aluminum alloy conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15923383A JPS6052564A (en) | 1983-08-31 | 1983-08-31 | Production of high-strength heat-resistant aluminum alloy conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6052564A JPS6052564A (en) | 1985-03-25 |
JPH0335374B2 true JPH0335374B2 (en) | 1991-05-28 |
Family
ID=15689247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15923383A Granted JPS6052564A (en) | 1983-08-31 | 1983-08-31 | Production of high-strength heat-resistant aluminum alloy conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6052564A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56146864A (en) * | 1980-04-14 | 1981-11-14 | Sumitomo Electric Ind Ltd | Mamufacture of heat resistant aluminum alloy with high electric conductivity |
JPS605863A (en) * | 1983-06-24 | 1985-01-12 | Sumitomo Electric Ind Ltd | Production of high yield heat resistant aluminum alloy for electrical conduction |
-
1983
- 1983-08-31 JP JP15923383A patent/JPS6052564A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56146864A (en) * | 1980-04-14 | 1981-11-14 | Sumitomo Electric Ind Ltd | Mamufacture of heat resistant aluminum alloy with high electric conductivity |
JPS605863A (en) * | 1983-06-24 | 1985-01-12 | Sumitomo Electric Ind Ltd | Production of high yield heat resistant aluminum alloy for electrical conduction |
Also Published As
Publication number | Publication date |
---|---|
JPS6052564A (en) | 1985-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JPS6216269B2 (en) | ||
JPS5919183B2 (en) | Manufacturing method of high-strength heat-resistant aluminum alloy conductor | |
US3525605A (en) | Method for decreasing the softening temperature and improving the electrical conductivity of high conductivity oxygen-free copper | |
JPH0335374B2 (en) | ||
JPH0125822B2 (en) | ||
JPH036984B2 (en) | ||
JPH0335373B2 (en) | ||
JPS6116421B2 (en) | ||
JP2628235B2 (en) | Method for producing high heat-resistant aluminum alloy wire for conductive use | |
JPH0432146B2 (en) | ||
JPS6052547A (en) | Heat-resistant aluminum alloy for electrical conduction and its production | |
JPS6017039A (en) | Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity | |
JPH0416534B2 (en) | ||
JPS6119697B2 (en) | ||
JPH036983B2 (en) | ||
JPS6054387B2 (en) | Manufacturing method of high strength heat resistant aluminum alloy conductor | |
JPH0313302B2 (en) | ||
JPS6361380B2 (en) | ||
JPS59123732A (en) | Electrically conductive aluminum alloy with heat resistance and its manufacture | |
JPS63161134A (en) | Copper alloy for electrical parts | |
JPS6043904B2 (en) | Manufacturing method of highly conductive heat-resistant copper alloy material | |
JPH01152248A (en) | Manufacture of high-strength and heat-resistant conductive aluminum alloy | |
JPS6138253B2 (en) | ||
JPH0448853B2 (en) |