JPS6033176B2 - Conductive copper alloy - Google Patents

Conductive copper alloy

Info

Publication number
JPS6033176B2
JPS6033176B2 JP16517880A JP16517880A JPS6033176B2 JP S6033176 B2 JPS6033176 B2 JP S6033176B2 JP 16517880 A JP16517880 A JP 16517880A JP 16517880 A JP16517880 A JP 16517880A JP S6033176 B2 JPS6033176 B2 JP S6033176B2
Authority
JP
Japan
Prior art keywords
copper
copper alloy
wires
fusion
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16517880A
Other languages
Japanese (ja)
Other versions
JPS5789448A (en
Inventor
孝祝 福田
正典 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP16517880A priority Critical patent/JPS6033176B2/en
Publication of JPS5789448A publication Critical patent/JPS5789448A/en
Publication of JPS6033176B2 publication Critical patent/JPS6033176B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、5〜100PPmのマグネシウムを含有する
導電用銅合金に関するもので、マグネシウムを添加する
ことによって、銅の軟化特性を改良しようとするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive copper alloy containing 5 to 100 PPm of magnesium, and is intended to improve the softening properties of copper by adding magnesium.

導体用銅線を軟化する方法には、連続蛾鈍軟化法とバッ
チ毎におこなうバッチ暁鈍軟化法とがある。
Methods for softening conductor copper wire include a continuous slow softening method and a batch slow softening method that is carried out for each batch.

蓮続焼鈍軟化法は、1本の銅線を連続的に通電加熱する
ので、焼鎚時に銅線同志がくっつき合う、所謂線間融着
を引き起こすことはない。
In the Renzutsu annealing and softening method, one copper wire is continuously heated with electricity, so it does not cause so-called inter-wire fusion, in which the copper wires stick together during hammering.

ところが、光輝競鈍等のように、鋼製リールに銅線を整
列巻さして、真空状態でバッチ嬢鈍軟化をおこなった場
合に、従来のタフピッチ鋼や無酸素鋼の線では、暁鈍条
件に幅がないため、ややもすれば線間融着を引き起こす
ことがある。かかる状態でリールから銅線を操出そうと
すれば、線間融着のために折れ曲るという所謂キンク現
象を生じ、直線状の軟銅線が得られないという問題があ
った。
However, when copper wire is wound in line on a steel reel and subjected to batchwise softening in a vacuum condition, as in the case of Kouki competitive steel wires, conventional tough pitch steel or oxygen-free steel wires do not meet the dulling conditions. Since there is no width, it may cause fusion between the lines. If an attempt is made to unwind the copper wire from the reel in such a state, there is a problem in that a so-called kink phenomenon occurs in which the wires are bent due to the fusion between the wires, making it impossible to obtain a straight annealed copper wire.

勿論、バッチ焼鈍軟化をおこなうに当って、銅線のリー
ルへの巻き方を調整して緑間融着を防止する方法もある
が、この方法にも該融着を防止する上で、再現性、確実
性がないという問題があった。
Of course, when performing batch annealing softening, there is a method to prevent green welding by adjusting the way the copper wire is wound around the reel, but this method also has problems with reproducibility in preventing welding. , there was a problem of lack of certainty.

そこで本発明者等は、その解決手段として、従来のタフ
ピツチ鋼や無酸素鋼に較べて、再結晶温度の低い銅を線
材料として使用すれば、焼錨温度下げることができ、そ
の結果、線間融着を防止し得るとともに、焼錨に要する
熱エネルギーをも節約することができるという所見に立
ち、鋭意検討を重ねた結果、銅にマグネシウムをある量
添加する時にはじめて、電気特性、機械特性を損ねるこ
となく上記目的が達成され、しかも同時に線間融着の生
じにくい材料を提供できるという新事実を見出し本発明
を完成するに致つた。
Therefore, the present inventors have found that as a means to solve this problem, if copper, which has a lower recrystallization temperature than conventional tough pitch steel or oxygen-free steel, is used as the wire material, it is possible to lower the sintering anchor temperature, and as a result, the wire Based on the finding that it is possible to prevent interlocking and also save the thermal energy required for sintering an anchor, we have conducted extensive studies and found that it is possible to improve electrical and mechanical properties only when a certain amount of magnesium is added to copper. The present invention has been completed by discovering a new fact that the above objects can be achieved without impairing the properties of the wires, and at the same time, it is possible to provide a material that is less likely to cause fusion between wires.

すなわち、本発明は、5〜100PPmのマグネシウム
と残部が徴量の不可避不純物元素(Fe,Ph,Sn,
Bi,Ni,Ag,Sb,As,Si,Zn,P等)を
含有する通常の銅から成ることを特徴としている。
That is, in the present invention, 5 to 100 PPm of magnesium and the remainder are unavoidable impurity elements (Fe, Ph, Sn,
It is characterized by being made of ordinary copper containing (Bi, Ni, Ag, Sb, As, Si, Zn, P, etc.).

本発明において、マグネシウム含有量を5〜10岬Pm
と規定したのは、マグネシウム含有量が、球Pm禾満で
は従来のタフピッチ鋼や無酸素銅に比較して、再結晶温
度を低下させる効果や融着の軽減が認められず、又、マ
グネシウム含有量が、100PPmを超えた場合にも添
加によるメリットがなく、却って再結晶温度を高くした
り、導電率の低下を招くためである。
In the present invention, the magnesium content is set at 5 to 10 Pm.
The reason for this stipulation is that when the magnesium content is Pm, the effect of lowering the recrystallization temperature or the reduction of fusion is not observed compared to conventional tough pitch steel or oxygen-free copper, and This is because when the amount exceeds 100 PPm, there is no benefit from adding it, and the recrystallization temperature increases or the conductivity decreases.

さらに本発明においては、含有酸素量があまり多いとM
g0を形成してMgの歩留りを著しく低下させるおそれ
があるため、その濃度が500PPm以下であることが
好ましい。
Furthermore, in the present invention, if the amount of oxygen content is too large, M
Since there is a risk of forming g0 and significantly reducing the yield of Mg, it is preferable that the concentration is 500 PPm or less.

本発明の適用範囲は、上述した条件さえ満たすものであ
れば、デイツプフオーミングプロセスやその他の連続鋳
造圧延設備により製造される銅線にも適用可能であるこ
とは言うまでもない。
It goes without saying that the scope of application of the present invention is also applicable to copper wire manufactured by a deep forming process or other continuous casting and rolling equipment, as long as the above-mentioned conditions are satisfied.

以下、本発明を実施例にもとづいて詳述する。実施例従
来のタフピッチ鋼、無酸素銅の各々と市販の99.9%
純度のマグネシウムとからCu−Mg母合金を溶製し、
次いで得られた母合金を用いて第1表に示す配合組成の
銅合金を溶製した。
Hereinafter, the present invention will be explained in detail based on examples. Examples Conventional tough pitch steel, oxygen-free copper and commercially available 99.9%
A Cu-Mg master alloy is produced from pure magnesium,
Next, using the obtained master alloy, a copper alloy having the composition shown in Table 1 was melted.

これを22肋◇×7仇廠長の鋳型に115000で鋳込
み、冷却後その表面スケールを除去し圧延して、6側め
の荒引線とし、次いで調質焼鈍を9000○、2時間お
こなった。なお、荒引線を得るに当たり、無酸素鋼合金
の場合には、アルゴン雰囲気で熔解鋳造をおこなった。
This was poured into a mold of 22 squares x 7 mills long at 115,000 mm, and after cooling, the surface scale was removed and rolled to form a rough drawing line on the 6th side, followed by temper annealing at 9,000 mm for 2 hours. In order to obtain the rough wire, in the case of an oxygen-free steel alloy, melt casting was performed in an argon atmosphere.

これらの荒引線を0.4肋)迄袷間伸線加工し、これを
300ooのオイルバスで1時間加熱保持した後、水で
急冷し室温にて伸び、引張強さ、導電率を測定した。
These roughly drawn wires were drawn to a length of 0.4 ribs, heated and held in a 300 oo oil bath for 1 hour, then rapidly cooled with water, stretched at room temperature, and measured for tensile strength and electrical conductivity. .

導電率の測定は、国際焼錨銅規格(IACS)にもとづ
くブリッチ法を適用した。
The conductivity was measured using the bridge method based on the International Sintered Anchor Copper Standard (IACS).

半軟化温度の測定は、従来より公知の方法で求めた。The semi-softening temperature was determined by a conventionally known method.

これらの結果を第2表に示す。These results are shown in Table 2.

ところで、第1表に示す従来例や比較例についても、実
施例と同様に試料を作成して、それぞれ本発明例に対応
する試験をおこなった。
Incidentally, regarding the conventional examples and comparative examples shown in Table 1, samples were prepared in the same manner as in the examples, and tests corresponding to the examples of the present invention were conducted, respectively.

第2表の結果から明らかなように、本発明によるCu−
Mg合金は、従来のタフピッチ銅や無酸素鋼なみの電気
特性機械特性を保持しながら、再結晶温度が50〜65
午0も低下していることがわかる。
As is clear from the results in Table 2, Cu-
Mg alloy has a recrystallization temperature of 50 to 65% while maintaining electrical and mechanical properties comparable to conventional tough pitch copper and oxygen-free steel.
It can be seen that 0:00 is also decreasing.

次に、隣接する線同志の融着状態を検討するために、前
述の0.4物◇迄冷間伸線した硬銅線を、その径が2比
眺めの鋼製ボビンに、2k9の荷重を加えて7段重ねに
整列に200巻回して、250oo、300℃、350
qo、400qoの温度で各2時間頁空焼錨軟化をおこ
なった後、ボビンから引出す際の伸線同志の融着の程度
を測定した。融着の程度は、ボビン7段重ねの3段目中
央部からオートグラフにより連続的に引出す際の抵抗値
を求めた。その結果を第1図および第3表に示す。
Next, in order to examine the state of fusion between adjacent wires, the hard copper wire cold-drawn to 0.4 ◇ was placed on a steel bobbin with a diameter of 2, and a load of 2k9 was applied. 200 turns in 7 layers, 250oo, 300℃, 350℃.
After the blank sintered anchor was softened for 2 hours at a temperature of 400 qo and 400 qo, the degree of fusion between the drawn wires when pulled out from the bobbin was measured. The degree of fusion was determined by determining the resistance value when the bobbins were continuously drawn from the center of the third row of seven stacked bobbins using an autograph. The results are shown in FIG. 1 and Table 3.

結果からは、従釆のタフピッチ銅や無酸素鋼が、300
q02時間程度の焼鈍で伸線同志の融着を、わずかでは
あるが生じていることがわかる。
The results show that the subordinate tough pitch copper and oxygen-free steel are
It can be seen that after annealing for about q02 hours, fusion of the drawn wires occurred, albeit slightly.

これに対し、本発明の導軍用銅合金では、350℃、2
時間焼鈍軟化条件下においても、融着が全くないことか
らその改善が良好に成されていることがわかる。上述の
如く本発明銅合金は、従来のタフピッチ鋼や無酸素銅に
較べて再結晶温度が低く、線間融着が生じにくい材料な
ので、本発明鋼合金を用いれば、従来の焼錨条件に較べ
てはるかに幅広い焼鎚条件が採択できる。
On the other hand, the copper alloy for guiding force of the present invention has a temperature of 350°C and 2
Even under time annealing and softening conditions, there was no fusion at all, indicating that the improvement was well achieved. As mentioned above, the copper alloy of the present invention has a lower recrystallization temperature than conventional tough pitch steel or oxygen-free copper, and is a material that is less likely to cause wire welding. A much wider range of shogun conditions can be adopted.

これにより、本発明銅合金は、バッチ焼鈍法における線
間融着防止を一層容易にし、しかも蓮続焼鈍軟化法にお
いても、再結晶温度が低いために従来の銅に較べて少な
い熱エネルギーで軟化可能なため省エネルギーという点
からもメリットがある。
As a result, the copper alloy of the present invention can more easily prevent wire fusion in the batch annealing method, and can also be softened with less thermal energy than conventional copper due to its low recrystallization temperature in the Rentsugi annealing softening method. Since it is possible, there is also an advantage in terms of energy saving.

以上述べてきたように本発明鋼合金は、優れた軟化特性
と従来のタフピッチ銅や無酸素銅なみの電気特性、機械
特性とを具備しているので、たとえば、モーターやトラ
ンス等のように柔軟性を要求される巻線等へ好適に使用
される。
As mentioned above, the steel alloy of the present invention has excellent softening properties and electrical and mechanical properties comparable to conventional tough pitch copper and oxygen-free copper. Suitable for use in winding wires that require high performance.

第1表 第2表 第3表Table 1 Table 2 Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼鈍時の伸線同志の融着の程度を示す図表であ
る。 第1図 第1図くの
FIG. 1 is a chart showing the degree of fusion between drawn wires during annealing. Figure 1 Figure 1 Kuno

Claims (1)

【特許請求の範囲】 1 5〜100PPmのマグネシウムと残部が通常の銅
から成ることを特徴とする導電用銅合金。 2 残部の含有酸素量が500PPm以下である特許請
求の範囲第1項記載の導電用銅合金。
[Claims] A conductive copper alloy characterized by comprising 15 to 100 PPm of magnesium and the balance ordinary copper. 2. The conductive copper alloy according to claim 1, wherein the remaining oxygen content is 500 PPm or less.
JP16517880A 1980-11-21 1980-11-21 Conductive copper alloy Expired JPS6033176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16517880A JPS6033176B2 (en) 1980-11-21 1980-11-21 Conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16517880A JPS6033176B2 (en) 1980-11-21 1980-11-21 Conductive copper alloy

Publications (2)

Publication Number Publication Date
JPS5789448A JPS5789448A (en) 1982-06-03
JPS6033176B2 true JPS6033176B2 (en) 1985-08-01

Family

ID=15807327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16517880A Expired JPS6033176B2 (en) 1980-11-21 1980-11-21 Conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS6033176B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221541A (en) * 1984-04-07 1985-11-06 Kobe Steel Ltd Copper alloy superior in hot workability
EP0866883A4 (en) * 1996-02-09 1998-12-23 Brush Wellman Alloy c11004
JP4674483B2 (en) * 2005-03-30 2011-04-20 日立電線株式会社 Copper material manufacturing method and copper material
JP5544718B2 (en) * 2008-04-25 2014-07-09 三菱マテリアル株式会社 INTERCONNECTOR MATERIAL FOR SOLAR CELL, ITS MANUFACTURING METHOD, AND INTERCONNECTOR FOR SOLAR CELL
DE102017006970A1 (en) 2017-07-22 2019-01-24 Wieland-Werke Ag Copper casting alloy and casting process
TWI727586B (en) * 2019-02-28 2021-05-11 日商Jx金屬股份有限公司 Copper electrode material
JP7120389B1 (en) * 2021-05-31 2022-08-17 三菱マテリアル株式会社 Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals
KR20230031229A (en) * 2020-06-30 2023-03-07 미쓰비시 마테리알 가부시키가이샤 Copper alloy plastic processed materials, copper alloy wire rods, parts for electronic and electrical devices, terminals
TW202212584A (en) * 2020-06-30 2022-04-01 日商三菱綜合材料股份有限公司 Copper alloy plastic working material, copper alloy rod material, component for electronic/electrical devices, and terminal
JP7205567B2 (en) * 2021-05-31 2023-01-17 三菱マテリアル株式会社 Copper alloy plastic working materials, copper alloy bars, parts for electronic and electrical equipment, terminals

Also Published As

Publication number Publication date
JPS5789448A (en) 1982-06-03

Similar Documents

Publication Publication Date Title
JPS6033176B2 (en) Conductive copper alloy
US20120097904A1 (en) Dilute copper alloy material and method of manufacturing dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement
JP2006307307A (en) Wiring cable for moving part in robot
CA1064738A (en) Aluminum-iron-nickel alloy electrical conductor
JP4924084B2 (en) Copper rough wire and method for manufacturing the same, conductor for electric wire
JPH02153051A (en) Conductor for winding wire
JPH11293365A (en) Super-fine conductor for winding, and its manufacture
US4183771A (en) Process for making aluminum alloy conductor wire
JP2006283181A (en) Contact wire made from abrasion-resistant copper alloy and manufacturing method therefor
JP5617521B2 (en) Method for producing enameled wire using dilute copper alloy material
JP3279374B2 (en) Copper alloy wire and method of manufacturing the same
JPH0125822B2 (en)
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
US3806326A (en) Electrical conductors and insulated cables comprising the same
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JPH0568536B2 (en)
JP5623960B2 (en) Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same
JP2018154916A (en) Production method of aluminum alloy wire, production method of wire therewith and production method of wire harness
JP3858861B2 (en) Copper wire for overhead distribution lines and method for manufacturing the same
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire
JPS5831051A (en) Tough pitch copper for electric wire with softening resistance
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JP2000067641A (en) Extra fine copper wire and manufacture of the same
JPS6029456A (en) Production of conductor consisting of high-strength heat-resistant aluminum alloy