JPH0113170B2 - - Google Patents
Info
- Publication number
- JPH0113170B2 JPH0113170B2 JP56132392A JP13239281A JPH0113170B2 JP H0113170 B2 JPH0113170 B2 JP H0113170B2 JP 56132392 A JP56132392 A JP 56132392A JP 13239281 A JP13239281 A JP 13239281A JP H0113170 B2 JPH0113170 B2 JP H0113170B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- heat resistance
- heat
- aluminum alloy
- resistant aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000838 Al alloy Inorganic materials 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 13
- 238000005491 wire drawing Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000012733 comparative method Methods 0.000 description 9
- 238000009749 continuous casting Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910018580 Al—Zr Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229910015372 FeAl Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Landscapes
- Wire Processing (AREA)
- Metal Extraction Processes (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Non-Insulated Conductors (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Description
本発明は導電用耐熱アルミニウム合金撚線、特
にAl―Zr系耐熱アルミニウム合金からなる素線
を複数本多層に撚り合せた撚線の強度及び導電率
をあまり低下させることなく耐熱性を著しく向上
し得る製造方法に関するものである。
近年送電容量の増大に伴い、架空送電線に鋼心
耐熱アルミニウム合金撚線及び全耐熱アルミニウ
ム合金撚線が用いられているが、特殊な送電条件
の下では更に送電容量を増大するため、より耐熱
性の優れた撚線が望まれている。このため従来か
ら種々の導電用耐熱アルミニウム合金が研究され
ているが、現在実用化されているのはZrを有効
成分とするAl―Zr系耐熱アルミニウム合金を連
続又は半連続鋳造圧延法、展延法、押出法等によ
り荒引線とし、これを伸線加工して形成した素線
を複数本多層に撚り合せた鋼心耐熱アルミニウム
合金撚線や全耐熱アルミニウム合金撚線である。
この撚線の耐熱性は素線を形成するAl―Zr系耐
熱アルミニウム合金のZr含有量に応じて向上す
るも導電率が低下する。従つて耐熱性を高めるた
めにZr量を多くすると導電率が著しく低下し実
用には適さないものとなる。
本発明はこれに鑑み種々検討の結果、撚線の強
度及び導電率をあまり低下させることなく、耐熱
性を著しく向上することができる導電用耐熱アル
ミニウム合金撚線の製造方法を開発したもので、
Zr0.01〜0.80%、Fe0.07〜0.80%、Si0.03〜0.30
%、残部Alと通常の不純物からなるアルミニウ
ム合金の荒引線に、減面率60%以上の連続伸線加
工を加えて素線を形成し、該素線の複数本を素線
毎に減面率5%以上の伸線加工を1パスで加えな
がら多層に撚り合せることを特徴とするものであ
る。
即ち本発明は前記組成のAl―Zr系耐熱アルミ
ニウム合金を連続鋳造圧延法、半連続鋳造圧延
法、展延法、押出法等通常の方法により荒引線と
なし、これを伸線加工して素線を形成する際に、
連続伸線加工により60%以上の減面加工を加え、
得られた素線を複数本多層に撚り合せる際に、各
素線毎に減面率5%以上の伸線加工を1パスで加
えながら撚り合せるもので、撚線の強度及び導電
率をあまり低下させることなく耐熱性を著しく向
上し得たものである。
本発明において合金組成を前記の如く限定した
のは次の理由によるものである。
Zrは耐熱性を向上させるために添加したもの
であるが、0.01%未満では充分な耐熱性が得られ
ず、0.80%を越えると導電率の低下が著しく、導
電用撚線には使用できなくなるためである。Fe
は強度を向上させるために添加したものである
が、0.07%未満では効果が小さく、0.80%を越え
ると導電率の低下が著しく、また鋳造時に金属間
化合物FeAl3を晶出し易くなり、この粗大な
FeAl3は耐熱性に有害なためである。またSiは耐
熱性と強度を更に向上させるために添加したもの
であるが、0.03%未満では効果が小さく、0.30%
を越えると導電率の低下が著しく、また加熱され
たときに析出物が粗大に成長し易く、成長した粗
大析出物は耐熱性に有害なためである。
このような組成の合金を連続又は半連続鋳造圧
延法、展延法、押出法等により荒引線とし、これ
に減面率60%以上の連続伸線加工を加えて素線と
したのは、該素線に充分な強度を付与して撚線の
強度を高めるためであり、60%未満の減面加工で
は加工硬化が小さく充分な強度が得られないため
である。
斯して得られた素線を用い、これを複数本多層
に撚り合せる際に素線毎に減面率5%以上伸線加
工を1パスで加えながら撚り合せたのは、前記荒
引線の伸線加工において加工中の線材は加工熱の
蓄積により、かなりの温度に上昇して耐熱性が低
下したのを回復させるためで、減面率5%未満で
は耐熱性の回復が小さい。また減面率5%以上の
伸線加工は1パスで加えるのはパス回数を増して
も同様の効果が認められるが、より大きな効果は
得られず、しかも撚り合せ中の減面加工は1パス
が限定である。尚、前記連続伸線加工の前後に熱
処理を行なつた素線を用いても、撚り合せる際に
素線毎に減面率5%以上の伸線加工を1パスで加
えれば同様に耐熱性の向上が認められる。
以下本発明を実施例について説明する。
純度99.8%のAl地金を溶解し、これにAl―5
%Zr、Al―5%Fe、Al―20%Si母合金を用い、
種々の割合に配合して第1表に示す組成のAl―
Zr―Fe―Si合金を溶製し、ベルトアンドホイー
ル型連続鋳造機により断面積2000mm2の鋳塊を連続
的に鋳造し、これを引き続き連続熱間圧延機によ
り圧延して直径9.5mmの荒引線を形成した。この
荒引線を連続伸線機により60%以上の伸線加工を
加えて耐熱アルミニウム合金導体とした。この導
体を6〜84本用い、それぞれダイスを通して1パ
スで5%以上の伸線加工を加えながら鋼心上に1
〜4層に撚り合せて鋼心耐熱アルミニウム合金撚
線を製造した。また比較のため同一導体を用いて
伸線加工することなく撚り合せて、鋼心耐熱アル
ミニウム合金撚線を製造した。その製造条件を第
1表に併記した。
このようにして製造した撚線を1mの長さに切
断して解体し、それぞれ整直した後引張強さ、導
電率及び耐熱性を測定した。その結果を平均値で
第2表に示す。
尚引張強さはアムスラー型試験機を用いて測定
し、導電率はケルビンダブルブリツジにより電気
抵抗を測定して求めた。また耐熱性は各試料を
260℃の温度に1000時間加熱した後引張強さを測
定し、加熱前の引張強さに対する割合で示した。
The present invention significantly improves the heat resistance of a conductive heat-resistant aluminum alloy stranded wire, particularly a stranded wire made of a plurality of wires made of Al-Zr heat-resistant aluminum alloy twisted together in multiple layers, without significantly reducing the strength and conductivity. The present invention relates to a manufacturing method for obtaining. In recent years, with the increase in power transmission capacity, steel-core heat-resistant aluminum alloy stranded wires and all-heat-resistant aluminum alloy stranded wires have been used for overhead power transmission lines, but under special power transmission conditions, in order to further increase power transmission capacity, more heat-resistant wires are used. A stranded wire with excellent properties is desired. For this reason, various heat-resistant aluminum alloys for electrical conductivity have been researched, but the ones that are currently in practical use are Al-Zr heat-resistant aluminum alloys containing Zr as an active ingredient by continuous or semi-continuous casting and rolling methods. These are steel-core heat-resistant aluminum alloy stranded wires or fully heat-resistant aluminum alloy strands, which are steel-core heat-resistant aluminum alloy stranded wires made by forming rough drawn wires by wire drawing or extrusion methods, and twisting a plurality of strands into multiple layers.
Although the heat resistance of this stranded wire improves depending on the Zr content of the Al--Zr heat-resistant aluminum alloy forming the wire, the electrical conductivity decreases. Therefore, if the amount of Zr is increased in order to improve heat resistance, the electrical conductivity will drop significantly, making it unsuitable for practical use. In view of this, as a result of various studies, the present invention has developed a method for producing conductive heat-resistant aluminum alloy stranded wires that can significantly improve heat resistance without significantly reducing the strength and conductivity of the stranded wires.
Zr0.01~0.80%, Fe0.07~0.80%, Si0.03~0.30
%, the balance is Al and normal impurities, and the aluminum alloy rough drawn wire is continuously drawn with an area reduction rate of 60% or more to form a strand, and multiple strands of the strand are reduced in area for each strand. It is characterized by twisting the wire into multiple layers while applying a wire drawing process with a wire drawing ratio of 5% or more in one pass. That is, the present invention produces a rough drawn wire from an Al-Zr heat-resistant aluminum alloy having the above composition by a conventional method such as a continuous casting and rolling method, a semi-continuous casting and rolling method, a spreading method, an extrusion method, etc. When forming a line,
Added surface reduction processing of more than 60% through continuous wire drawing processing,
When twisting the obtained wires into multiple layers, each wire is drawn with an area reduction of 5% or more in one pass, which reduces the strength and conductivity of the twisted wires. It was possible to significantly improve heat resistance without degrading it. The reason why the alloy composition is limited as described above in the present invention is as follows. Zr is added to improve heat resistance, but if it is less than 0.01%, sufficient heat resistance cannot be obtained, and if it exceeds 0.80%, the conductivity decreases significantly, making it unusable for conductive stranded wires. It's for a reason. Fe
is added to improve strength, but if it is less than 0.07%, the effect is small, and if it exceeds 0.80%, the electrical conductivity decreases significantly, and the intermetallic compound FeAl 3 tends to crystallize during casting, and this coarse Na
This is because FeAl 3 is harmful to heat resistance. In addition, Si is added to further improve heat resistance and strength, but if it is less than 0.03%, the effect is small;
This is because if the temperature exceeds 100%, the conductivity will drop significantly, and the precipitates will tend to grow coarsely when heated, and the grown coarse precipitates will be harmful to heat resistance. The alloy with such a composition is made into a rough wire by continuous or semi-continuous casting and rolling, rolling, extrusion, etc., and then it is made into a wire by continuous wire drawing with an area reduction of 60% or more. This is to increase the strength of the stranded wire by imparting sufficient strength to the wire, and this is because work hardening is small and sufficient strength cannot be obtained if the area is reduced by less than 60%. Using the strands obtained in this way, when twisting a plurality of strands into a multilayer, the wire was drawn while drawing with a reduction in area of 5% or more for each strand in one pass. This is to recover the loss of heat resistance caused by the temperature of the wire being processed during wire drawing rising to a considerable level due to the accumulation of processing heat. If the area reduction rate is less than 5%, recovery of heat resistance is small. In addition, if the wire drawing process with an area reduction rate of 5% or more is applied in one pass, the same effect can be seen even if the number of passes is increased, but a larger effect cannot be obtained. Passes are limited. In addition, even if wires are heat-treated before and after the continuous wire drawing process, the heat resistance will be the same if the wire is drawn with an area reduction of 5% or more for each strand in one pass when twisted together. improvement was observed. The present invention will be described below with reference to Examples. Melt Al base metal with a purity of 99.8% and add Al-5 to it.
%Zr, Al-5%Fe, Al-20%Si master alloy,
Al-
A Zr--Fe--Si alloy is melted, and an ingot with a cross-sectional area of 2000 mm2 is continuously cast using a belt-and-wheel type continuous casting machine. A drawing line was formed. This roughly drawn wire was drawn by more than 60% using a continuous wire drawing machine to form a heat-resistant aluminum alloy conductor. Using 6 to 84 of these conductors, each conductor is passed through a die and drawn on the steel core by 5% or more in one pass.
A steel-core heat-resistant aluminum alloy stranded wire was manufactured by twisting the wire into ~4 layers. For comparison, a heat-resistant aluminum alloy stranded wire with a steel core was manufactured by twisting the same conductor without wire drawing. The manufacturing conditions are also listed in Table 1. The stranded wires thus produced were cut into 1 m lengths, disassembled, straightened, and measured for tensile strength, electrical conductivity, and heat resistance. The results are shown in Table 2 as average values. The tensile strength was measured using an Amsler type tester, and the electrical conductivity was determined by measuring electrical resistance using a Kelvin double bridge. In addition, the heat resistance of each sample
After heating at 260°C for 1000 hours, the tensile strength was measured and expressed as a percentage of the tensile strength before heating.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
第1表及び第2表から明らかなように、本発明
方法No.1〜No.12により製造した撚線の素線は、導
電率49.99%IACS以上、引張強さ17.7Kg/mm2以
上、耐熱性97.8%以上の特性を示し、従来方法No.
21〜No.32により製造した撚線の素線に比較し、導
電率及び引張強さはほぼ同等で耐熱性が著しく優
れているることが判る。
これに対し本発明方法で規定する合金組成より
外れた比較方法No.13〜No.18で製造した撚線の素線
は導電率、引張強さ又は耐熱性の何れかが劣るこ
とが判る。即ちZr含有量が少ない合金を用いた
比較方法No.13では耐熱性が低く、Zr含有量が多
い合金を用いた比較方法No.14では導電率が低く、
Fe含有量が少ない合金を用いた比較方法No.15で
は引張強さ及び耐熱性が低く、Fe含有量が多い
合金を用いた比較方法No.16では耐熱性が低く、ま
たSi含有量が少ない合金を用いた比較方法No.17で
は引張強さ及び耐熱性が低く、Si含有量の多い合
金を用いた比較方法No.18では耐熱性が低くなつて
いる。
また本発明方法で規定する組成の合金を用いて
も伸線加工率が60%未満の比較方法No.19及び撚り
合せ中の伸線加工率が5%未満の比較方法No.20で
は何れも耐熱性が低いことが判る。
このように本発明方法によれば撚線の導電率及
び強度をほとんど低下させることなく耐熱性を著
しく向上し得るもので、工業上顕著な効果を奏す
るものである。[Table] As is clear from Tables 1 and 2, the stranded wires produced by the methods No. 1 to No. 12 of the present invention have a conductivity of 49.99% IACS or higher and a tensile strength of 17.7 Kg/mm. 2 or higher, and has a heat resistance of 97.8% or higher, which is the conventional method No.
It can be seen that the conductivity and tensile strength are almost the same and the heat resistance is significantly superior compared to the stranded wires manufactured by No. 21 to No. 32. On the other hand, it can be seen that the stranded wires produced by Comparative Methods No. 13 to No. 18, which differ from the alloy composition specified by the method of the present invention, are inferior in electrical conductivity, tensile strength, or heat resistance. That is, comparative method No. 13 using an alloy with a low Zr content had low heat resistance, and comparative method No. 14 using an alloy with a high Zr content had low conductivity.
Comparative method No. 15 using an alloy with low Fe content has low tensile strength and heat resistance, and comparative method No. 16 using an alloy with high Fe content has low heat resistance and low Si content. Comparative method No. 17 using an alloy has low tensile strength and heat resistance, and comparative method No. 18 using an alloy with a high Si content has low heat resistance. Furthermore, even when using an alloy having the composition specified by the method of the present invention, Comparative Method No. 19, in which the wire drawing rate was less than 60%, and Comparative Method No. 20, in which the wire drawing rate during twisting was less than 5%, both failed. It can be seen that the heat resistance is low. As described above, according to the method of the present invention, the heat resistance of the stranded wire can be significantly improved without substantially lowering the conductivity and strength of the stranded wire, and the method has an industrially significant effect.
Claims (1)
0.3%、残部Alと通常の不純物からなるアルミニ
ウム合金の荒引線に、減面率60%以上の連続伸線
加工を加えて素線を形成し、該素線の複数本を素
線毎に減面率5%以上の伸線加工を1パスで加え
ながら多層に撚り合せることを特徴とする導電用
耐熱アルミニウム合金撚線の製造方法。1 Zr0.01~0.80%, Fe0.07~0.80%, Si0.03~
0.3%, the balance Al and normal impurities, the rough drawn aluminum alloy wire is continuously drawn with an area reduction rate of 60% or more to form a wire, and multiple wires are reduced for each wire. A method for manufacturing a heat-resistant aluminum alloy stranded wire for conductive use, characterized by twisting it into multiple layers while applying wire drawing processing with an area ratio of 5% or more in one pass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13239281A JPS5834165A (en) | 1981-08-24 | 1981-08-24 | Manufacture of electrically conductive heat resistant twisted aluminum alloy wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13239281A JPS5834165A (en) | 1981-08-24 | 1981-08-24 | Manufacture of electrically conductive heat resistant twisted aluminum alloy wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5834165A JPS5834165A (en) | 1983-02-28 |
JPH0113170B2 true JPH0113170B2 (en) | 1989-03-03 |
Family
ID=15080306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13239281A Granted JPS5834165A (en) | 1981-08-24 | 1981-08-24 | Manufacture of electrically conductive heat resistant twisted aluminum alloy wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5834165A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5942005A (en) * | 1982-09-01 | 1984-03-08 | Agency Of Ind Science & Technol | Improved membrane for thickening amino acid |
WO2002044432A1 (en) * | 2000-11-30 | 2002-06-06 | Phelps Dodge Industries, Inc. | Creep resistant cable wire |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49106418A (en) * | 1973-02-14 | 1974-10-09 |
-
1981
- 1981-08-24 JP JP13239281A patent/JPS5834165A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49106418A (en) * | 1973-02-14 | 1974-10-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS5834165A (en) | 1983-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6216269B2 (en) | ||
JPH0113170B2 (en) | ||
JPS6144149B2 (en) | ||
JP4358395B2 (en) | Method for producing chromium-zirconium-based copper alloy wire | |
JPH0689621A (en) | Manufacture of high conductivity and high strength stranded wire | |
JPS6054387B2 (en) | Manufacturing method of high strength heat resistant aluminum alloy conductor | |
JPS6357495B2 (en) | ||
JPS63243247A (en) | High-strength aluminum-based composite conductive wire and its production | |
JPH0432146B2 (en) | ||
JPS6367546B2 (en) | ||
JPH0313302B2 (en) | ||
JP2883495B2 (en) | Method of manufacturing copper alloy conductor for electric train wire | |
JPH0689620A (en) | Manufacture of high conductivity and high strength stranded wire | |
JPH0568536B2 (en) | ||
JPH0152468B2 (en) | ||
JPS63230220A (en) | Manufacture of heat resistant aluminum coated steel wire for electric conduction | |
JPH036983B2 (en) | ||
JPS6317525B2 (en) | ||
JPS6116421B2 (en) | ||
JPH0689622A (en) | Manufacture of stranded wire for wiring | |
JPH0215625B2 (en) | ||
JPH036984B2 (en) | ||
JPS5918471B2 (en) | Manufacturing method of heat-resistant aluminum alloy conductor | |
JPS6367547B2 (en) | ||
JPS6144939B2 (en) |