JPH036215B2 - - Google Patents

Info

Publication number
JPH036215B2
JPH036215B2 JP15923583A JP15923583A JPH036215B2 JP H036215 B2 JPH036215 B2 JP H036215B2 JP 15923583 A JP15923583 A JP 15923583A JP 15923583 A JP15923583 A JP 15923583A JP H036215 B2 JPH036215 B2 JP H036215B2
Authority
JP
Japan
Prior art keywords
heat
heat resistance
alloy
aluminum alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15923583A
Other languages
Japanese (ja)
Other versions
JPS6052547A (en
Inventor
Hitoshi Yanase
Mototsugu Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15923583A priority Critical patent/JPS6052547A/en
Publication of JPS6052547A publication Critical patent/JPS6052547A/en
Publication of JPH036215B2 publication Critical patent/JPH036215B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電用耐熱アルミニウム合金とその製
造法に関するもので、特に従来の導電用耐熱アル
ミニウム合金(Al−Zr系合金)と同等の強度を
有し、導電率をあまり低下させることなく耐熱性
を改善したものである。 従来架空送電線には電気用Alからなる導体を
用いた鋼芯アルミニウム撚線が用いられ、特に耐
熱性が要求される送電線にはAl−Zr系合金の固
溶Zrの耐熱機構を利用した固溶型耐熱アルミニ
ウム合金からなる導体を用いた鋼芯耐熱アルミニ
ウム合金撚線が用いられてきたが、近年電力需要
の増大から耐熱性の改善が要求されるようになつ
た。これに対応するため固溶Zr量を増大した導
電用耐熱アルミニウム合金、更には固溶Zrの耐
熱機構に代つて析出Zrの耐熱機構を利用した導
電用耐熱アルミニウム合金が開発された。 しかしながら固溶Zr量の増加は導電率の低下
をまねき、また析出Zrの耐熱機構を利用するた
めには300〜450℃の温度で長時間の加熱処理を必
要とするためコスト高となる欠点があつた。また
これ等合金の通電時における使用可能な昇温温度
は300℃程度であり、より高温に耐える耐熱性の
改善が強く望まれている。 本発明はこれに鑑み種々研究の結果、従来の導
電用耐熱アルミニウム合金(Al−Zr系合金)と
同等の強度を有し、導電率をあまり低下させるこ
となくはるかに優れた耐熱性を有する導電用耐熱
アルミニウム合金とその製造法を開発したもので
ある。 即ち本発明合金はNi1.5〜6wt%(以下wt%を
単に%と略記)、Cu0.02〜0.3%、Be0.03〜0.5%
を含み、残部Alと通常の不純物からなることを
特徴とするものである。 また本発明製造法はNi1.5〜6%、Cu0.02〜0.3
%、Be0.03〜0.5%を含み、残部Alと通常の不純
物からなるアルミニウム合金を連続又は半連続鋳
造し、これを熱間圧延した荒引線に冷間で伸線加
工した後、200〜500℃の温度で0.5〜10時間加熱
処理することを特徴とするものである。 しかして本発明において合金組成を上記の如く
限定したのは次の理由によるものである。 Ni含有量を1.5〜6%と限定したのは、Ni添加
によりAlマトリツクス中にNiAl3を分散させた共
晶組織として強度及び耐熱性を向上させるためで
あるが、Ni含有量が1.5%未満では強度及び耐熱
性の向上が不十分であり、6%を越えと合金組織
中に初晶NiAl3のデンドライト相が晶出し、加工
性を害するばかりか延性を低下させるためであ
る。 Cu含有量を0.02〜0.3%と限定したのはNiの添
加によるNiAl3の分散により、強度及び耐熱性は
向上するも、Alマトリツクスは純Alであるため
強度が不十分であり、Cuの添加によつてAlマト
リツクスを強化して強度を向上せしめるので、
Cu含有量が0.02%未満ではその効果が不十分であ
り、0.3%を越えると導電率の低下が著しくなる
ためである。 またBe含有量を0.03〜0.5%と限定したのはBe
の添加により合金の耐食性を向上させるためであ
るが、Be含有量が0.03%未満ではその効果が小
さく、0.5%を越えると導電率の低下が著しくな
るためである。 尚その他の不純物としては通常の電気用Al地
金に不可避的に含まれる不純物であり、電気用
Al地金に含まれる程度であれば、本発明合金の
特性を何等損なうことはない。 本発明合金は以上の組成からなり通常の連続又
は半連続鋳造により鋳造し、これに熱間圧延を加
えて荒引線とする。これを冷間で伸線加工して所
望の線径とした後、200〜500℃の温度で0.5〜10
時間加熱処理するとにより造られる。 冷間で伸線加工した後200〜500℃の温度で0.5
〜10時間加熱処理するのは、強度及び導電率を整
えると共に耐熱性を付与するためであり、温度が
200℃未満では導電率が回復せず、500℃を越える
と強度の低下が著しくなり、また処理時間が0.5
時間未満では導電率及び耐熱性が回復せず、15時
間を越えると強度の低下が大きくなるのである。 以下本発明を実施例について詳細に説明する。
純度99.8%の電気用Al地金とAl−10%Ni、Al−
50%Cu、Al−5%Beの各母合金を用い、第1表
に示す組成の合金を配合溶製した。これをベルト
アンドホイール型連続鋳造機により鋳造し、得ら
れた鋳塊を直ちに熱間圧延して直径9.5mmの荒引
線とした。これを冷間で伸線加工して直径4.5mm
の線材とした後、種々の温度で加熱処理し、これ
について導電率、引張強さ、耐熱性及び耐食性を
測定した。その結果を従来の導電用耐熱アルミニ
ウム合金(Al−Zr系合金)からなる線材と比較
し第1表に併記した。 尚導電率はケルビンダブルリツジにより抵抗を
測定して算出し、引張強さはアムスラー型試験機
により測定した。また耐熱性は1時間の加熱処理
により引張強度さが10%低下する加熱温度で表わ
し、耐食性は5%NaCl噴霧試験を100日間行なつ
た後の重量減少率で表わした。
The present invention relates to a heat-resistant aluminum alloy for conductive use and a method for manufacturing the same. In particular, the present invention relates to a heat-resistant aluminum alloy for conductive use and a method for manufacturing the same. In particular, it has strength equivalent to that of conventional heat-resistant aluminum alloy for conductive use (Al-Zr alloy), and has heat resistance without significantly reducing conductivity. This is an improvement. Conventionally, steel-core aluminum stranded wires with conductors made of electrical grade Al have been used for overhead power transmission lines, and transmission lines that require particularly high heat resistance have utilized the heat resistance mechanism of solid solution Zr in Al-Zr alloys. A steel-core heat-resistant aluminum alloy stranded wire using a conductor made of a solid solution type heat-resistant aluminum alloy has been used, but in recent years there has been a demand for improved heat resistance due to increased demand for electric power. In response to this, a heat-resistant conductive aluminum alloy with an increased amount of solid solution Zr and a conductive heat-resistant aluminum alloy that utilizes the heat resistance mechanism of precipitated Zr instead of the heat resistance mechanism of solid solution Zr have been developed. However, an increase in the amount of solid solution Zr leads to a decrease in electrical conductivity, and in order to take advantage of the heat resistance mechanism of precipitated Zr, long-term heat treatment is required at a temperature of 300 to 450°C, resulting in high costs. It was hot. In addition, the usable heating temperature of these alloys when energized is about 300°C, and there is a strong desire to improve their heat resistance to withstand even higher temperatures. In view of this, as a result of various studies, the present invention has been developed as a conductive material that has strength equivalent to that of conventional conductive heat-resistant aluminum alloys (Al-Zr alloys) and has far superior heat resistance without significantly reducing conductivity. The company has developed a heat-resistant aluminum alloy and its manufacturing method. That is, the alloy of the present invention contains 1.5 to 6 wt% Ni (hereinafter wt% is simply abbreviated as %), 0.02 to 0.3% Cu, and 0.03 to 0.5% Be.
, with the balance consisting of Al and normal impurities. In addition, the manufacturing method of the present invention has Ni1.5 to 6% and Cu0.02 to 0.3%.
%, Be 0.03 to 0.5%, and the balance Al and normal impurities is continuously or semi-continuously cast, and after cold drawing into hot-rolled rough drawn wire, 200 to 500 It is characterized by heat treatment at a temperature of 0.5 to 10 hours. However, the reason why the alloy composition is limited as described above in the present invention is as follows. The reason for limiting the Ni content to 1.5 to 6% is to improve the strength and heat resistance as a eutectic structure in which NiAl3 is dispersed in the Al matrix by adding Ni. However, if the Ni content is less than 1.5%, If it exceeds 6%, the dendrite phase of primary NiAl 3 crystallizes in the alloy structure, which not only impairs workability but also reduces ductility. The reason for limiting the Cu content to 0.02 to 0.3% is that although the strength and heat resistance are improved by dispersing NiAl3 by adding Ni, the strength is insufficient because the Al matrix is pure Al. This strengthens the Al matrix and improves its strength.
This is because when the Cu content is less than 0.02%, the effect is insufficient, and when it exceeds 0.3%, the conductivity decreases significantly. In addition, the Be content was limited to 0.03 to 0.5%.
This is to improve the corrosion resistance of the alloy by adding Be, but if the Be content is less than 0.03%, the effect will be small, and if it exceeds 0.5%, the electrical conductivity will decrease significantly. Other impurities are impurities that are unavoidably included in ordinary Al metal for electrical use, and
As long as it is contained in the Al base metal, the properties of the alloy of the present invention will not be impaired in any way. The alloy of the present invention has the above composition and is cast by conventional continuous or semi-continuous casting, followed by hot rolling to form a rough drawn wire. This is then cold drawn to the desired wire diameter, and then drawn at a temperature of 200 to 500℃ to a
Produced by heat treatment for a period of time. 0.5 at a temperature of 200-500℃ after cold wire drawing
The reason for the heat treatment for ~10 hours is to adjust the strength and conductivity as well as impart heat resistance.
If the temperature is below 200℃, the conductivity will not recover, and if the temperature exceeds 500℃, the strength will decrease significantly, and the processing time will be 0.5℃.
If the heating time is less than 15 hours, the conductivity and heat resistance will not recover, and if the heating time exceeds 15 hours, the strength will decrease significantly. The present invention will be described in detail below with reference to examples.
99.8% purity electrical Al ingot and Al−10%Ni, Al−
Using each mother alloy of 50% Cu and Al-5% Be, alloys having the compositions shown in Table 1 were mixed and melted. This was cast using a belt-and-wheel type continuous casting machine, and the obtained ingot was immediately hot rolled into a rough wire having a diameter of 9.5 mm. This is cold wire drawn to a diameter of 4.5mm.
After making wire rods, they were heat-treated at various temperatures, and their electrical conductivity, tensile strength, heat resistance, and corrosion resistance were measured. The results are compared with a wire rod made of a conventional conductive heat-resistant aluminum alloy (Al-Zr alloy) and are also listed in Table 1. The electrical conductivity was calculated by measuring resistance using a Kelvin double bridge, and the tensile strength was measured using an Amsler type tester. Further, heat resistance was expressed as the heating temperature at which the tensile strength decreased by 10% after 1 hour of heat treatment, and corrosion resistance was expressed as the weight loss rate after conducting a 5% NaCl spray test for 100 days.

【表】【table】

【表】 第1表から明らかなように本発明合金を本発明
法(No.1〜5)に基づいて製造したものは導電率
56.2%IACS以上、引張強さ17.0Kg/mm2、耐熱性
390℃以上、耐食性0.7%以下の特性を示し、従来
法No.16と比較しほぼ同等の導電率、引張強さ、耐
食性を有し、耐熱性がはるかに優れていることが
判る。 これに対し比較法No.6〜11から判るように本発
明合金の組成範囲より外れるものは本発明法で製
造しても導電率、引張強さ、耐熱性、耐食性の何
れかが劣る。即ちNi含有量の少ない比較法No.6
では耐熱性が劣り、Ni含有量の多い比較法No.7、
Cu含有量の多い比較法No.9、Be含有量の多い比
較法No.11では何れも導電率が劣り、Cu含有量の
少ない比較法No.8では引張強さが劣り、更にBe
含有量の少ない比較法No.10では耐食性が劣る。 また比較法No.12〜15から判るように本発明合金
の組成範囲内のものでも冷間伸線加工後の加熱処
理条件が外れるものでは導電率、引張強さ、耐熱
性の何れかが劣る。即ち加熱処理温度の低い比較
法No.12では導電率が劣り、加熱温度の高い比較法
No.13では引張強さが劣る。また加熱処理時間の短
い比較法No.14では導電率、引張強さ及び耐熱性の
すべてが劣り、処理時間の長い比較法No.15では引
張強さが劣る。 このように本発明合金を本発明法に基づいて製
造すれば、従来の導電用耐熱アルミニウム合金
(Al−Zr系合金)とほぼ同等の導電率と引張強さ
を有し、かつはるかに優れた耐熱性が得られるも
ので、送電線等に使用し送電容器を増大すること
ができる顕著な効果を奏するものである。
[Table] As is clear from Table 1, the alloys of the present invention manufactured based on the method of the present invention (Nos. 1 to 5) have a high electrical conductivity.
56.2% IACS or higher, tensile strength 17.0Kg/mm 2 , heat resistance
It exhibits properties of 390°C or higher and corrosion resistance of 0.7% or less, and compared to conventional method No. 16, it has almost the same electrical conductivity, tensile strength, and corrosion resistance, and is far superior in heat resistance. On the other hand, as can be seen from Comparative Method Nos. 6 to 11, alloys outside the composition range of the present invention alloys are inferior in electrical conductivity, tensile strength, heat resistance, and corrosion resistance even if produced by the present invention method. In other words, comparative method No. 6 with low Ni content
Comparative method No. 7, which has poor heat resistance and high Ni content,
Comparative method No. 9, which has a high Cu content, and Comparative method No. 11, which has a high Be content, both have inferior conductivity, and Comparative method No. 8, which has a low Cu content, has inferior tensile strength.
Comparative method No. 10, which has a low content, has poor corrosion resistance. Furthermore, as can be seen from Comparative Methods Nos. 12 to 15, even if the alloy is within the composition range of the invention alloy, if the heat treatment conditions after cold wire drawing are outside the range, the electrical conductivity, tensile strength, and heat resistance are inferior. . In other words, comparative method No. 12, which uses a lower heating temperature, has inferior conductivity, while comparative method No. 12, which uses a higher heating temperature, has inferior conductivity.
No. 13 has inferior tensile strength. Comparative method No. 14, which requires a short heat treatment time, is inferior in all of electrical conductivity, tensile strength, and heat resistance, and comparative method No. 15, which requires a long treatment time, is inferior in tensile strength. As described above, if the alloy of the present invention is manufactured based on the method of the present invention, it will have almost the same electrical conductivity and tensile strength as the conventional heat-resistant aluminum alloy for conductive use (Al-Zr alloy), and it will have much superior strength. It provides heat resistance and has a remarkable effect in that it can be used for power transmission lines and the like to increase the size of power transmission containers.

Claims (1)

【特許請求の範囲】 1 Ni1.5〜6wt%、Cu0.02〜0.3wt%、Be0.03〜
0.5wt%を含み、残部Alと通常の不純物からなる
導電用耐熱アルミニウム合金。 2 Ni1.5〜6wt%、Cu0.02〜0.3wt%、Be0.03〜
0.5wt%を含み、残部Alと通常の不純物からなる
アルミニウム合金を連続又は半連続鋳造し、これ
を熱間圧延した荒引線に冷間で伸線加工した後、
200〜500℃の温度で0.5〜10時間加熱処理するこ
とを特徴とする導電用耐熱アルミニウム合金の製
造法。
[Claims] 1 Ni1.5~6wt%, Cu0.02~0.3wt%, Be0.03~
A heat-resistant aluminum alloy for conductive use that contains 0.5wt% and the balance is Al and normal impurities. 2 Ni1.5~6wt%, Cu0.02~0.3wt%, Be0.03~
After continuously or semi-continuously casting an aluminum alloy containing 0.5wt% and the balance Al and normal impurities, and cold drawing it into a hot-rolled rough drawn wire,
A method for producing a heat-resistant aluminum alloy for conductive use, characterized by heat treatment at a temperature of 200 to 500°C for 0.5 to 10 hours.
JP15923583A 1983-08-31 1983-08-31 Heat-resistant aluminum alloy for electrical conduction and its production Granted JPS6052547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15923583A JPS6052547A (en) 1983-08-31 1983-08-31 Heat-resistant aluminum alloy for electrical conduction and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15923583A JPS6052547A (en) 1983-08-31 1983-08-31 Heat-resistant aluminum alloy for electrical conduction and its production

Publications (2)

Publication Number Publication Date
JPS6052547A JPS6052547A (en) 1985-03-25
JPH036215B2 true JPH036215B2 (en) 1991-01-29

Family

ID=15689290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15923583A Granted JPS6052547A (en) 1983-08-31 1983-08-31 Heat-resistant aluminum alloy for electrical conduction and its production

Country Status (1)

Country Link
JP (1) JPS6052547A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02121288A (en) * 1988-10-31 1990-05-09 Yamaichi Electric Mfg Co Ltd Moving mechanism of contact make-and-break moving plate for electric part socket
JP2594356B2 (en) * 1989-05-29 1997-03-26 山一電機工業株式会社 Electrical component connector

Also Published As

Publication number Publication date
JPS6052547A (en) 1985-03-25

Similar Documents

Publication Publication Date Title
CN103572091B (en) Cu alloy material, its preparation method and copper conductor prepared therefrom
JPS6216269B2 (en)
JPH036215B2 (en)
US3711339A (en) Aluminum alloy conductor
JPS63243247A (en) High-strength aluminum-based composite conductive wire and its production
JPS6219501B2 (en)
JPH0448853B2 (en)
JPH0432146B2 (en)
JPS6116421B2 (en)
JPS6212295B2 (en)
JPH03180439A (en) Heat-resistant conductive aluminum alloy
JPS6119697B2 (en)
JPH036984B2 (en)
US4036642A (en) Copper base alloy containing titanium, antimony and chromium
JPH0335373B2 (en)
JPS5918471B2 (en) Manufacturing method of heat-resistant aluminum alloy conductor
JPS6239214B2 (en)
JPH03166331A (en) Heat-resistant conductive aluminum alloy
JPS5989743A (en) High-strength copper alloy with high electric conductivity
JPS6054387B2 (en) Manufacturing method of high strength heat resistant aluminum alloy conductor
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JPH0332624B2 (en)
JPH0335374B2 (en)
JPS59123732A (en) Electrically conductive aluminum alloy with heat resistance and its manufacture
JPS6361380B2 (en)