JP4144184B2 - Manufacturing method of heat-resistant Al alloy wire for electric conduction - Google Patents

Manufacturing method of heat-resistant Al alloy wire for electric conduction Download PDF

Info

Publication number
JP4144184B2
JP4144184B2 JP2001068219A JP2001068219A JP4144184B2 JP 4144184 B2 JP4144184 B2 JP 4144184B2 JP 2001068219 A JP2001068219 A JP 2001068219A JP 2001068219 A JP2001068219 A JP 2001068219A JP 4144184 B2 JP4144184 B2 JP 4144184B2
Authority
JP
Japan
Prior art keywords
wire
heat
alloy
heat treatment
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001068219A
Other languages
Japanese (ja)
Other versions
JP2002266043A (en
Inventor
洋光 黒田
孝 根本
正義 青山
豊光 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001068219A priority Critical patent/JP4144184B2/en
Publication of JP2002266043A publication Critical patent/JP2002266043A/en
Application granted granted Critical
Publication of JP4144184B2 publication Critical patent/JP4144184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、導電用耐熱Al合金線材の製造方法に係り、特に、架空送電線に用いられる耐熱Al合金線材の製造方法に関するものである。
【0002】
【従来の技術】
近年、架空送電線においては、電力需要の増加に伴って送電容量の増加が要求されている。送電容量を増加させる最も簡単な方法は、架空送電線の導体断面積を大きくすればよいが、重量増加を招くため、既設の鉄塔の許容強度を超えてしまうという問題が生じる。
【0003】
そこで、導体断面積を変えずに送電容量を増加させるべく、耐熱性に優れ、かつ、導電率の高いAl合金線材を導体に使用している。これらの要求を満たすAl合金として、従来、Zrを0.1wt%程度含有したAl−Zr合金が使用されてきた。このAl−Zr系合金においては、耐熱性を向上させるべく、Zrの含有量を多くすると、逆に導電性の低下を招いてしまう。このため、Al−Zr系合金に第3元素としてFe、Mg、Siなどを含有させ、その後、極めて長時間の熱処理(時効処理)を施すことで、耐熱性および導電性に優れた導電用耐熱Al合金線材を得ている。
【0004】
しかし、Fe、Mg、Siなどの第3元素を添加したAl−Zr系合金は、長時間(例えば、約100〜200時間)の熱処理を必要とするため、生産性に劣り、製造コストの上昇を招いていた。このため、Al−Zr系合金に微量のBeを第3元素として含有させることで、熱処理(時効処理)時間の短縮を図った導電用耐熱Al合金(Al−Zr−Be系合金)線が開発され、架空送電線に適用されている状況にある。
【0005】
【発明が解決しようとする課題】
しかしながら、Al−Zr−Be系合金は、熱処理に要する時間を短くすることはできるものの、Beが高価な金属であるため、原料コストの上昇を招くという問題がある。
【0006】
また、従来の導電用耐熱Al合金線材の合金組成および製造方法では、従来の導電用耐熱Al合金線材の耐熱性、導電性、および強度を大きく上回る導電用耐熱Al合金線材を得ることは期待できない。
【0007】
そこで本発明は、上記課題を解決し、従来の導電用耐熱Al合金線材と比較して、熱処理時間が短いと共に、製造コストが安価であり、かつ、耐熱性、導電性、および強度に優れた導電用耐熱Al合金線材の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために請求項1の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施してなるものである。
【0009】
請求項の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施してなるものである。
【0010】
請求項の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施してなるものである。
【0011】
請求項の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施してなるものである。
【0012】
請求項5の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施すことを特徴とする導電用耐熱Al合金線材の製造方法である。
【0013】
請求項6の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施すことを特徴とする導電用耐熱Al合金線材の製造方法である。
【0014】
請求項7の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施すものである
【0015】
請求項8の発明は、Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施すものである。
【0016】
以上の方法によれば、従来の導電用耐熱Al合金線材の製造方法と比較して、熱処理時間が短いと共に、線材の製造コストが安価となる。
【0017】
上記数値範囲の限定理由を以下に説明する。
【0018】
Zr含有量を0.10〜0.50wt%、Sc含有量を0.05〜0.50wt%としたのは、Zr含有量が0.10wt%未満又はSc含有量が0.05wt%未満の場合、従来の製造方法と比較して、導電率の向上は図れるものの、耐熱性の向上が望めなく、さらに強度の向上も図れないためである。また、Zr含有量が0.50wt%より多い又はSc含有量が0.5wt%より多い場合、従来の製造方法と比較して、耐熱性の向上は図れるものの、導電率の向上が図れないためである。
【0019】
Siは、0.05〜0.10wt%の範囲で含有させることで、熱処理時におけるAl3 Zr、Al3 Sc、およびAl3 (Zr,Sc)の析出を促進する効果がある。
【0020】
Feは、0.05〜0.30wt%の範囲で含有させることで、得られる線材の強度を向上させる効果がある。
【0021】
TiおよびBは、それぞれ0.01〜0.10wt%、0.003〜0.02wt%の範囲で含有させることで、鋳造材の結晶粒を微細化すると共に、鋳造材の割れや傷の発生を抑制し、これによって製造時(鋳造時)の歩留りが大幅に向上する。
【0022】
100℃以上300℃未満×1〜100時間の熱処理を施す際、熱処理温度が100℃未満だと析出物の核生成が生じにくく、300℃よりも高いと析出物が粗大に成長するため好ましくない。また、熱処理時間が1時間未満だと析出物の核生成が不十分となり、100時間よりも長いと析出物が粗大に成長するため好ましくない。
【0023】
50℃以上300℃未満×1〜30時間の1次熱処理を施す際、1次熱処理の温度が50℃未満だと析出物の核生成が生じにくく、300℃よりも高いと析出物が粗大に成長するため好ましくない。また、1次熱処理時間が1時間未満だと析出物の核生成が不十分となり、30時間よりも長いと析出物の成長が生じるため好ましくない。
【0024】
300〜500℃×10〜60時間の2次熱処理を施す際、2次熱処理の温度が300℃未満だと析出物の成長が不十分となって導電性が回復せず、500℃よりも高いと析出物が粗大に成長して耐熱性が低下するため好ましくない。また、2次熱処理時間が10時間未満だと析出物の成長が十分でなく、60時間よりも長いと析出物が粗大に成長して耐熱性が低下するため好ましくない。
【0025】
断面積減少率が50%未満の冷間加工の場合、冷間加工時の加工硬化によるAl合金線材の強度特性(引張強度)の向上が期待できないためである。
【0026】
冷間加工後に300〜500℃×1〜100時間の熱処理(再結晶熱処理)を施す際、再結晶熱処理温度が300℃未満だと再結晶粒の核生成が生じにくく、500℃よりも高いと再結晶粒が粗大に成長するため好ましくない。また、再結晶熱処理時間が1時間未満だと再結晶粒の核生成が不十分となり、100時間よりも長いと再結晶粒が粗大に成長するため好ましくない。
【0027】
【発明の実施の形態】
以下、本発明の好適一実施の形態について説明する。
【0028】
本発明の導電用耐熱Al合金線材の製造方法は、
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%を含有、又は
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%、Be:0.005〜0.05wt%を含有し、
残部がAl及び不可避不純物であるAl合金からなる線材を形成した後、その線材に200℃以上250℃未満40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施してなるものである。
【0029】
第1の実施の形態の導電用耐熱Al合金線材の製造方法を説明する。
【0030】
先ず、Zr:0.10〜0.50wt%、好ましくは0.15〜0.40wt%、特に好ましくは0.18〜0.37wt%と、
Sc:0.05〜0.50wt%、好ましくは0.05〜0.30wt%、特に好ましくは0.05〜0.20wt%と、
Si:0.05〜0.10wt%と、
Fe:0.05〜0.30wt%、好ましくは0.10〜0.20wt%と、
Ti:0.01〜0.10wt%、好ましくは0.05〜0.10wt%と、
B:0.003〜0.02wt%、好ましくは0.003〜0.01wt%と、
Be:0.005〜0.05wt%、好ましくは0.005〜0.025wt%
を含有し、
残部がAl及び不可避不純物という化学組成を有したAl合金を溶製する。
【0031】
次に、プロペルチ法、ヘズレー法、SCR法などの周知の鋳造方法により、このAl合金溶湯を用いて線材を形成し、Alマトリックス中にZrおよびScが固溶したAl合金線材を形成する。
【0032】
その後、このAl合金線材に、200〜250℃×40〜60時間の熱処理を施す。この熱処理によって、鋳造時にAlマトリックス中に固溶したZrとScが、微細な析出物(Al3 Zr、Al3 Sc、およびAl3 (Zr,Sc))として生成する。
【0033】
次に、熱処理後のAl合金線材に、断面積減少率50%以上、好ましくは断面積減少率75%以上、特に好ましくは断面積減少率90%以上の冷間加工を施し、導電用耐熱Al合金線材を得る。熱処理時に生成・成長した析出物が、冷間加工時における加工組織を安定化させる。これによって、導電性を低下させることなく、冷間加工後のAl合金線材の耐熱性および引張強度を著しく向上させることが可能となる。
【0034】
従来の導電用耐熱Al合金線材は、Alマトリックス中にZrのみを固溶させると共に、熱処理によりAl3 Zrを析出させて、導電性を低下させること無く、耐熱性を向上させたものであった。
【0035】
これに対して、本発明の導電用耐熱Al合金線材は、Alマトリックス中にZrおよびScを固溶させると共に、熱処理によりAl3 Zr、Al3 Sc、およびAl3 (Zr,Sc)を析出させたものである。即ち、本発明の線材と、従来の線材とは、耐熱性又は導電性或いは強度の向上メカニズムが全く異なるものである。よって、従来の線材と比較して、導電性、耐熱性、および強度に優れた導電用耐熱Al合金線材を得ることができる。
【0036】
また、本発明の導電用耐熱Al合金線材の製造方法によれば、従来材のAl−Zr系合金およびAl−Zr−Be系合金と比較しても、短い熱処理時間で、耐熱性、導電性、および引張強度に優れたAl合金線材を得ることができる。ここで、熱処理時間が短くなるため、導電用耐熱Al合金線材の生産性が向上し、製造コストの低減を図ることができる。
【0037】
熱処理後に断面積減少率50%以上の冷間加工を施すことで、熱処理時に生成・成長した析出物(Al3 Zr、Al3 Sc、およびAl3 (Zr,Sc))が加工組織を安定化させ、導電性を低下させることなく、冷間加工後のAl合金線材の耐熱性および引張強度を著しく向上させることが可能となる。
【0038】
次に、本発明の他の実施の形態について説明する。
【0039】
の実施の形態の導電用耐熱Al合金線材の製造方法は、
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%を含有、又は
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%、Be:0.005〜0.05wt%を含有し、
残部がAl及び不可避不純物であるAl合金からなる線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施してなるものである。
【0040】
の実施の形態の導電用耐熱Al合金線材の製造方法を説明する。
【0041】
先ず、前述した本発明の製造方法と同様の方法により、Al合金線材を形成する。
【0042】
その後、このAl合金線材に、150〜200℃×5〜10時間の1次熱処理を施す。次に、400〜430℃×35〜45時間の2次熱処理を施す。1次熱処理および2次熱処理によって、鋳造時にAlマトリックス中に固溶したZrとScが、微細な析出物(Al3 Zr、Al3 Sc、およびAl3 (Zr,Sc))として生成する。1次熱処理によって、析出物の核生成が行われ、2次熱処理によって、析出物が所望の大きさに成長する。
【0043】
次に、熱処理後のAl合金線材に、断面積減少率50%以上、好ましくは断面積減少率75%以上、特に好ましくは断面積減少率90%以上の冷間加工を施し、導電用耐熱Al合金線材を得る。
【0044】
本実施の形態の導電用耐熱Al合金線材の製造方法においても、本発明の導電用耐熱Al合金線材の製造方法と同様の効果を有することは言うまでもない。
【0045】
また、本実施の形態の導電用耐熱Al合金線材の製造方法によれば、Al合金線材に施す熱処理を2段階(1次熱処理および2次熱処理)にわけることで、本発明の導電用耐熱Al合金線材の製造方法と比較して、熱処理時間を更に短くすることができる。
【0046】
次に、第の実施の形態の導電用耐熱Al合金線材の製造方法を説明する。
【0047】
の実施の形態の導電用耐熱Al合金線材の製造方法は、
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%を含有、又は
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%、Be:0.005〜0.05wt%を含有し、
残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施してなるものである。
【0048】
本実施の形態の導電用耐熱Al合金線材の製造方法を説明する。
【0049】
前述した本発明の製造方法で得られた導電用耐熱Al合金線材に、350〜400℃×1〜10時間の再結晶熱処理(熱処理)を施し、本実施の形態の導電用耐熱Al合金線材を得る。この再結晶熱処理によって、再結晶粒の核生成・成長が生じ、冷間加工時に導入された格子欠陥の大部分が消滅する。
【0050】
本実施の形態の導電用耐熱Al合金線材の製造方法によれば、本発明の導電用耐熱Al合金線材の製造方法と比較して、引張強度および導電率を殆ど低下させることなく、耐熱性を更に向上させることができる。
【0051】
次に、第の実施の形態の導電用耐熱Al合金線材の製造方法を説明する。
【0052】
の実施の形態の導電用耐熱Al合金線材の製造方法は、
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%を含有、又は
Zr:0.10〜0.50wt%と、
Sc:0.05〜0.50wt%と、
Si:0.05〜0.10wt%、Fe:0.05〜0.30wt%、Ti:0.01〜0.10wt%、B:0.003〜0.02wt%、Be:0.005〜0.05wt%を含有し、
その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施してなるものである。
【0053】
本実施の形態の導電用耐熱Al合金線材の製造方法を説明する。
【0054】
前述した第1の実施の形態の製造方法で得られた導電用耐熱Al合金線材に、第2の実施の形態と同様に、350〜400℃×1〜10時間の再結晶熱処理(熱処理)を施し、本実施の形態の導電用耐熱Al合金線材を得る。
【0055】
本実施の形態の導電用耐熱Al合金線材によれば、第1の実施の形態の導電用耐熱Al合金線材と比較して、引張強度および導電率を殆ど低下させることなく、耐熱性を更に向上させることができる。
【0056】
【実施例】
(実施例1)
先ず、Zr:0.35wt%、Sc:0.20wt%、Si:0.08wt%、Fe:0.13wt%、Ti:0.07wt%、B:0.005wt%、残部がAl及び不可避不純物という化学組成を有したAl合金を溶製する。
【0057】
その後、このAl合金溶湯を用いてAl合金インゴットを形成した後、このAl合金インゴットにスェージャー加工を施して、外径12mmのAl合金荒引線を形成する。
【0058】
次に、このAl合金荒引線に250℃×50時間の熱処理を施し、その後、熱処理後のAl合金線材に断面積減少率93%の冷間加工を施し、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例2)
実施例1と同様にして形成したAl合金荒引線に、295℃×50時間の熱処理を施し、その後、熱処理後のAl合金線材に断面積減少率93%の冷間加工を施し、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例3)
実施例1と同様にして形成したAl合金荒引線に、200℃×7時間の1次熱処理、次いで、420℃×40時間の2次熱処理を施し、その後、熱処理後のAl合金線材に断面積減少率93%の冷間加工を施し、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例4)
Zr:0.20wt%、Sc:0.20wt%、Si:0.08wt%、Fe:0.13wt%、Ti:0.07wt%、B:0.005wt%、残部がAl及び不可避不純物という化学組成を有したAl合金を用いる以外は、実施例3と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例5)
Zr:0.35wt%、Sc:0.20wt%、Si:0.08wt%、Fe:0.13wt%、Ti:0.07wt%、B:0.005wt%、Be:0.01wt%、残部がAl及び不可避不純物という化学組成を有したAl合金を用いる以外は、実施例1と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例6)
295℃×50時間の熱処理を施す以外は、実施例5と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例7)
200℃×7時間の1次熱処理、次いで、420℃×40時間の2次熱処理を
施す以外は、実施例5と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例8)
Zr:0.20wt%、Sc:0.20wt%、Si:0.08wt%、Fe:0.13wt%、Ti:0.07wt%、B:0.005wt%、Be:0.01wt%、残部がAl及び不可避不純物という化学組成を有したAl合金を用いる以外は、実施例7と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(実施例9)
実施例1と同様にして形成したAl合金荒引線に、200℃×7時間の1次熱処理、次いで、420℃×40時間の2次熱処理を施し、その後、熱処理後のAl合金線材に断面積減少率93%の冷間加工を施して外径3.2mmに形成した後、350℃×4時間の再結晶熱処理を施し、導電用耐熱Al合金線材を作製する。
(比較例1)
Al合金がScを含有していない他は、全て実施例1と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例2)
Al合金がScを含有していない他は、全て実施例2と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例3)
Al合金がScを含有していない他は、全て実施例3と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例4)
Al合金がScを含有していない他は、全て実施例4と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例5)
Al合金がScを含有していない他は、全て実施例5と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例6)
Al合金がScを含有していない他は、全て実施例6と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例7)
Al合金がScを含有していない他は、全て実施例7と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例8)
Al合金がScを含有していない他は、全て実施例8と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
(比較例9)
Al合金がScを含有していない他は、全て実施例9と同様にして、外径3.2mmの導電用耐熱Al合金線材を作製する。
【0059】
実施例1〜9および比較例1〜9の導電用耐熱Al合金線材の化学組成および熱処理条件を表1に示す。
【0060】
【表1】

Figure 0004144184
【0061】
次に、得られた実施例1〜9および比較例1〜9の導電用耐熱Al合金線材について、それぞれ引張強度(MPa)、導電率(%IACS)、耐熱性(%)を測定した。その測定結果を表2に示す。
【0062】
ここで、耐熱性(%)は、(得られた導電用耐熱Al合金線材に280℃で1時間加熱した後における引張強度/得られた導電用耐熱Al合金線材の引張強度)×100で求められる値である。
【0063】
【表2】
Figure 0004144184
【0064】
表2に示すように、本発明材である実施例1〜9の導電用耐熱Al合金線材においては、50時間以内の熱処理で、240MPa以上の引張強度、58%IACS以上の導電率、および95%以上の耐熱性を有しており、強度、導電性、および耐熱性に優れていた。従来の送電線用アルミ合金において、上述の特性を兼ね備えた材料は存在せず、発明者らが鋭意研究し、発見したものである。また、Beを含有した実施例1〜4の線材とBeを含有しない実施例5〜8の線材とを比較するに、強度、導電性、および耐熱性に大きな差異が無いことから、必ずしも、高価なBeをAl合金原料として用いる必要はないことが伺える。
【0065】
これに対して、比較例1〜9の導電用耐熱Al合金線材は、それぞれ、実施例1〜9の導電用耐熱Al合金線材と同じ熱処理を施したものであるが、Al合金中にScを含有していない。このため、比較例1〜9の線材全てにおいて、引張強度、導電率、および耐熱性のいずれもが、実施例1〜9の線材よりも劣っていた。
【0066】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0067】
【発明の効果】
以上要するに本発明によれば、短い熱処理時間で、従来の線材と比較して、導電性、耐熱性、および強度に優れた導電用耐熱Al合金線材を得ることができるという優れた効果を発揮する。[0001]
BACKGROUND OF THE INVENTION
  The present invention is a heat-resistant Al alloy wire for electrical conduction.MaterialHeat-resistant Al alloy wire used in overhead transmission lines, especially for manufacturing methodsMaterialIt relates to a manufacturing method.
[0002]
[Prior art]
  In recent years, overhead transmission lines have been required to increase transmission capacity with an increase in power demand. The simplest method for increasing the power transmission capacity is to increase the conductor cross-sectional area of the overhead power transmission line. However, since this increases the weight, there is a problem that the allowable strength of the existing steel tower is exceeded.
[0003]
  Therefore, in order to increase the power transmission capacity without changing the conductor cross-sectional area, an Al alloy wire having excellent heat resistance and high conductivity is used for the conductor. Conventionally, an Al—Zr alloy containing about 0.1 wt% Zr has been used as an Al alloy that satisfies these requirements. In this Al—Zr-based alloy, if the Zr content is increased in order to improve the heat resistance, conversely, the conductivity is lowered. For this reason, it is possible to contain Fe, Mg, Si, etc. as the third element in the Al—Zr alloy, and then to perform heat treatment (aging treatment) for an extremely long time. Al alloy wire is obtained.
[0004]
  However, an Al—Zr-based alloy to which a third element such as Fe, Mg, Si or the like is added requires heat treatment for a long time (for example, about 100 to 200 hours), resulting in poor productivity and an increase in manufacturing cost. Was invited. For this reason, a heat-resistant Al alloy (Al-Zr-Be alloy) wire has been developed for shortening the heat treatment (aging treatment) time by adding a small amount of Be as a third element to the Al-Zr alloy. And is applied to overhead power transmission lines.
[0005]
[Problems to be solved by the invention]
  However, although the Al—Zr—Be-based alloy can shorten the time required for the heat treatment, Be is an expensive metal, so that there is a problem that the raw material cost is increased.
[0006]
  In addition, with the conventional alloy composition and manufacturing method of heat-resistant Al alloy wire for electric conduction, it is not expected to obtain heat-resistant Al alloy wire for electric conduction that greatly exceeds the heat resistance, conductivity, and strength of conventional heat-resistant Al alloy wire for electric conduction. .
[0007]
  Therefore, the present invention solves the above-mentioned problems, and has a shorter heat treatment time, a lower manufacturing cost, and superior heat resistance, conductivity, and strength as compared with conventional heat-resistant Al alloy wires for electric conduction. Heat-resistant Al alloy wire for conductionMaterialIt is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
  In order to solve the above problems, the invention of claim 1 is characterized in that Zr is 0.10 to 0.50 wt%, and Sc is 0.05 to 0.50 wt%., 0.05 to 0.10 wt% of Si, 0.05 to 0.30 wt% of Fe, 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of BContains, the balance being Al and inevitable impurities AlUsing molten alloyAfter forming the wire, the wire40-60 hours at 200-250 ° CAfter that, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more.
[0009]
  Claim2In the present invention, Zr is 0.10 to 0.50 wt%, and Sc is 0.05 to 0.50 wt%., 0.05 to 0.10 wt% of Si, 0.05 to 0.30 wt% of Fe, 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of BAfter forming the wire using Al alloy molten metal that contains and the balance is Al and inevitable impurities, the wire150 to 200 ° C for 5 to 10 hoursPrimary heat treatment of35 to 45 hours at 400 to 430 ° CNext, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more.
[0010]
  Claim3In the present invention, Zr is 0.10 to 0.50 wt%, and Sc is 0.05 to 0.50 wt%, 0.05 to 0.10 wt% of Si, 0.05 to 0.30 wt% of Fe, 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of BAfter forming the wire using Al alloy molten metal that contains and the balance is Al and inevitable impurities, the wire40-60 hours at 200-250 ° CAfter that, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more.350-400 ° C x 1-10 hoursThe heat treatment is performed.
[0011]
  Claim4In the present invention, Zr is 0.10 to 0.50 wt%, and Sc is 0.05 to 0.50 wt%, 0.05 to 0.10 wt% of Si, 0.05 to 0.30 wt% of Fe, 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of BAfter forming the wire using Al alloy molten metal that contains and the balance is Al and inevitable impurities, the wire150 to 200 ° C for 5 to 10 hoursPrimary heat treatment of35 to 45 hours at 400 to 430 ° CAfter that, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more, and then the cold worked material is subjected to cold working.350-400 ° C x 1-10 hoursThe heat treatment is performed.
[0012]
  In the invention of claim 5, Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt%, Si is 0.05 to 0.10 wt%, and Fe is 0.05 to 0.30 wt%. , Using 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of B, 0.005 to 0.05 wt% of Be, the balance being Al and molten Al alloy with inevitable impurities After forming the wire, the wire is subjected to heat treatment at 200 to 250 ° C. for 40 to 60 hours, and then subjected to cold working with a cross-sectional area reduction rate of 50% or more. This is a method for producing an Al alloy wire.
[0013]
  In the invention of claim 6, Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt%, Si is 0.05 to 0.10 wt%, and Fe is 0.05 to 0.30 wt%. , Using 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of B, 0.005 to 0.05 wt% of Be, the balance being Al and molten Al alloy with inevitable impurities After forming the wire, the wire is subjected to a primary heat treatment at 150 ° C. to 200 ° C. for 5 to 10 hours, and a secondary heat treatment at 400 to 430 ° C. for 35 to 45 hours. % Is a method for producing a heat-resistant heat-resistant Al alloy wire characterized by performing cold working of at least%.
[0014]
  In the invention of claim 7, Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt%, Si is 0.05 to 0.10 wt%, and Fe is 0.05 to 0.30 wt%. , Using 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of B, 0.005 to 0.05 wt% of Be, the balance being Al and molten Al alloy with inevitable impurities After forming the wire, the wire is subjected to heat treatment at 200 ° C. to 250 ° C. for 40 to 60 hours, and then the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more, and then the cold worked material. Is subjected to heat treatment at 350 to 400 ° C. for 1 to 10 hours..
[0015]
  In the invention of claim 8, Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt%, Si is 0.05 to 0.10 wt%, and Fe is 0.05 to 0.30 wt%. , Using 0.01 to 0.10 wt% of Ti, 0.003 to 0.02 wt% of B, 0.005 to 0.05 wt% of Be, the balance being Al and molten Al alloy with inevitable impurities After forming the wire, the wire is subjected to a primary heat treatment at 150 ° C. to 200 ° C. for 5 to 10 hours, and a secondary heat treatment at 400 to 430 ° C. for 35 to 45 hours. % Or more of cold work, and then heat treatment of the cold work material at 350 to 400 ° C. for 1 to 10 hours.
[0016]
  According to the above method, the heat treatment time is shorter and the production cost of the wire is lower than that of the conventional method for producing a heat-resistant Al alloy wire for electrical conduction.
[0017]
  The reason for limiting the numerical range will be described below.
[0018]
  The reason why the Zr content is 0.10 to 0.50 wt% and the Sc content is 0.05 to 0.50 wt% is that the Zr content is less than 0.10 wt% or the Sc content is less than 0.05 wt%. In this case, the conductivity can be improved as compared with the conventional manufacturing method, but the heat resistance cannot be improved and the strength cannot be further improved. In addition, when the Zr content is more than 0.50 wt% or the Sc content is more than 0.5 wt%, the heat resistance can be improved as compared with the conventional manufacturing method, but the conductivity cannot be improved. It is.
[0019]
  Si is contained in the range of 0.05 to 0.10 wt%, so that Al during heat treatmentThreeZr, AlThreeSc and AlThreeThere is an effect of promoting precipitation of (Zr, Sc).
[0020]
  Fe is contained in the range of 0.05 to 0.30 wt%, and has an effect of improving the strength of the obtained wire.
[0021]
  Ti and B are contained in the range of 0.01 to 0.10 wt% and 0.003 to 0.02 wt%, respectively, to refine the crystal grains of the cast material and to generate cracks and scratches on the cast material. As a result, the yield during production (casting) is greatly improved.
[0022]
  When heat treatment is performed at 100 ° C. or more and less than 300 ° C. for 1 to 100 hours, if the heat treatment temperature is less than 100 ° C., nucleation of precipitates is difficult to occur, and if it is higher than 300 ° C., precipitates grow coarsely, which is not preferable. . Further, if the heat treatment time is less than 1 hour, the nucleation of precipitates becomes insufficient, and if it is longer than 100 hours, the precipitates grow coarsely, which is not preferable.
[0023]
  When the primary heat treatment is performed at 50 ° C. or more and less than 300 ° C. × 1 to 30 hours, if the temperature of the primary heat treatment is less than 50 ° C., nucleation of precipitates is difficult to occur, and if the temperature is higher than 300 ° C., the precipitates are coarse. It is not preferable because it grows. Further, if the primary heat treatment time is less than 1 hour, the nucleation of precipitates is insufficient, and if it is longer than 30 hours, the growth of precipitates occurs, which is not preferable.
[0024]
  When the secondary heat treatment at 300 to 500 ° C. × 10 to 60 hours is performed, if the temperature of the secondary heat treatment is less than 300 ° C., the growth of precipitates is insufficient and the conductivity is not recovered and is higher than 500 ° C. And the precipitate grows coarsely and heat resistance is lowered, which is not preferable. Further, if the secondary heat treatment time is less than 10 hours, the growth of the precipitate is not sufficient, and if it is longer than 60 hours, the precipitate grows coarsely and the heat resistance is lowered, which is not preferable.
[0025]
  This is because in the case of cold working with a cross-sectional area reduction rate of less than 50%, improvement in strength characteristics (tensile strength) of the Al alloy wire by work hardening during cold working cannot be expected.
[0026]
  When performing heat treatment (recrystallization heat treatment) at 300 to 500 ° C. for 1 to 100 hours after cold working, if the recrystallization heat treatment temperature is less than 300 ° C., nucleation of recrystallized grains is difficult to occur, and if it is higher than 500 ° C. Since recrystallized grains grow coarsely, it is not preferable. Further, if the recrystallization heat treatment time is less than 1 hour, nucleation of recrystallized grains becomes insufficient, and if it is longer than 100 hours, the recrystallized grains grow coarsely, which is not preferable.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, a preferred embodiment of the present invention will be described.
[0028]
  Heat-resistant Al alloy wire for conduction of the present inventionManufacturing methodIs
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05-0.10 wt%, Fe: 0.05-0.30 wt%, Ti: 0.01-0.10 wt%, B: 0.003-0.02 wt%Containing, or
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05 to 0.10 wt%, Fe: 0.05 to 0.30 wt%, Ti: 0.01 to 0.10 wt%, B: 0.003 to 0.02 wt%, Be: 0.005 Contains 0.05 wt%And
After forming a wire made of an Al alloy with the balance being Al and inevitable impurities, the wire200 ° C or more and less than 250 ° C for 40 to 60 hoursAfter that, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more.
[0029]
  Of the first embodimentA method for producing a heat-resistant Al alloy wire for conduction will be described.
[0030]
  First, Zr: 0.10 to 0.50 wt%, preferably 0.15 to 0.40 wt%, particularly preferably 0.18 to 0.37 wt%,
Sc: 0.05 to 0.50 wt%, preferably 0.05 to 0.30 wt%, particularly preferably 0.05 to 0.20 wt%,
Si: 0.05 to 0.10 wt%,
Fe: 0.05-0.30 wt%, preferably 0.10-0.20 wt%,
Ti: 0.01-0.10 wt%, preferably 0.05-0.10 wt%,
B: 0.003-0.02 wt%, preferably 0.003-0.01 wt%,
Be: 0.005 to 0.05 wt%, preferably 0.005 to 0.025 wt%
Containing
An Al alloy having the chemical composition of Al and inevitable impurities is melted.
[0031]
  Next, a wire is formed using this Al alloy molten metal by a known casting method such as the Properti method, the Hazeley method, or the SCR method, and an Al alloy wire in which Zr and Sc are dissolved in an Al matrix is formed.
[0032]
  Then, to this Al alloy wire2Heat treatment at 00 to 250 ° C. × 40 to 60 hours is performed. By this heat treatment, Zr and Sc dissolved in the Al matrix at the time of casting become fine precipitates (AlThreeZr, AlThreeSc and AlThree(Zr, Sc)).
[0033]
  Next, the Al alloy wire after the heat treatment is subjected to cold working with a cross-sectional area reduction rate of 50% or more, preferably a cross-sectional area reduction rate of 75% or more, and particularly preferably a cross-sectional area reduction rate of 90% or more. Obtain alloy wire. Precipitates generated and grown during heat treatment stabilize the work structure during cold working. Thereby, it becomes possible to remarkably improve the heat resistance and tensile strength of the Al alloy wire after cold working without reducing the conductivity.
[0034]
  The conventional heat-resistant Al alloy wire for conductive use is a solution in which only Zr is dissolved in an Al matrix and heat treated to produce Al.ThreeThe heat resistance was improved without precipitating Zr and reducing the conductivity.
[0035]
  On the other hand, the heat-resistant Al alloy wire for electric conduction of the present invention dissolves Zr and Sc in the Al matrix and heat-treats Al.ThreeZr, AlThreeSc and AlThree(Zr, Sc) is precipitated. That is, the wire rod of the present invention and the conventional wire rod are completely different in heat resistance, conductivity, or strength improvement mechanism. Therefore, it is possible to obtain a heat-resistant heat-resistant Al alloy wire excellent in conductivity, heat resistance, and strength as compared with a conventional wire.
[0036]
  In addition, according to the method for producing a heat-resistant Al alloy wire for conduction of the present invention, heat resistance and conductivity can be reduced in a short heat treatment time as compared with the conventional Al-Zr alloy and Al-Zr-Be alloy. And an Al alloy wire excellent in tensile strength can be obtained. Here, since the heat treatment time is shortened, the productivity of the heat-resistant Al alloy wire for conduction is improved, and the manufacturing cost can be reduced.
[0037]
  By performing cold working with a cross-sectional area reduction rate of 50% or more after heat treatment, precipitates (AlThreeZr, AlThreeSc and AlThree(Zr, Sc)) stabilizes the processed structure and can significantly improve the heat resistance and tensile strength of the Al alloy wire after cold working without reducing the electrical conductivity.
[0038]
  Next, another embodiment of the present invention will be described.
[0039]
  First2Heat-resistant Al alloy wire for electric conduction in the embodimentManufacturing methodIs
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05-0.10 wt%, Fe: 0.05-0.30 wt%, Ti: 0.01-0.10 wt%, B: 0.003-0.02 wt%Containing, or
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05 to 0.10 wt%, Fe: 0.05 to 0.30 wt%, Ti: 0.01 to 0.10 wt%, B: 0.003 to 0.02 wt%, Be: 0.005 Contains 0.05 wt%And
After forming the wire consisting of Al and Al alloy with the balance being inevitable impurities,150 to 200 ° C for 5 to 10 hoursPrimary heat treatment of35 to 45 hours at 400 to 430 ° CNext, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more.
[0040]
  First2The manufacturing method of the heat-resistant heat-resistant Al alloy wire of the embodiment will be described.
[0041]
  First, an Al alloy wire is formed by the same method as the manufacturing method of the present invention described above.
[0042]
  Then, to this Al alloy wire1A primary heat treatment is performed at 50 to 200 ° C. for 5 to 10 hours. next4Secondary heat treatment at 00 to 430 ° C. × 35 to 45 hours is performed. By primary heat treatment and secondary heat treatment, Zr and Sc dissolved in the Al matrix at the time of casting become fine precipitates (AlThreeZr, AlThreeSc and AlThree(Zr, Sc)). The primary heat treatment causes nucleation of precipitates, and the secondary heat treatment causes the precipitates to grow to a desired size.
[0043]
  Next, the Al alloy wire after the heat treatment is subjected to cold working with a cross-sectional area reduction rate of 50% or more, preferably a cross-sectional area reduction rate of 75% or more, and particularly preferably a cross-sectional area reduction rate of 90% or more. Obtain alloy wire.
[0044]
  Heat-resistant Al alloy wire for conduction of this embodimentMaterialAlso in the manufacturing method, the heat-resistant Al alloy wire for conductive use of the present inventionMaterialNeedless to say, it has the same effect as the manufacturing method.
[0045]
  Moreover, according to the manufacturing method of the heat-resistant Al alloy wire for electric conduction of the present embodiment, the heat-resistant Al alloy wire for electric conduction according to the present invention is divided into two stages (primary heat treatment and secondary heat treatment). Compared with the manufacturing method of an alloy wire, the heat treatment time can be further shortened.
[0046]
  Next3The manufacturing method of the heat-resistant heat-resistant Al alloy wire of the embodiment will be described.
[0047]
  First3Heat-resistant Al alloy wire for electric conduction in the embodimentManufacturing methodIs
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05-0.10 wt%, Fe: 0.05-0.30 wt%, Ti: 0.01-0.10 wt%, B: 0.003-0.02 wt%Containing, or
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05 to 0.10 wt%, Fe: 0.05 to 0.30 wt%, Ti: 0.01 to 0.10 wt%, B: 0.003 to 0.02 wt%, Be: 0.005 Contains 0.05 wt%And
After forming the wire using Al alloy molten metal with the balance being Al and inevitable impurities,40-60 hours at 200-250 ° CAfter that, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more.350-400 ° C x 1-10 hoursThe heat treatment is performed.
[0048]
  The manufacturing method of the heat-resistant Al alloy wire for electric conduction of this Embodiment is demonstrated.
[0049]
  To the heat-resistant Al alloy wire for conduction obtained by the production method of the present invention described above3A recrystallization heat treatment (heat treatment) is performed at 50 to 400 ° C. for 1 to 10 hours to obtain the heat-resistant Al alloy wire for conduction of this embodiment. This recrystallization heat treatment causes nucleation / growth of recrystallized grains, and most of lattice defects introduced during cold working disappear.
[0050]
  Heat-resistant Al alloy wire for conduction of the present embodimentManufacturing methodAccording to the present invention, the heat-resistant heat-resistant Al alloy wire of the present inventionManufacturing methodAs compared with, the heat resistance can be further improved without substantially reducing the tensile strength and the electrical conductivity.
[0051]
  Next4The manufacturing method of the heat-resistant heat-resistant Al alloy wire of the embodiment will be described.
[0052]
  First4Heat-resistant Al alloy wire for electric conduction in the embodimentManufacturing methodIs
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05-0.10 wt%, Fe: 0.05-0.30 wt%, Ti: 0.01-0.10 wt%, B: 0.003-0.02 wt%Containing, or
Zr: 0.10 to 0.50 wt%,
Sc: 0.05-0.50 wt%,
Si: 0.05 to 0.10 wt%, Fe: 0.05 to 0.30 wt%, Ti: 0.01 to 0.10 wt%, B: 0.003 to 0.02 wt%, Be: 0.005 Contains 0.05 wt%And
To the wire150 to 200 ° C for 5 to 10 hoursPrimary heat treatment of35 to 45 hours at 400 to 430 ° CAfter that, the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more, and then the cold worked material is subjected to cold working.350-400 ° C x 1-10 hoursThe heat treatment is performed.
[0053]
  The manufacturing method of the heat-resistant Al alloy wire for electric conduction of this Embodiment is demonstrated.
[0054]
  Similar to the second embodiment, the heat-resistant Al alloy wire for electric conduction obtained by the manufacturing method of the first embodiment described above is used.3A recrystallization heat treatment (heat treatment) is performed at 50 to 400 ° C. for 1 to 10 hours to obtain the heat-resistant Al alloy wire for conduction of this embodiment.
[0055]
  According to the heat-resistant Al alloy wire for electric conduction of this embodiment, compared with the heat-resistant Al alloy wire for electric conduction of the first embodiment, the heat resistance is further improved without substantially reducing the tensile strength and conductivity. Can be made.
[0056]
【Example】
Example 1
  First, Zr: 0.35 wt%, Sc: 0.20 wt%, Si: 0.08 wt%, Fe: 0.13 wt%, Ti: 0.07 wt%, B: 0.005 wt%, the balance being Al and inevitable impurities An Al alloy having the chemical composition is melted.
[0057]
  Thereafter, an Al alloy ingot is formed using the Al alloy molten metal, and then the Al alloy ingot is subjected to swage processing to form an Al alloy rough drawn wire having an outer diameter of 12 mm.
[0058]
  Next, this Al alloy rough wire was subjected to a heat treatment at 250 ° C. for 50 hours, and then the Al alloy wire after the heat treatment was subjected to a cold working with a cross-sectional area reduction rate of 93%, and a heat resistance for conduction having an outer diameter of 3.2 mm. An Al alloy wire is produced.
(Example 2)
  The Al alloy rough wire formed in the same manner as in Example 1 was subjected to a heat treatment at 295 ° C. for 50 hours, and then the Al alloy wire after the heat treatment was subjected to cold working with a cross-sectional area reduction rate of 93% to obtain an outer diameter of 3 A 2 mm conductive heat-resistant Al alloy wire is produced.
(Example 3)
  The Al alloy rough wire formed in the same manner as in Example 1 was subjected to a primary heat treatment of 200 ° C. × 7 hours and then a secondary heat treatment of 420 ° C. × 40 hours, and then the cross-sectional area was applied to the Al alloy wire after the heat treatment. Cold working with a reduction rate of 93% is performed to produce a heat-resistant Al alloy wire for conduction having an outer diameter of 3.2 mm.
Example 4
  Zr: 0.20 wt%, Sc: 0.20 wt%, Si: 0.08 wt%, Fe: 0.13 wt%, Ti: 0.07 wt%, B: 0.005 wt%, the balance being Al and inevitable impurities A heat-resistant Al alloy wire for conduction having an outer diameter of 3.2 mm is produced in the same manner as in Example 3 except that an Al alloy having a composition is used.
(Example 5)
  Zr: 0.35 wt%, Sc: 0.20 wt%, Si: 0.08 wt%, Fe: 0.13 wt%, Ti: 0.07 wt%, B: 0.005 wt%, Be: 0.01 wt%, balance A conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 1 except that Al alloy having a chemical composition of Al and inevitable impurities is used.
(Example 6)
  A conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 5 except that heat treatment at 295 ° C. × 50 hours is performed.
(Example 7)
  Primary heat treatment at 200 ° C x 7 hours, then secondary heat treatment at 420 ° C x 40 hours
A conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 5 except that it is applied.
(Example 8)
  Zr: 0.20 wt%, Sc: 0.20 wt%, Si: 0.08 wt%, Fe: 0.13 wt%, Ti: 0.07 wt%, B: 0.005 wt%, Be: 0.01 wt%, balance A conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 7, except that Al alloy having a chemical composition of Al and inevitable impurities is used.
Example 9
  The Al alloy rough wire formed in the same manner as in Example 1 was subjected to a primary heat treatment of 200 ° C. × 7 hours and then a secondary heat treatment of 420 ° C. × 40 hours, and then the cross-sectional area was applied to the Al alloy wire after the heat treatment. A cold working with a reduction rate of 93% is performed to form an outer diameter of 3.2 mm, and then a recrystallization heat treatment is performed at 350 ° C. for 4 hours to produce a heat-resistant Al alloy wire for conduction.
(Comparative Example 1)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 1.
(Comparative Example 2)
  A conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is manufactured in the same manner as in Example 2 except that the Al alloy does not contain Sc.
(Comparative Example 3)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 3.
(Comparative Example 4)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 4.
(Comparative Example 5)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 5.
(Comparative Example 6)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 6.
(Comparative Example 7)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 7.
(Comparative Example 8)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 8.
(Comparative Example 9)
  Except that the Al alloy does not contain Sc, a conductive heat-resistant Al alloy wire having an outer diameter of 3.2 mm is produced in the same manner as in Example 9.
[0059]
  Table 1 shows the chemical compositions and heat treatment conditions of the heat-resistant Al alloy wires for conduction in Examples 1 to 9 and Comparative Examples 1 to 9.
[0060]
[Table 1]
Figure 0004144184
[0061]
  Next, the tensile strength (MPa), electrical conductivity (% IACS), and heat resistance (%) were measured about the obtained heat-resistant Al alloy wire for electroconductivity of Examples 1-9 and Comparative Examples 1-9, respectively. The measurement results are shown in Table 2.
[0062]
  Here, the heat resistance (%) is obtained by (tensile strength after heating the obtained conductive heat-resistant Al alloy wire at 280 ° C. for 1 hour / tensile strength of the obtained conductive heat-resistant Al alloy wire) × 100. Value.
[0063]
[Table 2]
Figure 0004144184
[0064]
  As shown in Table 2, in the heat-resistant Al alloy wire for conduction of Examples 1 to 9 which is the material of the present invention, the tensile strength of 240 MPa or more, the conductivity of 58% IACS or more and 95 after heat treatment within 50 hours. % Heat resistance and excellent strength, conductivity, and heat resistance. In the conventional aluminum alloy for power transmission lines, there is no material having the above-mentioned characteristics, and the inventors have conducted intensive research and discovery. Moreover, since there is no big difference in an intensity | strength, electroconductivity, and heat resistance when comparing the wire of Examples 1-4 containing Be and the wire of Examples 5-8 which does not contain Be, it is not necessarily expensive. It can be seen that it is not necessary to use neat Be as an Al alloy raw material.
[0065]
  On the other hand, the heat-resistant Al alloy wire for conductive use in Comparative Examples 1 to 9 was subjected to the same heat treatment as the heat-resistant Al alloy wire for conductive use in Examples 1 to 9, but Sc was added to the Al alloy. Does not contain. For this reason, in all the wire materials of Comparative Examples 1 to 9, all of the tensile strength, conductivity, and heat resistance were inferior to those of Examples 1 to 9.
[0066]
  As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.
[0067]
【The invention's effect】
  In short, according to the present invention, an excellent effect of being able to obtain a heat-resistant Al alloy wire for electric conduction having excellent conductivity, heat resistance and strength as compared with conventional wires can be obtained in a short heat treatment time. .

Claims (8)

Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt% , Si is 0.05 to 0.10 wt %, Fe is 0.05 to 0.30 wt %, and Ti is 0.01 to After forming a wire using Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, the balance being Al and inevitable impurities, the wire is heated at 200 ° C to 250 ° C at 40-60 A method for producing a heat-resistant Al alloy wire for electrical conduction, characterized by performing a heat treatment for a period of time , and thereafter subjecting the wire to cold working with a cross-sectional area reduction rate of 50% or more. Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt% , Si is 0.05 to 0.10 wt %, Fe is 0.05 to 0.30 wt %, and Ti is 0.01 to After forming a wire using Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, the balance being Al and inevitable impurities, the wire is applied at 150 ° C to 200 ° C at 5-10. the primary heat treatment time, 400-430 subjected to secondary heat treatment 35-45 hours at ° C., then, the conductive heat-resistant Al alloy, characterized in that applying between area reduction of 50% or more of cold working on the wire A manufacturing method of a wire. Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt% , Si is 0.05 to 0.10 wt %, Fe is 0.05 to 0.30 wt %, and Ti is 0.01 to After forming a wire using Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, the balance being Al and inevitable impurities, the wire is heated at 200 ° C to 250 ° C at 40-60 It is characterized by subjecting the wire material to cold working with a cross-sectional area reduction rate of 50% or more, and then subjecting the cold worked material to heat treatment at 350 to 400 ° C. for 1 to 10 hours. A method for producing a heat-resistant Al alloy wire for electrical conduction. Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr is 0.10 to 0.50 wt%, Sc is 0.05 to 0.50 wt% , Si is 0.05 to 0.10 wt %, Fe is 0.05 to 0.30 wt %, and Ti is 0.01 to After forming a wire using Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, the balance being Al and inevitable impurities, the wire is applied at 150 ° C to 200 ° C at 5-10. Primary heat treatment for hours , secondary heat treatment at 400 to 430 ° C. for 35 to 45 hours , then cold working with a cross-sectional area reduction rate of 50% or more to the wire, and then 350 cold working material A method for producing a heat-resistant Al alloy wire for electrical conduction, characterized by performing a heat treatment at ˜400 ° C. for 1 to 10 hours . Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr 0.10 to 0.50 wt%, Sc 0.05 to 0.50 wt%, Si 0.05 to 0.10 wt%, Fe 0.05 to 0.30 wt%, Ti 0.01 to After forming a wire using an Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, Be 0.005-0.05 wt%, the balance being Al and inevitable impurities, A method for producing a heat-resistant Al alloy wire for electrical conduction, wherein the wire is subjected to heat treatment at 200 ° C. to 250 ° C. for 40 to 60 hours, and then subjected to cold working with a cross-sectional area reduction rate of 50% or more. Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr 0.10 to 0.50 wt%, Sc 0.05 to 0.50 wt%, Si 0.05 to 0.10 wt%, Fe 0.05 to 0.30 wt%, Ti 0.01 to After forming a wire using an Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, Be 0.005-0.05 wt%, the balance being Al and inevitable impurities, The wire is subjected to a primary heat treatment at 150 ° C. to 200 ° C. for 5 to 10 hours and a secondary heat treatment at 400 to 430 ° C. for 35 to 45 hours, and then the wire is cold worked with a cross-sectional area reduction rate of 50% or more. A method for producing a heat-resistant Al alloy wire for electrical conduction, characterized in that: Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に200℃〜250℃で40〜60時間の熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr 0.10 to 0.50 wt%, Sc 0.05 to 0.50 wt%, Si 0.05 to 0.10 wt%, Fe 0.05 to 0.30 wt%, Ti 0.01 to After forming a wire using an Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, Be 0.005-0.05 wt%, the balance being Al and inevitable impurities, The wire is subjected to heat treatment at 200 ° C. to 250 ° C. for 40 to 60 hours, and then the wire is subjected to cold working with a cross-sectional area reduction rate of 50% or more, and then the cold worked material is subjected to 350 to 400 ° C. × 1. A method for producing a heat-resistant heat-resistant Al alloy wire characterized by performing a heat treatment for 10 hours. Zrを0.10〜0.50wt%、Scを0.05〜0.50wt%、Siを0.05〜0.10wt%、Feを0.05〜0.30wt%、Tiを0.01〜0.10wt%、Bを0.003〜0.02wt%、Beを0.005〜0.05wt%含有し、残部がAl及び不可避不純物であるAl合金溶湯を用いて線材を形成した後、その線材に150℃〜200℃で5〜10時間の1次熱処理、400〜430℃で35〜45時間の2次熱処理を施し、その後、その線材に断面積減少率50%以上の冷間加工を施し、その後、その冷間加工材に350〜400℃×1〜10時間の熱処理を施すことを特徴とする導電用耐熱Al合金線材の製造方法。Zr 0.10 to 0.50 wt%, Sc 0.05 to 0.50 wt%, Si 0.05 to 0.10 wt%, Fe 0.05 to 0.30 wt%, Ti 0.01 to After forming a wire using an Al alloy molten metal containing 0.10 wt%, B 0.003-0.02 wt%, Be 0.005-0.05 wt%, the balance being Al and inevitable impurities, The wire is subjected to a primary heat treatment at 150 ° C. to 200 ° C. for 5 to 10 hours and a secondary heat treatment at 400 to 430 ° C. for 35 to 45 hours, and then the wire is cold worked with a cross-sectional area reduction rate of 50% or more. And then heat-treating the cold worked material at 350 to 400 ° C. for 1 to 10 hours.
JP2001068219A 2001-03-12 2001-03-12 Manufacturing method of heat-resistant Al alloy wire for electric conduction Expired - Fee Related JP4144184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068219A JP4144184B2 (en) 2001-03-12 2001-03-12 Manufacturing method of heat-resistant Al alloy wire for electric conduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068219A JP4144184B2 (en) 2001-03-12 2001-03-12 Manufacturing method of heat-resistant Al alloy wire for electric conduction

Publications (2)

Publication Number Publication Date
JP2002266043A JP2002266043A (en) 2002-09-18
JP4144184B2 true JP4144184B2 (en) 2008-09-03

Family

ID=18926441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068219A Expired - Fee Related JP4144184B2 (en) 2001-03-12 2001-03-12 Manufacturing method of heat-resistant Al alloy wire for electric conduction

Country Status (1)

Country Link
JP (1) JP4144184B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1940571B1 (en) 2005-10-28 2016-02-24 Novelis, Inc. Homogenization and heat-treatment of cast aluminium alloy
CN103781926B (en) * 2011-09-05 2016-08-17 大电株式会社 Aluminum base conductive material and employ its electric wire and cable
JP5534241B2 (en) * 2011-11-03 2014-06-25 日立金属株式会社 Aluminum alloy wire and manufacturing method thereof
EP2736047B1 (en) * 2012-11-22 2017-11-08 Heraeus Deutschland GmbH & Co. KG Aluminium alloy wire for bonding applications
JP2016035079A (en) * 2012-12-27 2016-03-17 大電株式会社 Aluminum-based conductive material and cable using the same
CN105274397A (en) * 2015-10-23 2016-01-27 东北大学 High-strength super-heat-resistant aluminum-alloy conductor and preparation method thereof

Also Published As

Publication number Publication date
JP2002266043A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4144184B2 (en) Manufacturing method of heat-resistant Al alloy wire for electric conduction
JPS5839225B2 (en) Manufacturing method of high strength aluminum alloy conductor
JPS607701B2 (en) Manufacturing method of highly conductive heat-resistant aluminum alloy
JP5534241B2 (en) Aluminum alloy wire and manufacturing method thereof
JPS6216269B2 (en)
JP4144188B2 (en) Manufacturing method of heat-resistant aluminum alloy wire for electric conduction
JPS6130019B2 (en)
JP2001131719A (en) HEAT RESISTANT Al ALLOY WIRE ROD FOR ELECTRICAL CONDUCTION AND PRODUCING METHOD THEREFOR
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPH0125822B2 (en)
JP2566877B2 (en) Method for producing Cu-Ag alloy conductor
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH11209856A (en) Manufacture of electrical conducting heat resistant aluminum alloy wire
JPH0152468B2 (en)
JP3403763B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP2628235B2 (en) Method for producing high heat-resistant aluminum alloy wire for conductive use
JP3227072B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
JPH0693399A (en) Production of cu-ag alloy conductor
JP3871894B2 (en) Method for producing high-strength, low-thermal-expansion alloy with excellent ductility
JPH0215625B2 (en)
JPH0693398A (en) Production of cu-ag alloy wire
JPH06158246A (en) Manufacture of high heat resistant aluminum alloy wire for electric conduction
JPH042664B2 (en)
JP2539478B2 (en) Method for producing tellurium-containing copper alloy
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060414

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Ref document number: 4144184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees