JPS623226B2 - - Google Patents

Info

Publication number
JPS623226B2
JPS623226B2 JP15104884A JP15104884A JPS623226B2 JP S623226 B2 JPS623226 B2 JP S623226B2 JP 15104884 A JP15104884 A JP 15104884A JP 15104884 A JP15104884 A JP 15104884A JP S623226 B2 JPS623226 B2 JP S623226B2
Authority
JP
Japan
Prior art keywords
temperature
superplastic
heating
alloy
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15104884A
Other languages
English (en)
Other versions
JPS6156269A (ja
Inventor
Mitsuo Hino
Takehiko Eto
Yutaka Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15104884A priority Critical patent/JPS6156269A/ja
Publication of JPS6156269A publication Critical patent/JPS6156269A/ja
Publication of JPS623226B2 publication Critical patent/JPS623226B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】
[産業上の利用分野] 本発明は超塑性Al―Li系合金の製造方法に関
し、さらに詳しくは、低密度、かつ、高弾性率を
有する超塑性Al―Li系合金の製造方法に関す
る。 [従来技術] この明細書において超塑性とは、ある外的条件
の下で材料がくびれ(necking)なしに数百〜数
千%という巨大な伸びを生じる現象であり、恒温
変態を利用した変態超塑性と微細結晶材料で見ら
れる微細粒超塑性とに大別され、因に、本発明は
微細粒超塑性のAl―Li系合金の製造方法であ
る。 一般に、微細結晶粒超塑性を起させるために
は、その材料の結晶粒径を微細に制御することが
必須であり、また、一般に、Al―Li系合金は鋳
造後鋳塊を400〜550℃の温度で均質化処理を行な
い、次いで、350〜550℃の温度で熱間加工および
冷間加工を行なつて所望の材料を製造するのであ
るが、このような通常の工程では結晶粒は30〜
100μmと大きくなつてしまい、高温において変
形しても、Al―Li系合金に目的とする超塑性
(伸び)を付与することはできない。 [発明が解決しようとする問題点] 本発明は上記に説明したように、いままでは困
難とされていたAl―Li系合金に微細粒組織を得
ることができる超塑性Al―Li系合金の製造方法
を提供するものである。 [問題点を解決するための手段] 本発明に係る超塑性Al―Li系合金の製造方法
は、 (1) Li1〜5wt% を含有するAl―Li系合金鋳塊を、400〜550℃の
温度で均質化熱処理を行ない、次いで、300〜550
℃の温度で熱間加工を行なつた後、350〜550℃の
温度において一段階或いは二段階の加熱保持を行
ない、30℃/Hr以上の冷却速度で冷却してから
少なくとも30%以上の冷間加工を行なうか或いは
20〜60%の冷間加工を行なつた後に、300℃以下
の低温軟化焼鈍と冷間加工を1回以上行なうこと
を特徴とする超塑性Al―Li系合金の製造方法を
第1の発明とし、 (2) Li1〜5wt% を含有するAl―Li系合金鋳塊を、400〜550℃の
温度で均質化熱処理を行ない、次いで、300〜550
℃の温度で熱間加工を行なつた後、350〜550℃の
温度において一段階或いは二段階の加熱保持を行
ない、30℃/Hr以上の冷却速度で冷却してから
少なくとも30%以上の冷間加工を行なうか或いは
20〜60%の冷間加工を行なつた後に、300℃以下
の低温軟化焼鈍と冷間加工を1回以上行ない、さ
らに、100℃/Hr以上の速度で350〜550℃の温度
に加熱軟化処理を行なうことを特徴とする超塑性
Al―Li系合金の製造方法を第2の発明とする2
つの発明からなるものである。 本発明に係る超塑性Al―Li系合金の製造方法
について以下詳細に説明する。 先ず、本発明に係るAl―Li系合金の製造方法
において使用するAl―Li合金の含有成分および
成分割合について説明する。 Liは強度および低密度、高弾性率を付与する元
素であり、含有量が1wt%未満ではこの効果が充
分に得ることができず、また、5wt%を越えて含
有されると熱間加工性およびその外の製造加工性
が損なわれ、かつ、延性、靭性が著しく低下す
る。よつて、Li含有量は1〜5wt%とする。 なお、本発明に係る超塑性Al―Li系合金の製
造方法において使用するAl―Li系合金には、Li以
外に、微細な結晶粒を得るために、Zr0.05〜
0.5wt%、Cr0.05〜0.5wt%、V0.05〜0.5wt%、
Hf0.05〜1.0wt%、Mn0.05〜2.0wt%、Ti0.15wt
%以下の中から選んだ1種または2種以上を含有
させる。そしてこれらの元素を含有させる場合
に、各元素の下限未満では微細な結晶粒を得るこ
とができず、また、各元素の上限を越えて含有さ
れると鋳造時に充分な固溶が得られず、巨大晶出
物の発生を招来して充分な伸びを得ることができ
ない。よつて、上記の通りの含有成分と成分割合
とする。 さらに、強度を付与させるために、Mg0.5〜
6.0wt%、Cu0.5〜5wt%、Zn0.5〜6wt%、Si0.3〜
2wt%の中から選んだ1種または2種以上を含有
させることができ、これらの元素を含有させる場
合に、各元素の下限未満では強度を向上させる効
果が少なく、また、各元素の上限を越えて含有さ
れると製造加工性が低下し、かつ、延性、靭性が
著しく低下する。よつて、上記の通りの含有成分
と成分割合とする。 また、不純物として含有されるFeは、不溶性
の晶出物を生成し、伸びを著しく低下させるの
で、Fe含有量は0.15wt%以下に規制しなければ
ならない。 次に、本発明に係るAl―Li系合金の製造方法
における加工および熱処理について説明する。 上記に説明した含有成分および成分割合のAl
―Li系合金鋳塊は、内部に不均質に分布している
主要元素の均質化および熱間加工性を向上させる
ために、400〜550℃の温度において充分な時間均
質化熱処理を行ない、続いて、300〜550℃の温度
で熱間加工を行なつて所定の板厚まで加工し、粗
い鋳造組織は熱間フアイバー組織となると同時
に、組織内にLiの析出物、または、含有している
場合にはCu,Mg,Znの析出物やZr+Cr,V,
Mnの遷移金属の一部が部分析出する。 さらに、この熱間加工後、好ましくは、30%以
上の冷間加工を行なうことにより、さらに微細粒
の材料が得られ超塑性伸びも大きくなる。 次に、この熱間加工後に350〜550℃の温度で
0.5〜20Hrの加熱保持をしてから、少なくとも30
℃/Hr、好ましくは、100℃/Hr以上の冷却速度
で冷却して固溶元素の固溶を図る。 また、この熱処理を急速加熱、急速冷却が可能
な連続焼鈍炉により400〜550℃の温度で10sec〜
10min間行なつてもよく、この加熱条件によりLi
と含有されている場合にはCu,Mg,Znは固溶さ
れ、また、Zr,Cr,Mn等の遷移元素はAlと金属
間化合物ZrAl3、Cr2Mg3Al18等を析出する、この
一段加熱保持後の冷却速度が100℃/Hr未満では
微細粒が得られず伸びがでにくくなる。 そして、この加熱保持を二段階で行なつた場
合、先ず、450〜550℃の温度で0.5〜10Hrの第1
回の加熱保持を行ない、続いて、第2回の加熱保
持塩度まで冷却し、350〜450℃の温度で0.5〜
50Hrの第2回の加熱保持を行ない、30℃/Hr以
上の冷却速度で冷却する。この加熱保持は温度が
高い程時間に短時間でよい。 この2回の加熱保持において、第1回の加熱保
持により析出している溶質元素はその大部分が固
溶され、続く第2回の加熱保持により遷移元素の
Zr,Cr,Mn等とAlとの金属間化合物ZrAl3
Cr2Mg3Al18,MnAl6等が析出する。 また、この二段階の加熱保持は、1回の加熱保
持の場合に比較して、遷移元素の析出形態が微細
なことおよび若干のLiとCu,Mg,Zn等とAlとの
高温時効析出物が形成されるために、加熱保持後
の冷却速度も30℃/Hrと遅くしてもよく、製造
ざだより容易となり、かつ、冷間加工中に生成さ
れる転位の密度がより高くなり、さらに、微細な
結晶粒が生成され超塑性伸びの大きい材料が得ら
れる。 そして、この二段階加熱保持の加熱速度は30
℃/Hr未満になると超塑性伸びが得られなくな
る。 これらの加熱保持により熱間フアイバー組織を
形成していた転位の下部組織は回復、再結晶によ
り歪エネルギーが低減され、続く冷間加工で転位
が導入され易くなり、かつ、含有されている場合
にはZr,Cr,Mn等の析出粒子により、次の冷間
加工後の超塑性温度域での加熱によつて材料中に
生成される微細粒組織が保持されて超塑性が得ら
れる。 冷却後少なくとも30%以上の冷間加工を行なう
のであるが、30%未満の加工率では充分微細な結
晶粒が得られない。 また、20〜60%の冷間加工とこれに続く300℃
以下の低温軟化焼鈍とを1回以上行なうこともで
き、この低温軟化焼鈍を導入することにより結晶
粒はさらに微細化される。 このように冷間加工された材料には、高い歪エ
ネルギーを有する転位の下部組織が高密度に形成
されている。 この材料を引続き、通常0.5Tm{Tmは材料の
融点(絶対温度)}以上の超塑性温度域(アルミ
ニウム合金では400℃以上)に加熱すると、高密
度の転位組織を起点として新しい結晶粒が形成さ
れ、従つて、転位組織は高密度である程微細粒組
織が得られ、超塑性伸びが大きくなる。 しかして、一度結晶が完了すると結晶粒界のエ
ネルギーを減少させるため、転位が移動して結晶
粒が粗大化し、この粗大化した組織が超塑性変形
を阻害することになる。 従つて、本発明に係る超塑性Al―Li系合金の
製造方法においては、熱間加工後の一段階或いは
二段階の加熱保持により形成されたZrAl3
Cr2Mg3Al18、MnAl6等の析出物の寸法と分布と
を制御することにより転位の移動を阻止して、微
細結晶粒組織を保持しているのである。即ち、析
出物寸法が小さ過ぎたり、析出粒子間隔が大き過
ぎると転位移動阻止効果が得られない。 また、本発明に係る超塑性Al―Li系合金の製
造方法により作られた材料は、冷間加工したまま
の状態で超塑性の加工を行なつてもよいが、冷間
加工後、100℃/Hr以上の加熱速度で加熱し、
350〜550℃の温度で軟化して超塑性加工を行なつ
てもよい。 [実施例] 本発明に係る超塑性Al―Li系合金の製造方法
の実施例を説明する。 実施例 1 第1表に示す含有成分および成分割合のAl―
Li系合金をAr雰囲気中で溶製し、鋳造した鋳塊
を450℃の温度で24Hrの均質化熱処理を行なつた
後、450〜300℃の温度における熱間圧延により
6.3mmの板材に加工し、520℃の温度で3Hrおよび
400℃の温度で10Hrの加熱保持を行ない、約100
℃/Hrの冷却速度で冷却し、冷間圧延により2.5
mmの板材(冷間加工率63%)を製造し、495℃で
歪速度1×10-4/secで変形した。
【表】 この第1表から明らかなように、本発明に係る
超塑性Al―Li系合金の製造方法により製造され
た材料の超塑性伸びは比較材の2倍以上にもなつ
ていることがわかる。 実施例 2 実施例1における合金1の鋳塊を450℃の温度
で24Hrの均質化熱処理を行なつた後、450〜300
℃の温度における熱間圧延により7.0mmの板材に
加工し、520℃の温度で3Hrおよび400℃の温度で
10Hrの加熱保持を行ない、約100℃/Hrの冷却速
度で冷却し、第2表に示す冷間圧延および低温軟
化焼鈍により厚さ2.5mmの材料を作製し、495℃の
温度に加熱後、歪速度1×10-4/secで変形し
た。 本発明に係る超塑性Al―Li系合金の製造方法
により製造された材料は、超塑性伸びが低温焼鈍
を行なわないものに比して格段に優れていること
がわかる。
【表】 実施例 3 実施例1の合金1の鋳塊を450℃の温度で24Hr
の均質化熱処理を行なつた後、450〜300℃の温度
において熱間圧延を行ない6.3mmの板材に加工
し、520℃の温度で3Hrおよび400℃の温度で10Hr
の加熱保持を行ない、約100℃/Hrの冷却速度で
冷却後、冷間圧延により厚さ2.5mm(冷間加工率
63%)の材料に加工し、第3表に示す加熱速度で
480℃の温度で加熱軟化処理を行ない、495℃の温
度において歪速度1×10-4/secで変形した。
【表】 この第3表から明らかなように、本発明に係る
超塑性Al―Li系合金の製造方法によれば、加熱
速度が100℃/Hr以下のNo.3の超塑性伸びの2倍
以上となり優れていることがわかる。 [発明の効果] 以上説明したように、本発明に係る超塑性Al
―Li系合金の製造方法は上記に説明した構成を有
しているものであるから、適切な温度においてく
びれ(necking)や局所伸びがない優れた超塑性
伸びを有する材料が得られるという効果がある。

Claims (1)

  1. 【特許請求の範囲】 1 Li1〜5wt% を含有するAl―Li系合金鋳塊を、400〜550℃の
    温度で均質化熱処理を行ない、次いで、300〜550
    ℃の温度で熱間加工を行なつた後、350〜550℃の
    温度において一段階或いは二段階の加熱保持を行
    ない、30℃/Hr以上の冷却速度で冷却してから
    少なくとも30%以上の冷間加工を行なうか或いは
    20〜60%の冷間加工を行なつた後に、300℃以下
    の低温軟化焼鈍と冷間加工を1回以上行なうこと
    を特徴とする超塑性Al―Li系合金の製造方法。 2 Li1〜5wt% を含有するAl―Li系合金鋳塊を、400〜550℃の
    温度で均質化熱処理を行ない、次いで、300〜550
    ℃の温度で熱間加工を行なつた後、350〜550℃の
    温度において、一段階或いは二段階の加熱保持を
    行ない、30℃/Hr以上の冷却速度で冷却してか
    ら少なくとも30%以上の冷間加工を行なうか或い
    は20〜60%の冷間加工を行なつた後に、300℃以
    下の低温軟化焼鈍と冷間加工を1回以上行ない、
    さらに、100℃/Hr以上の速度で350〜550℃の温
    度に加熱軟化処理を行なうことを特徴とする超塑
    性Al―Li系合金の製造方法。
JP15104884A 1984-07-20 1984-07-20 超塑性Al−Li系合金の製造方法 Granted JPS6156269A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15104884A JPS6156269A (ja) 1984-07-20 1984-07-20 超塑性Al−Li系合金の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15104884A JPS6156269A (ja) 1984-07-20 1984-07-20 超塑性Al−Li系合金の製造方法

Publications (2)

Publication Number Publication Date
JPS6156269A JPS6156269A (ja) 1986-03-20
JPS623226B2 true JPS623226B2 (ja) 1987-01-23

Family

ID=15510158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15104884A Granted JPS6156269A (ja) 1984-07-20 1984-07-20 超塑性Al−Li系合金の製造方法

Country Status (1)

Country Link
JP (1) JPS6156269A (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814018B2 (ja) * 1987-12-14 1996-02-14 アルミニウム カンパニー オブ アメリカ アルミニウム合金の熱処理方法
JPH07116568B2 (ja) * 1988-04-11 1995-12-13 住友軽金属工業株式会社 異方性の少ないA1−Cu−Li−Zr系超塑性板の製造方法
JPH07116567B2 (ja) * 1988-04-11 1995-12-13 住友軽金属工業株式会社 A1−Cu−Li−Zr系超塑性板の製造方法
JPH01259150A (ja) * 1988-04-11 1989-10-16 Sumitomo Light Metal Ind Ltd 高強度A1−Cu−Li−Mg−Zr系超塑性板の製造方法
JPH07116569B2 (ja) * 1988-04-11 1995-12-13 住友軽金属工業株式会社 異方性の少ないA1−Li−Cu−Mg系超塑性板の製造方法
JPH02258941A (ja) * 1989-03-30 1990-10-19 Sumitomo Light Metal Ind Ltd 超塑性成形用高力Al―Li系合金
JPH02258958A (ja) * 1989-03-30 1990-10-19 Sumitomo Light Metal Ind Ltd 超塑性成形用高力Al―Li系合金の製造方法
DE4113352C2 (de) * 1991-04-24 1996-05-23 Hoogovens Aluminium Gmbh Verfahren zur Herstellung von Aluminiumblechen
CN103119184B (zh) * 2010-09-08 2015-08-05 美铝公司 改进的6xxx铝合金及其生产方法
CN110714174A (zh) * 2019-09-23 2020-01-21 四川阳光坚端铝业有限公司 一种铝合金铸锭的均匀化处理工艺
CN112593169B (zh) * 2020-12-16 2022-02-08 北京理工大学 一种电弧增材制造铝锂合金缺陷和组织控制的方法
CN114717399A (zh) * 2022-03-01 2022-07-08 中南大学 一种改善织构和析出相提升铝锂合金强度的工艺方法

Also Published As

Publication number Publication date
JPS6156269A (ja) 1986-03-20

Similar Documents

Publication Publication Date Title
US4618382A (en) Superplastic aluminium alloy sheets
JPH07145441A (ja) 超塑性アルミニウム合金およびその製造方法
JPS623226B2 (ja)
JPS623225B2 (ja)
JPH0456100B2 (ja)
JPH06264202A (ja) 高強度銅合金の製造方法
JPS6132386B2 (ja)
JPH039183B2 (ja)
JPH07116567B2 (ja) A1−Cu−Li−Zr系超塑性板の製造方法
JPS62225B2 (ja)
JPS60251260A (ja) 超塑性アルミニウム合金の製造方法
JPS6058298B2 (ja) 均一な成形性を有するAl−Zn−Mg−Cu系合金材の製造法
JPS6157384B2 (ja)
JPH05132745A (ja) 成形性に優れたアルミニウム合金の製造方法
JPH0588302B2 (ja)
JPS6157383B2 (ja)
JPS6157387B2 (ja)
KR910006016B1 (ko) 구리기초형상기억합금 및 그 제조방법
JPS62226B2 (ja)
JPS6157386B2 (ja)
JPS6286150A (ja) 超塑性アルミニウム合金の製造方法
JPS622024B2 (ja)
JPH0747801B2 (ja) 超塑性加工用アルミニウム合金板材の製造方法
JPH07116568B2 (ja) 異方性の少ないA1−Cu−Li−Zr系超塑性板の製造方法
JPS61110756A (ja) チタン合金板の圧延方法