JPS6232087A - Preparation of optical recording medium - Google Patents
Preparation of optical recording mediumInfo
- Publication number
- JPS6232087A JPS6232087A JP17121085A JP17121085A JPS6232087A JP S6232087 A JPS6232087 A JP S6232087A JP 17121085 A JP17121085 A JP 17121085A JP 17121085 A JP17121085 A JP 17121085A JP S6232087 A JPS6232087 A JP S6232087A
- Authority
- JP
- Japan
- Prior art keywords
- optical recording
- metal
- recording layer
- compound
- film forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/249—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24304—Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24306—Metals or metalloids transition metal elements of groups 3-10
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24308—Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24312—Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24314—Metals or metalloids group 15 elements (e.g. Sb, Bi)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24318—Non-metallic elements
- G11B2007/24326—Halides (F, CI, Br...)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、レーザー光などの光(ここで言う光とは、上
記レーザー光を含む各種のエネルギー線のことである)
によって情報の記録、再生を行なう光記録媒体の製造法
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the use of light such as laser light (light here refers to various energy rays including the above-mentioned laser light).
The present invention relates to a method of manufacturing an optical recording medium for recording and reproducing information.
[従来の技術]
基体上に形成された薄膜層にレーザー光を照射して、情
報の記録、再生を行なう光記録媒体が種々提案されてい
る。[Prior Art] Various optical recording media have been proposed in which information is recorded and reproduced by irradiating a thin film layer formed on a substrate with laser light.
例えば、ビスマスBi、テルルTe等の低融点金属の薄
膜からなる光記録層を形成し、これにレーザー光を照射
してこれを溶融、蒸発させ、記録ビットを形成し、情報
の記録を行なうものがある。For example, an optical recording layer made of a thin film of a low melting point metal such as bismuth Bi or tellurium Te is formed, and this is irradiated with laser light to melt and evaporate it to form recording bits and record information. There is.
しかし、このような記録形態で記録ビットを形成させる
ためには、パワーの大きいレーザー光が必要であり、ま
た形成された記録ビットの形状が一様でないという欠点
がある。その結果、記録の再生を行なった際のノイズの
原因となり易く、安定した再生信号が得られない、すな
わち高密度記録ヲ達成しにくいという欠点がある。However, in order to form recording bits in this recording format, a laser beam with high power is required, and there is a drawback that the shape of the formed recording bits is not uniform. As a result, it tends to cause noise when recording is reproduced, and a stable reproduced signal cannot be obtained, that is, it is difficult to achieve high-density recording.
このような光記録層の形成には、真空蒸着法、スパッタ
リング法、イオンブレーティング法、プラズマCvD法
、熱CVD法、光CVD法などの膜形成方法が試みられ
ており、一般にはスバ・シタリング法が広く用いられ、
企業化もされている。Film forming methods such as vacuum evaporation, sputtering, ion blating, plasma CVD, thermal CVD, and photoCVD have been tried to form such an optical recording layer. law is widely used,
It has also been corporatized.
これらの膜形成方法によって得られる光記録層は、S/
N比、光学的特性、使用環境特性及び保存環境特性、更
には均一性、再現性等の光記録媒体としての緒特性を含
め、生産性あるいは量産性の点においでも、更に総合的
な特性の向上が必要である。The optical recording layer obtained by these film forming methods is S/
In terms of productivity and mass production, we are developing more comprehensive characteristics, including N ratio, optical characteristics, usage environment characteristics, storage environment characteristics, and even characteristics as an optical recording medium such as uniformity and reproducibility. Improvement is needed.
しかしながら、従来から一般化されでいるスパッタリン
グによる光記録層の形成法においでは、以下のような問
題があった。However, the conventional method of forming an optical recording layer by sputtering, which has been widely used, has the following problems.
すなわち、スパッタリングによる方法においては、形成
パラメーク−が多く(例えば、基体、スパッタ圧、高周
波電力、クーゲット−基体間距離、排気速度、基体回転
数など)これら多くのパラメーターによる組合せによる
ため、時にはプラズマが不安定な状態になり、形成され
た光記録層に著しい悪影wIソ与えることが少なくなか
った。In other words, in the sputtering method, there are many formation parameters (e.g., substrate, sputtering pressure, high frequency power, Kuget-to-substrate distance, pumping speed, substrate rotation speed, etc.). This resulted in an unstable state and often caused a significant negative shadow on the formed optical recording layer.
そのうえ、装置特有のパラメーターを装置ごとに選定し
な(プればならなかった。また、光記録層の表面が荒れ
たり、また光記録層および基体界面の膜質が特に劣化し
やすいといった問題、更には成膜中に基体温度が上昇し
て膜質の低下を招くといった問題もあった。In addition, device-specific parameters had to be selected for each device.In addition, there were problems such as the surface of the optical recording layer becoming rough, and the film quality at the interface between the optical recording layer and the substrate being particularly susceptible to deterioration. There was also the problem that the substrate temperature rose during film formation, leading to a decrease in film quality.
このように、従来法では、光記録層の品質の均一性や環
境特性を満足させつつ、再現性に優れた量産化を行なう
ことができなかった。As described above, with the conventional method, mass production with excellent reproducibility cannot be achieved while satisfying uniformity of quality and environmental characteristics of the optical recording layer.
[発明が解決しようとする問題点]
本発明の目的は、上述した従来の光記録媒体の製造法の
欠点、殊にスパックリング法の欠点を除去すると同時に
、従来の光記録媒体の形成法によらない新規な光記録媒
体の製造法を提供することにある。
!本発明の他の目的は
、光記録媒体の緒特性を向上させることができ、特に媒
体雑音(ノイズ)が少なく、また保存環境特性に優れた
光記録媒体の量産化を容易に達成することのできる光記
録媒体の製造法を提供することにある。[Problems to be Solved by the Invention] It is an object of the present invention to eliminate the above-mentioned drawbacks of the conventional optical recording medium manufacturing method, particularly the drawbacks of the sputtering method, and at the same time to solve the problems of the conventional optical recording medium manufacturing method. The object of the present invention is to provide a novel method for manufacturing an optical recording medium that does not require the following steps.
! Another object of the present invention is to easily mass-produce optical recording media that can improve the storage characteristics of optical recording media, and in particular have low media noise and excellent storage environment characteristics. The purpose of the present invention is to provide a method for manufacturing an optical recording medium that can be manufactured by using the following methods.
[問題点を解決するための手段]
上記目的を達成する本発明は、基体上に光記録層を形成
する為の成膜空間に、光記録層形成用の原料となる下記
一般式(A)で表わされる少なくとも一種の化合物と、
該化合物と化学反応する活性種とを導入するとともに、
該光記録層形成用の更に別の原料である金属フッ化物を
該成膜空間でほぼ同時に蒸発きせることによって、前記
基体上に金属フッ化物中に一般式(A)の化合物に由来
する金属Mが分散された光記録層を形成することを特徴
とする光記録媒体の製造法である。[Means for Solving the Problems] The present invention achieves the above object by applying the following general formula (A) as a raw material for forming an optical recording layer to a film forming space for forming an optical recording layer on a substrate. At least one compound represented by
Introducing an active species that chemically reacts with the compound,
By evaporating metal fluoride, which is still another raw material for forming the optical recording layer, in the film forming space almost simultaneously, a metal M derived from the compound of general formula (A) is added to the metal fluoride on the substrate. This is a method for producing an optical recording medium characterized by forming an optical recording layer in which are dispersed.
RnMm −−−(A)
(但し、mは日の価数に等しいか、または整数倍の正整
数、n(、tMの価数に等しいか、または整数倍の正整
数、Mは金属元素、日は水素、ハロゲンまたは炭化水素
基を表わす、)
[発明の英施態様]
本発明の方法によって形成される光記録媒体の典型的な
例を第2図に示す。RnMm---(A) (where m is a positive integer equal to or an integral multiple of the valence of day, n(, a positive integer equal to or an integral multiple of the valence of tM, M is a metal element, Embodiments of the Invention A typical example of an optical recording medium formed by the method of the invention is shown in FIG.
第2図の光記録媒体において、1はガラス、プラスチッ
ク等の各種材質からなる基体である。In the optical recording medium shown in FIG. 2, reference numeral 1 denotes a substrate made of various materials such as glass and plastic.
4が本発明の方法によって形成された光記録層であり、
該光記録層4は金属フッ化物2中に上記一般式(A)の
化合物に由来する金属3(すなわち式(A)の化合物の
「M」)が分散されたものとなっている。4 is an optical recording layer formed by the method of the present invention,
The optical recording layer 4 has a metal 3 derived from the compound of the general formula (A) (that is, "M" of the compound of the formula (A)) dispersed in a metal fluoride 2.
金513としては、具体的にはTe、 Bi、 Sn、
In、Pb、 Cu、Ti、 Zr、 Ta、^u、
P’t、 Se、 Znなどが挙げられ、これら金1
の一種以上が、B1F2、M9F2、PbF2、LiF
、 A9F、 CaF2、CrF2、CrF3、フッ
化炭素などの一種以上からなる金属フッ化物2に分散さ
れで、光記録層4が形成されている。Specifically, gold 513 includes Te, Bi, Sn,
In, Pb, Cu, Ti, Zr, Ta, ^u,
Examples include P't, Se, Zn, etc., and these gold 1
One or more of the above is B1F2, M9F2, PbF2, LiF
, A9F, CaF2, CrF2, CrF3, carbon fluoride, etc., are dispersed in a metal fluoride 2 to form an optical recording layer 4.
このような光記録層4に、例えば^r−Neレーザー、
半導体レーザーなどのレーザー光を含む各種波長の記録
光が照射されると、金属フッ化物2および金FA3かう
なる光記録層4の光学的特性(例えば、反射率、透過率
、屈折率等)が変化し、記録光が照射された部分と照射
されなかった部分に光学的な差異が生じることによって
、記録が行なわれる。記録の再生は、上記レーザー光の
ような再生用の光を記録部分に照射しで、光記録層にお
ける光学的差異を検知することによって行なう。For example, ^r-Ne laser,
When irradiated with recording light of various wavelengths including laser light from a semiconductor laser, the optical properties (e.g., reflectance, transmittance, refractive index, etc.) of the optical recording layer 4 made of metal fluoride 2 and gold FA3 change. Recording is performed by changing the recording light and creating an optical difference between the area irradiated with the recording light and the area not irradiated with the recording light. Reproduction of recording is performed by irradiating a recording portion with a reproduction light such as the laser beam described above and detecting an optical difference in the optical recording layer.
このような光記録層を有する光記録媒体では、記録、再
生が記録ビットの形成によらないので、高と原記録が可
能である。しかも、光記録層を形成する金属フッ化物は
保存安定性に優れているた、 め、光記録層の経時変化
が防止され、耐久性に優れた光記録媒体を得ることがで
きる。In an optical recording medium having such an optical recording layer, since recording and reproduction do not depend on the formation of recording bits, high-quality original recording is possible. Moreover, since the metal fluoride forming the optical recording layer has excellent storage stability, the optical recording layer is prevented from deteriorating over time, and an optical recording medium with excellent durability can be obtained.
尚、第2図には示さなかったが、基体1には記録密度の
向上をはかる等の目的で、必要に応じていわゆる案内溝
を設けてもよい、また、接着層、反射防止層あるいは保
護層など、この種の技術で広く知られている各種の機能
層を、基体と光記録層の間に、あるいは光記録層上に設
けてもよい。Although not shown in FIG. 2, the substrate 1 may be provided with so-called guide grooves as necessary for the purpose of improving recording density, etc. Also, an adhesive layer, an antireflection layer, or a protective layer may be provided on the substrate 1. A variety of functional layers widely known in this type of technology, such as a layer, may be provided between the substrate and the optical recording layer or on the optical recording layer.
次に、本発明の方法を詳細に説明する。Next, the method of the present invention will be explained in detail.
本発明で云う「活性種」とは、前記化合物(A)と化学
的相互作用を起して例えば化合物(A)にエネルギーを
与えたり、化合物(A)と化学的に反応したりしで、化
合物(A)に由来する金RrM」を、光記録層に分散す
ることが出来る状態にする役目を荷うものを云う、従っ
て、「活性種」としでは、形成される光記録層を構成す
る成分を含んでいても良く、或いはその様な成分を含ん
でいなくとも良い。The "active species" as used in the present invention refers to species that cause a chemical interaction with the compound (A) and, for example, give energy to the compound (A) or chemically react with the compound (A). It refers to a substance that plays a role in making the gold RrM derived from compound (A) into a state where it can be dispersed in the optical recording layer.Therefore, as an "active species", it constitutes the optical recording layer to be formed. It may or may not contain such ingredients.
本発明において使用される一般式(A)で示される化合
物(A)は、その金属部分、すなわち「M」が光記録層
の構成成分となり得る化合物である。The compound (A) represented by the general formula (A) used in the present invention is a compound whose metal portion, ie, "M", can be a constituent of an optical recording layer.
これら化合物としては、成膜される基体が存在する空間
において、前記の活性種と分子的衝突を起して化学反応
を起し、基体上に形成される光記録層の成分である金属
rMJの形成に寄与する化学種を自発的に発生するもの
を選択するのがより望ましいものである。しかし、通常
の存在状態では、前記の活性種とは不活性であったり、
或は、 !それ程の活性々がない場合には、化
合物(A)に、その構成成分である金属「MJを完全解
離しない程度の強さの励起エネルギーを成膜前又は成膜
時に与えて、化合物(A)を活性種と化学反応し得る励
起状態にすることが必要であり、又、その様な励起状態
にし得る化合物を、本発明の方法に使用される化合物(
^)として採用するものである。These compounds cause molecular collisions with the above-mentioned active species in the space where the substrate on which the film is to be formed and cause a chemical reaction, resulting in the formation of metal rMJ, which is a component of the optical recording layer formed on the substrate. It is more desirable to select one that spontaneously generates chemical species that contribute to its formation. However, in their normal state of existence, the above-mentioned active species may be inactive or
Or! If the compound (A) does not have such activity, excitation energy strong enough to not completely dissociate the metal MJ, which is its constituent component, is applied to the compound (A) before or during film formation. It is necessary to bring the compound into an excited state capable of chemically reacting with the active species, and the compound (
^).
尚、本発明においては、化合物(A)が上記の励起状態
になっているものを以稜「励起種」と呼称することにす
る。In the present invention, compounds in which the compound (A) is in the above excited state are hereinafter referred to as "excited species".
本発明において、一般式(A)で示される化合物(A)
rRnMm」として、有効に使用されるものとして
は以下の化合物を挙げることが出来る。In the present invention, the compound (A) represented by the general formula (A)
Examples of compounds that can be effectively used as "rRnMm" include the following compounds.
即ち「M」は、金属元素、具体的には丁e、 8i、S
n、 In、 Pb、 Cu、 Ti%Zr%Ta、
Au、 Pt、 Se、 Znなどの一種以上が用いら
れる。That is, "M" is a metal element, specifically, D, 8i, S
n, In, Pb, Cu, Ti%Zr%Ta,
One or more of Au, Pt, Se, Zn, etc. is used.
rRJとしては、M鎖状及び側鎖状の飽和炭化水素や不
飽和炭化水素から誘導される一価、二価及び三価の炭化
水素基、或いは、飽和又は不飽和の単環状の及び多環状
の炭化水素より誘導される一価、二価及び三価の炭化水
素基を挙げることが出来る。rRJ includes monovalent, divalent, and trivalent hydrocarbon groups derived from M-chain and side-chain saturated hydrocarbons and unsaturated hydrocarbons, or saturated or unsaturated monocyclic and polycyclic Mention may be made of monovalent, divalent and trivalent hydrocarbon groups derived from hydrocarbons.
不飽和の炭化水素基としては、炭素・炭素の結合は単一
種の結合だけでなく、−重結合、二重結合、及び三重結
合の中の少なくとも2種の結合を有しているものも本発
明の目的の達成に適うものであれば有効に採用され得る
。Unsaturated hydrocarbon groups include not only a single type of carbon-carbon bond but also those having at least two types of bonds among - double bonds, double bonds, and triple bonds. Any method can be effectively adopted as long as it is suitable for achieving the purpose of the invention.
又、二重結合を複数有する不飽和炭化水素基の場合、非
集積二重結合であっても集積二重結合であっても差支え
ない。Further, in the case of an unsaturated hydrocarbon group having a plurality of double bonds, it does not matter whether the double bonds are non-integrated double bonds or integrated double bonds.
非環状炭化水素基としてはアルキル基、アルケニル基、
アルキニル基、アルキリデン基、アルキリジン基、アル
キニル基ン基、アルキリジン基、アルキリジン基、アル
キニル基ン基等を好ましいものとして挙げることが出来
、殊に、炭素数としては、好ましくは1〜10、より好
ましくは炭素数1〜7、最適には炭素数1〜5のものが
望ましい。Examples of acyclic hydrocarbon groups include alkyl groups, alkenyl groups,
Preferred examples include alkynyl groups, alkylidene groups, alkylidine groups, alkynyl groups, alkylidine groups, alkylidine groups, alkynyl groups, etc. In particular, the number of carbon atoms is preferably 1 to 10, more preferably preferably has 1 to 7 carbon atoms, most preferably 1 to 5 carbon atoms.
本発明においては、有効に使用される化合物(A)とし
て、標準状態で気体状であるか或いは使用環境下におい
て容易に気化し得るものが選択される様に、上記に列挙
したrRJと「M」との選択において、適宜所望に従っ
て、rRJと「M」との組合せの選択がなされる。In the present invention, the above-listed rRJ and "M ”, the combination of rRJ and “M” is selected as desired.
本発明において、化合物(A)としで、有効に使用され
る具体的なものとしでは、Z nMe 3.2nEt3
、Me2 Se、 Me2Te、 Et2Se、 Et
2Te、SeL、5eXn、5eXb、TeXb 、
H2S+3゜8 iX3.5nX4、PbEtn、Cu
X3、TiX*、2rL、TaX5 、(PtX2)2
(Co)3、H2T6等を挙げることが出来る。上記に
おいて、Xはハロゲン(F、 CI、 Sr、 I)
、Meはメチル基、Etはエチル基を示す。In the present invention, a specific compound that is effectively used as compound (A) is Z nMe 3.2nEt3
, Me2Se, Me2Te, Et2Se, Et
2Te, SeL, 5eXn, 5eXb, TeXb,
H2S+3゜8 iX3.5nX4, PbEtn, Cu
X3, TiX*, 2rL, TaX5, (PtX2)2
(Co)3, H2T6, etc. can be mentioned. In the above, X is halogen (F, CI, Sr, I)
, Me represents a methyl group, and Et represents an ethyl group.
本発明において、光記録層の構成成分である金属フッ化
物として、有効に使用されるものとしては、B1F2、
M9F2、PbF2、LiF、 AgF、 CaF2
、CrF2、CrF3、フッ化炭素などが挙げられる。In the present invention, metal fluorides that are effectively used as constituent components of the optical recording layer include B1F2,
M9F2, PbF2, LiF, AgF, CaF2
, CrF2, CrF3, fluorocarbon, and the like.
これら金属フッ化物は、その一種以上が適宜選択されて
、成膜空間内で蒸発され、前述した金arM」とともに
光記録層を形成する。One or more of these metal fluorides is appropriately selected and evaporated in the film forming space to form an optical recording layer together with the above-mentioned gold arM.
本発明の光記録媒体の製造法は、光記録層が形成される
基体がセットされた成膜空間内に、上記した化合物(A
)と活性種を導入するとともに、上記金属フッ化物を該
成膜空間内でほぼ同時に蒸発させることにより達成され
る。すなわち、成膜空間内で蒸発した金属フッ化物が基
体に蒸着するとともに、該空間内に導入された化合物(
A)と活性種との反応によってもたらされる金属「M」
の基体へのほぼ同時の堆積によって、金属フッ化物中に
化合物(A)に由来する金属「M」が分散された光記録
層が形成される。In the method for producing an optical recording medium of the present invention, the above-mentioned compound (A
) and active species are introduced, and the metal fluoride is evaporated almost simultaneously within the film forming space. That is, the metal fluoride evaporated in the film formation space is deposited on the substrate, and the compound (
Metal "M" produced by the reaction between A) and an active species
By substantially simultaneous deposition of the two on the substrate, an optical recording layer is formed in which the metal "M" derived from the compound (A) is dispersed in the metal fluoride.
この方法によって、成膜空間に導入される化合物(^)
及び活性種として、そのままでも分子レベル的相互衝突
によって化学反応を生起し、光記録層中に化合物(A)
に由来する金JirMJを生成させることが出来るもの
を前記に列挙したものの中より夫々選択した場合は、金
属「M」が光記録層中に分散された光記録媒体を得るこ
とが出来る。しかし、化合物(A)及び活性種の夫々の
選択の仕方によって、上記の化学反応性に乏しい場合、
或いは一層効果的に化学反応を行わせで、効率良く金属
rMJを光記録層中に生成させる場合には、成膜空間に
おいで、化合物(A)及び/又は活性種に作用する反応
促進エネルギー、例えば後述の活性化空間において使用
されると同様な活性化エネルギーを使用しても差支えな
いのである。Compounds introduced into the film forming space by this method (^)
As active species, chemical reactions occur due to mutual collisions at the molecular level, and compound (A) is formed in the optical recording layer.
If a metal capable of producing gold JirMJ derived from . However, if the above chemical reactivity is poor due to the selection of the compound (A) and the active species,
Alternatively, in order to more effectively carry out the chemical reaction and efficiently generate metal rMJ in the optical recording layer, reaction promoting energy acting on the compound (A) and/or the active species in the film forming space, For example, activation energy similar to that used in the activation space described below may be used.
更には、成膜空間に導入する前に化合物(A)を他の活
性化空間において、化合物(^)を前述した励起状態に
する為に励起エネルギーを作用させても良い。Furthermore, before introducing the compound (A) into the film forming space, excitation energy may be applied to the compound (A) in another activation space in order to bring the compound (^) into the above-mentioned excited state.
化合物(A)の成膜空間への導入は、上述のようにこれ
を励起状態にして導入してもよいし、何ら励起状態にせ
ずに導入してもよい。The compound (A) may be introduced into the film forming space in an excited state as described above, or may be introduced without being in an excited state at all.
一方、活性種は成膜空間に導入された時には既に活性を
有している必要があるので、次のようにしてその導入を
行なう、すなわち、活性種を生成させる原料に、成膜空
間とは異なる活性化空間で熱、光、放電などの活性化エ
ネルギーを加えることにより、活性種を生成し、この活
性種を成膜空間へ導入することにより行なう。On the other hand, since the active species must already be active when introduced into the film forming space, they are introduced in the following manner. Activation energy such as heat, light, or discharge is applied in different activation spaces to generate active species, and the active species are introduced into the film forming space.
活性化空間に導入され、活性f!を生成させる原料とし
ては、好ましくは気体状の又は容易に気化し得る物質で
、水素ラジカルを生成する物質を挙げることが出来、具
体的にはH2,02、HD等が挙げられ、その他、He
、 Ar等の稀ガスも挙げることが出来る。Introduced into the activation space, the activation f! The raw material for generating is preferably a gaseous or easily vaporizable substance that generates hydrogen radicals, and specific examples include H2,02, HD, etc.
, Ar and other rare gases can also be mentioned.
活性化空間において活性種生成物質に活性化作用を起す
活性化エネルギーとしては、具体的には抵抗加熱、赤外
線加熱等による熱エネルギー、レーザー光、水銀ランプ
光、ハロゲンランプ光等の光エネルギー、マイクロ波、
旺、低周波、DC等の放電を利用する電気エネルギー等
々を挙げることが出来、これ等の活性化エネルギーは活
性化空間において単独で活性種生成物質に作用させても
良く、又、2種以上を併用して作用させでも良い。Specifically, the activation energy that causes an activation effect on the active species generating substance in the activation space includes thermal energy such as resistance heating and infrared heating, light energy such as laser light, mercury lamp light, and halogen lamp light, and microscopic energy. wave,
These activation energies can be applied to the active species generating substance alone in the activation space, or can be applied to two or more types of activation energy. It may also be used in combination.
尚、本発明において活性化空間で生成される活性種は上
述のように放電、光、熱等のエネルギーで或いはそれ等
の併用によって励起されて活性化されるばかりではなく
、触媒などとの接触、あるいは添加により生成されても
よい。In addition, in the present invention, the activated species generated in the activation space are not only excited and activated by energy such as electric discharge, light, heat, etc., or a combination thereof, as described above, but also by contact with a catalyst, etc. Alternatively, it may be generated by addition.
本発明において成膜空間に導入される化合物(A)の総
量と活′i化空間から導入される活性種の量の割合は、
成膜条件、化合物(A)及び活性種の種類、所望される
光記録層の特性などで適宜所望に従って決められるが好
ましくは1000:1〜1:1(導入流量比)か適当で
あり、より好ましくは500:1〜1:5とされるのが
望ましい。In the present invention, the ratio between the total amount of compound (A) introduced into the film forming space and the amount of active species introduced from the activation space is:
It can be determined as desired depending on the film forming conditions, the type of compound (A) and active species, the desired characteristics of the optical recording layer, etc., but it is preferably 1000:1 to 1:1 (introduction flow rate ratio) or an appropriate value, and more The ratio is preferably 500:1 to 1:5.
活性種が化合物(A)との連鎖的化学反応を起さない場
合には、上記の導入量の割合は、好ましくは10:1〜
1:10、より好ましくは4:1〜2:3とされるの望
ましい、成膜時における成膜空間の内圧としては、化合
物(A)及び活性種の選択される種類及び成膜条件等に
従って適宜決定されるが、好ましくはlXl0−2〜5
×103Pa、より好ましくは5XIO−2〜I X
103Pa、最適には1X10−1〜5×102Paと
されるのが望ましい。When the active species does not cause a chain chemical reaction with compound (A), the ratio of the introduced amount is preferably 10:1 to 1.
The internal pressure of the film formation space during film formation, which is preferably 1:10, more preferably 4:1 to 2:3, is determined according to the selected types of compound (A) and active species, film formation conditions, etc. Although determined appropriately, preferably lXl0-2-5
×103Pa, more preferably 5XIO-2~IX
It is desirable to set the pressure to 103 Pa, most preferably from 1×10 −1 to 5×10 2 Pa.
又、本発明においては、膜質の均質化を高める等の種々
の目的で、必要に応じて成膜時に基体を加熱することが
可能であるが、成膜時に基体を加熱する必要がある場合
には基体温度としては好ましくは、50〜1000℃、
より好ましくは 100〜900℃、最適には100〜
750℃とされるのが望ましい。In addition, in the present invention, it is possible to heat the substrate during film formation as necessary for various purposes such as increasing the homogeneity of film quality. The substrate temperature is preferably 50 to 1000°C,
More preferably 100-900°C, optimally 100-900°C
Desirably, the temperature is 750°C.
本発明においで使用される活性種が、化合物(A)との
化学反応が連鎖的に起こる場合には所謂開始剤(ini
tiater)としての働きを最小限にすれば良いこと
から、成膜空間に導入されるその導入量としでは、化学
反応が連鎖的に効率良く起こる程度の量が確保されれば
良い。When the active species used in the present invention undergoes a chemical reaction with compound (A) in a chain reaction, a so-called initiator (initiator) is used.
Since it is sufficient to minimize its function as a teater, the amount introduced into the film-forming space should be such that a chemical reaction can occur efficiently in a chain reaction.
本発明で使用される活性種の寿命は、化合物(A)との
反応性を考慮すれば短い方が良く、成膜時の取扱い易さ
及び成膜空間への輸送等を考慮すれば長い方が良い、又
、活性種の寿命は、成膜空間の内圧にも依存する。The lifetime of the active species used in the present invention is preferably shorter in consideration of reactivity with compound (A), and longer in consideration of ease of handling during film formation and transport to the film formation space. The lifetime of the active species also depends on the internal pressure of the film forming space.
従って使用される活性種は、所望する特性を有する光記
録層が生産効率も加味して効果的に得られる様に選択さ
れで決定される他の成膜条件との関連性においで、適当
な寿命を有する活性種が適宜選択されて使用される。
!本発明においで使用され
る活性種は、その寿命として、上記の点lF!:鑑みて
適宜選択された寿命を有する活性種が具体的に使用され
る化合物(A)との化学的親和性の適合範囲内の中より
所望に従って適宜選択されるが、好まし−〈は、その寿
命としては、本発明の適合範囲の環境下において1×1
0゛4秒以上、より好ましくはlXl0’秒以上、最適
にはlXl0−2秒以上であるのが望ましい。Therefore, the active species to be used should be selected in such a way that an optical recording layer having the desired characteristics can be effectively obtained, taking production efficiency into account as well, and should be appropriately selected in relation to other film-forming conditions. Active species with a long lifespan are appropriately selected and used.
! The active species used in the present invention has a lifespan of 1F! : An active species having a lifespan appropriately selected in view of the above is selected as desired from within the compatible range of chemical affinity with the compound (A) to be specifically used, but preferably - Its lifespan is 1×1 under the environment within the scope of the present invention.
It is desirable that the time is 0'4 seconds or more, more preferably 1X10' seconds or more, most preferably 1X10-2 seconds or more.
その様な寿命を有することで、成膜空間に導入される化
合物(A)との化学反応の効率を増す。Having such a long life increases the efficiency of the chemical reaction with the compound (A) introduced into the film forming space.
成膜空間に化合物(A)、及び活性種を導入する際の導
入の仕方は、例えば成膜空間に連結した輸送管を設け、
該輸送管を通じて導入しても良いし、或いは成膜空間に
設置した基体の成膜表面近くまで前記の輸送管を延在さ
せて、先端をノズル状となしで導入しても良いし、輸送
管を二重にして内側の管で一方を、外側の管で他方を、
すなわち例えば内側の管で活性種を、外側の管で少なく
とも一種以上の化合物(A)を夫々輸送しで成膜空間中
に導入しても良い。The method of introducing the compound (A) and active species into the film forming space is, for example, by providing a transport pipe connected to the film forming space,
The transport pipe may be introduced through the transport pipe, or the transport pipe may be extended to near the film forming surface of the substrate installed in the film forming space, and the transport pipe may be introduced with a nozzle-shaped tip. Double the tubes and use the inner tube for one side and the outer tube for the other side.
That is, for example, the active species may be transported in the inner pipe and at least one compound (A) may be transported in the outer pipe to be introduced into the film forming space.
本発明の方法において、前述した金属「M」とともに光
記録層を形成する金属フッ化物は、化合物(A)および
活性種が成膜空間内に導入されるとほぼ同時に該空間内
で蒸発される。In the method of the present invention, the metal fluoride forming the optical recording layer together with the metal "M" described above is evaporated in the film-forming space almost simultaneously when the compound (A) and the active species are introduced into the film-forming space. .
金属フッ化物の蒸発は、成膜空間内に例えばクヌードセ
ン・セル等の蒸発源を設置し、金1フッ化物の蒸着が金
属rMJと金属フッ化物とで構成される光記録層の生成
速度で0.01〜1鱗/分となるように行なうとよい。The evaporation of the metal fluoride is achieved by installing an evaporation source such as a Knudsen cell in the film formation space, so that the evaporation rate of gold and fluoride is zero at the production rate of the optical recording layer composed of metal rMJ and metal fluoride. It is best to do this at a rate of .01 to 1 scale/minute.
本発明の方法を実施するための製雪の一例の模式図を第
1図に示す。A schematic diagram of an example of snow making for carrying out the method of the present invention is shown in FIG.
この装置は、成膜室9(成膜空間に相当する)と、該室
9内に設置された蒸発源8と、活性化室10(活性化空
間に相当する)とを主要部として構成されている。5お
よび6はガス導入管であって、化合物(A)はガス導入
管5によって成膜室9に導入される。また、活性種原料
がガス導入管6によって活性化室10へ導入され、該室
10内で活性化されたのち活性種が成膜室9に入る。尚
、7は成膜室9内に設置した基体であり、11は成膜室
9内を所望の圧力に保持するための真空ポンプ等からな
るガス排気系である。This device mainly consists of a film forming chamber 9 (corresponding to a film forming space), an evaporation source 8 installed in the chamber 9, and an activation chamber 10 (corresponding to an activation space). ing. 5 and 6 are gas introduction pipes, and the compound (A) is introduced into the film forming chamber 9 through the gas introduction pipe 5. Further, the active species raw material is introduced into the activation chamber 10 through the gas introduction pipe 6, and after being activated in the chamber 10, the active species enters the film forming chamber 9. Note that 7 is a base body installed in the film forming chamber 9, and 11 is a gas exhaust system including a vacuum pump and the like for maintaining the inside of the film forming chamber 9 at a desired pressure.
[作用]
本発明においで使用される活性種は成膜空間で光記録層
を形成する際に、はぼ同時に成膜空間に導入され、且つ
形成される光記録層の成分となる金属rMJt含む前記
化合物(A)及び該化合物(A)の励起!1(A)と化
学的に相互作用する。こうしでできた所望の金属「M」
が蒸発源8で使られた金属フッ化物の蒸気とともに基体
7上に堆積する。その結果所望の基体上に金属フッ化物
中に金属「M」が分散された所望の光記録層4が容易に
形成される。[Function] The active species used in the present invention is introduced into the film forming space almost simultaneously when forming the optical recording layer in the film forming space, and contains metal rMJt which becomes a component of the formed optical recording layer. Excitation of the compound (A) and the compound (A)! 1(A). Desired metal “M” made of Koushi
is deposited on the substrate 7 together with the metal fluoride vapor used in the evaporation source 8. As a result, a desired optical recording layer 4 in which metal "M" is dispersed in metal fluoride is easily formed on a desired substrate.
本発明の方法では、光記録層を、該光記録層の1つの成
分である金属フッ化物を成膜空間内で蒸発することによ
って、また、もう1つの成分である金属rMJを上記金
属フッ化物の蒸発とほぼ同時に成膜空間内に導入される
「MJを含む化合物(A)とこれと反応する活性種とを
反応させるという別個の方法をほぼ同時に作用させて形
成するため、金属rMJが金属フッ化物中に均一に分散
された光記録層を再現性よく作成することができる。こ
れに加えて、膜品質の安定した、膜特性の管理された光
記録層を有する光記録媒体を、量産在よく製造すること
ができる。In the method of the present invention, an optical recording layer is formed by evaporating a metal fluoride, which is one component of the optical recording layer, in a film-forming space, and a metal rMJ, which is another component, is added to the metal fluoride. The metal rMJ is formed by a separate method of reacting the MJ-containing compound (A), which is introduced into the film formation space almost simultaneously with the evaporation of the metal rMJ, with an active species that reacts with it. It is possible to create an optical recording layer that is uniformly dispersed in fluoride with good reproducibility.In addition, it is possible to mass-produce optical recording media that have an optical recording layer with stable film quality and controlled film properties. It can be easily manufactured.
[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.
第1図に示した装置lを使用し、以下の如き操作により
、第2図に示した光記録媒体を作成した。Using the apparatus 1 shown in FIG. 1, the optical recording medium shown in FIG. 2 was produced by the following operations.
基体1としては、予めインジェクション法によって案内
溝を設けた厚さL2mm、直径200mmのポリカーボ
ネイト基板を用いた。案内溝はピッチ1.6μ、深さ7
00人でラセン状に形成した。As the base 1, a polycarbonate substrate having a thickness L2 mm and a diameter 200 mm was used, on which guide grooves were previously provided by an injection method. The guide groove has a pitch of 1.6μ and a depth of 7
It was formed into a spiral shape by 00 people.
この基板1r8成膜室9内にセットした後、蒸発源8(
本例では、クヌードセン・セルとした)を720℃に加
熱して、該蒸発源8に予め入れてあいた金属フ・ン化物
であるBiFpを蒸発させた。これとほぼ同時に、化合
物(A)である(CH3)2Teを石英ガラス製のガス
導入管5から流入速度603CCMで活 !牲
化室10に導入するとともに、H?ガスを石英ガラス製
のガス導入管6から活性化室10に導入することによっ
て発生させた活性種であるところのHラジカル@200
SCCMの流入速度で反応室9に導入した。尚、活性
化室10では、300Wのマイクロ波を作用させてHラ
ジカルを発生させた。また、成膜中の成膜室9内の圧力
は、ガス排気系11によって25Paとなるように調整
した。After setting the substrate 1r8 in the film forming chamber 9, the evaporation source 8 (
In this example, a Knudsen cell) was heated to 720° C. to evaporate BiFp, a metal fluoride, which had been placed in the evaporation source 8 in advance. At almost the same time, compound (A) (CH3)2Te is activated from the quartz glass gas introduction tube 5 at an inflow rate of 603 CCM! In addition to introducing it into the sacrificial room 10, H? H radicals @200 are active species generated by introducing gas into the activation chamber 10 from the quartz glass gas introduction pipe 6.
SCCM was introduced into the reaction chamber 9 at an inflow rate. In the activation chamber 10, 300 W microwaves were applied to generate H radicals. Further, the pressure in the film forming chamber 9 during film forming was adjusted to 25 Pa by the gas exhaust system 11.
上記操作を1.5分M継続したところ、基板1上に金属
フッ化物であるB iFz中に、化合物(A)に由来す
る金属であるところのTeが、Te : BiF2=0
.6 + 0.4の割合で分散した膜厚1000人の光
記録#を有する光記録媒体が得られた。When the above operation was continued for 1.5 minutes, Te, which is a metal derived from compound (A), was formed on the substrate 1 in BiFz, which is a metal fluoride, and Te: BiF2=0
.. An optical recording medium having a film thickness of 1000 layers dispersed at a ratio of 6+0.4 was obtained.
以上のようにして作成した光記録媒体の特性を、S/N
比、媒体ノイズおよび保存環境特性によって以下のよう
にして評価した。The characteristics of the optical recording medium created as described above are determined by the S/N
Evaluation was made in the following manner based on ratio, media noise, and storage environment characteristics.
得られた光記録媒体を、回転数1800 rpmで回転
させながら、記録レーザーパワー10mW、記録周波数
4MHzで記録を行ない、再生レーザーパワー2mWで
再生したところ、32d8のS/N比が得られた。また
、この光記録媒体を温度60℃、湿度80%の環境に1
000時間放置した徒のノイズの増加は、2dBの極め
で低いレベルにあり、保存環境特性に優れたものである
ことが分った。When the obtained optical recording medium was rotated at a rotation speed of 1800 rpm, recording was performed at a recording laser power of 10 mW and a recording frequency of 4 MHz, and reproduction was performed using a reproducing laser power of 2 mW, an S/N ratio of 32d8 was obtained. In addition, this optical recording medium was placed in an environment with a temperature of 60°C and a humidity of 80%.
The increase in noise after being left for 000 hours was at an extremely low level of 2 dB, indicating that the storage environment characteristics were excellent.
これとは別に上記同様の方法に従って、同構成の光記録
媒体を30個作成した。これら光記録媒体についで、上
記同様の評価を打なったところ、すべての光記録媒体で
上記と同じ32dBのS/N比が得られ、また1000
時間放置した後のノイズの増加は1〜3dBの極めて低
いレベルにあり、ノイズの少ない保存環境特性に優れた
光記録媒体が、再現性よく量産されていた。Separately, 30 optical recording media having the same configuration were created according to the same method as above. When these optical recording media were evaluated in the same way as above, all optical recording media obtained the same S/N ratio of 32 dB as above, and 1000 dB.
The increase in noise after standing for a period of time was at an extremely low level of 1 to 3 dB, and optical recording media with low noise and excellent storage environment characteristics were being mass-produced with good reproducibility.
実施例と同様の構成の光記録媒体を、真空度5 x t
o” Paで、電子銃を用いたスパッタリング法にて作
成し、実施例と同様の評Ii5を行なった。An optical recording medium having a configuration similar to that of the example was prepared under a vacuum degree of 5 x t.
o'' Pa by a sputtering method using an electron gun, and the same evaluation Ii5 as in Example was performed.
その結果、S/N比は30dBであり、このときのノイ
ズは実施例のものより2dB多かった。また、温度60
℃、湿度80%の環境に1000時間放置後のノイズの
増加はI Odeと、実施例のものよりも著しく増加し
た。As a result, the S/N ratio was 30 dB, and the noise at this time was 2 dB higher than that of the example. Also, the temperature is 60
The increase in noise after being left in an environment of 80% humidity and I Ode for 1000 hours was significantly greater than that of the example.
これとは別に上記同様の方法に従って、同構成の光記録
媒体を30個作成した。これら光記録媒体について、上
記同様の評価を行なったところ、S/N比が、27〜3
1dBの範囲でバラつく再現性にとぼしい光記録媒体で
あった。また、1000時間放置した債のノイズの増加
も3〜l0d8と実施例のものよりもかなり高いレベル
にあった。Separately, 30 optical recording media having the same configuration were created according to the same method as above. When these optical recording media were evaluated in the same manner as above, the S/N ratio was 27 to 3.
It was an optical recording medium with poor reproducibility, which varied within a 1 dB range. Further, the increase in noise of the bonds left for 1000 hours was 3 to 10d8, which was considerably higher than that of the example.
[発明の効果]
以上に説明した如く本発明の光記録媒体の製造法により
、形成される光記録層の光記録特性を向上させることが
可能となり、媒体ノイズの低減した、保存環境特性に優
れた光記録媒体を再現性よく量産化することができるよ
うになった。[Effects of the Invention] As explained above, the method for producing an optical recording medium of the present invention makes it possible to improve the optical recording characteristics of the formed optical recording layer, and provides excellent storage environment characteristics with reduced media noise. It has become possible to mass-produce optical recording media with good reproducibility.
第1図は、本発明の方法を具現化するための製造装置の
模式図の一例であり、第2図は本発明の方法によって作
成した光記録媒体の一例の模式的断面図である。
1.7一−−基体 2−−一金属フッ化物3−−−
金属 4−−一光記録層5.6−−−ガス導入管FIG. 1 is an example of a schematic diagram of a manufacturing apparatus for embodying the method of the present invention, and FIG. 2 is a schematic cross-sectional view of an example of an optical recording medium produced by the method of the present invention. 1.7--Substrate 2--Metal fluoride 3--
Metal 4--One optical recording layer 5.6--Gas introduction tube
Claims (1)
記録層形成用の原料となる下記一般式(A)で表わされ
る少なくとも一種の化合物と、該化合物と化学反応する
活性種とを導入するとともに、該光記録層形成用の更に
別の原料である金属フッ化物を該成膜空間でほぼ同時に
蒸発させることによって、前記基体上に金属フッ化物中
に一般式(A)の化合物に由来する金属Mが分散された
光記録層を形成することを特徴とする光記録媒体の製造
法。 R_nM_m・・・(A) (但し、mはRの価数に等しいか、または整数倍の正整
数、nはMの価数に等しいか、または整数倍の正整数、
Mは金属元素、Rは水素、ハロゲンまたは炭化水素基を
表わす。)(1) At least one compound represented by the following general formula (A), which is a raw material for forming the optical recording layer, is placed in the film forming space for forming the optical recording layer on the substrate, and an active substance that chemically reacts with the compound By introducing the seeds and evaporating the metal fluoride, which is another raw material for forming the optical recording layer, in the film forming space almost simultaneously, the general formula (A) is introduced into the metal fluoride onto the substrate. A method for producing an optical recording medium, comprising forming an optical recording layer in which a metal M derived from a compound of R_nM_m...(A) (However, m is a positive integer that is equal to or an integral multiple of the valence of R, n is a positive integer that is equal to or an integral multiple of the valence of M,
M represents a metal element, and R represents hydrogen, halogen, or a hydrocarbon group. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17121085A JPS6232087A (en) | 1985-08-05 | 1985-08-05 | Preparation of optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17121085A JPS6232087A (en) | 1985-08-05 | 1985-08-05 | Preparation of optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6232087A true JPS6232087A (en) | 1987-02-12 |
Family
ID=15919073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17121085A Pending JPS6232087A (en) | 1985-08-05 | 1985-08-05 | Preparation of optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6232087A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01149239A (en) * | 1987-12-04 | 1989-06-12 | Matsushita Electric Ind Co Ltd | Optical information recording medium |
JPH04121281U (en) * | 1991-04-17 | 1992-10-29 | 株式会社村井 | laminate storage container |
US5891531A (en) * | 1996-06-21 | 1999-04-06 | Yamamura Glass Co., Ltd. | Process for producing a thin film of a flouride |
-
1985
- 1985-08-05 JP JP17121085A patent/JPS6232087A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01149239A (en) * | 1987-12-04 | 1989-06-12 | Matsushita Electric Ind Co Ltd | Optical information recording medium |
JPH04121281U (en) * | 1991-04-17 | 1992-10-29 | 株式会社村井 | laminate storage container |
US5891531A (en) * | 1996-06-21 | 1999-04-06 | Yamamura Glass Co., Ltd. | Process for producing a thin film of a flouride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6232087A (en) | Preparation of optical recording medium | |
US5240581A (en) | Method of producing a magneto-optical disk | |
JPS6233349A (en) | Production of optical recording medium | |
JPS6232086A (en) | Preparation of optical recording medium | |
JPS6232088A (en) | Preparation of optical recording medium | |
JP2773480B2 (en) | Method for manufacturing optical information recording medium | |
JPH1079145A (en) | Manufacture of optical information recording medium and film formation apparatus used for it | |
JPS6240650A (en) | Production of optical recording medium | |
JPS6258437A (en) | Formation of optical information recording medium | |
JPH08216522A (en) | Optical data recording medium and production thereof | |
JP3015900B2 (en) | Manufacturing method of optical disk memory | |
JPH02171290A (en) | Information recording medium | |
JPH01196394A (en) | Optical storage medium | |
JP3608934B2 (en) | Optical recording medium and protective film for optical recording medium | |
JPH0444812B2 (en) | ||
JPH02171289A (en) | Information recording medium | |
JPH0522590B2 (en) | ||
JPS6374139A (en) | Optical recording medium | |
JPS63182188A (en) | Optical recording medium | |
JPS62284787A (en) | Optical memory medium | |
JPH03176195A (en) | Information recording medium | |
JPH01211340A (en) | Production of information recording medium | |
JPH06127134A (en) | Information record medium | |
JPS6371947A (en) | Optical recording medium and its production | |
JPS61178744A (en) | Production of information recording medium |