JPH01196394A - Optical storage medium - Google Patents

Optical storage medium

Info

Publication number
JPH01196394A
JPH01196394A JP63019597A JP1959788A JPH01196394A JP H01196394 A JPH01196394 A JP H01196394A JP 63019597 A JP63019597 A JP 63019597A JP 1959788 A JP1959788 A JP 1959788A JP H01196394 A JPH01196394 A JP H01196394A
Authority
JP
Japan
Prior art keywords
nickel
film
reflectance
storage medium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019597A
Other languages
Japanese (ja)
Inventor
Katsuyuki Yamada
勝幸 山田
Shigeto Kojima
成人 小島
Yukio Ide
由紀雄 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63019597A priority Critical patent/JPH01196394A/en
Publication of JPH01196394A publication Critical patent/JPH01196394A/en
Priority to US07/477,577 priority patent/US5080947A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To contrive higher sensitivity, environmental stability and contrast, by using carbon and nickel as main constituents. CONSTITUTION:An optical storage medium comprises a thin film of a storage material comprising carbon and nickel as main constituents, on a substrate. The film is provided by reactive sputtering, reactive vapor deposition, plasma CVD, photo CVD or the like. The storage medium is free of rising of peripheral parts of bits due simply to heat, and is free of lowering in C/N at the time of reproduction. The medium has a high contrast because of a large difference between the reflectance before recording and the reflectance after recording. Further, oxidation is prevented, ensuring stableness, and high absorption and reflection are obtained over the wavelength range of 370-800nm, so that a variety of lasers can be used for writing.

Description

【発明の詳細な説明】 [技術分野] 本発明は、メモリー素子、光ディスク、文書・画像ファ
イル等に利用できる光メモリー媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical memory medium that can be used as a memory device, an optical disk, a document/image file, and the like.

[従来技術] 従来、ヒートモード(溶融、蒸発タイプ)の光メモリー
媒体としては、Al5Cr、Cu5Au、Ni5Tiな
どの金属薄む薄膜(ロ刊工業新聞: 1987年4月1
411版)、あるいはTe。
[Prior Art] Conventionally, as a heat mode (melting, evaporation type) optical memory medium, metal thin films such as Al5Cr, Cu5Au, and Ni5Ti (Kogyo Shimbun, Kogyo Shimbun, April 1, 1987) have been used.
411 edition), or Te.

Te化合物などのカルコゲン化物蒸着膜[M。A chalcogenide vapor-deposited film such as a Te compound [M.

Tcrao、ct  al:J、Appl、Phys、
50.6881(1979)  コ 、などが知られて
いる。しかしながら、金属蒸着膜はレーザー光の吸収効
率が悪いため記録時に強いレーザー光と時間(loo+
++W x  l tt 5ee)を必要とし、高速回
転での記録に感度が足りず、また、ビット形成時に生じ
るピット周辺等の盛り上りのため再生時の雑音が増加し
やすいという欠点を有する。また、カルコゲン化物蒸着
膜は熱、湿度などによって劣化するという欠点を有する
Tcrao, ct al: J, Appl, Phys.
50.6881 (1979) Ko, etc. are known. However, since the metal vapor deposited film has poor laser light absorption efficiency, it is necessary to use strong laser light and time (loo +
++W x l tt 5ee), the sensitivity is insufficient for recording at high speed rotation, and noise during reproduction tends to increase due to the swelling around the pits that occurs when bits are formed. Further, the chalcogenide vapor-deposited film has the disadvantage that it deteriorates due to heat, humidity, and the like.

相転移型光メモリーとしては、従来よりTe、Te化合
物などのカルコゲン蒸−HM[S、R。
As a phase change type optical memory, chalcogen evaporated HM [S, R.

0vshinsky;Appl、Phy’s、Lett
、18.254(1971)]が知られているが記録時
の反射率変化はlO%程度とコントラストが小さいとい
う欠点を有する。
0vshinsky;Appl, Phy's, Lett
, 18.254 (1971)], but it has the drawback that the change in reflectance during recording is about 10% and the contrast is small.

[口 的] 本発明は、このような欠点のない新規な光メモリー媒体
を提供することを目的とするものである。
[Information] The object of the present invention is to provide a novel optical memory medium free from such drawbacks.

[構  成コ 本発明は、上記の課題を解決するため従来より研究を重
ねてきたが、炭素及びニッケルを主成分とする材料を使
用することが有効であることを見出し、本発明に至った
[Structure] In order to solve the above-mentioned problems, we have conducted repeated research and found that it is effective to use a material whose main components are carbon and nickel, which led to the present invention. .

すなわち、本発明は炭素及びニッケルを主成分とするこ
とを特徴とする光メモリー媒体である。
That is, the present invention is an optical memory medium characterized by containing carbon and nickel as main components.

また、本発明の光メモリー媒体の光学的性質は370〜
800nmの波長領域で、 0<R≦60 0<A≦65 0≦T<100 但しR+ A + T −100 R:反射率、A:吸収率、T:透過率 で表わされる。
Further, the optical properties of the optical memory medium of the present invention are 370~
In the wavelength region of 800 nm, 0<R≦60 0<A≦65 0≦T<100 where R+A+T −100 R: reflectance, A: absorptance, T: transmittance.

本発明の光メモリー媒体は基板上に上記のメモリー材料
からなる薄膜を形成したものである。
The optical memory medium of the present invention has a thin film made of the above memory material formed on a substrate.

膜の形成は反応性スパッタ、反応性蒸着、プラズマCV
D、光CVDなどにより行うことができる。膜厚は特に
限定されないが、100人ないし toooo人好まし
くは 200人ないし5000人の範囲にあることが望
ましい。膜の組成は炭素が5ないし95%、好ましくは
20ないし80%、ニッケルが5ないし9596、好ま
しくは20ないし8096の範囲にあることが望ましい
Film formation is by reactive sputtering, reactive vapor deposition, plasma CV
D. This can be done by photo-CVD or the like. Although the film thickness is not particularly limited, it is preferably in the range of 100 to 5,000 people, preferably 200 to 5,000 people. The composition of the film is preferably 5 to 95% carbon, preferably 20 to 80%, and 5 to 9596 nickel, preferably 20 to 8096 nickel.

形成時(記録前)の膜にニッケルが酸化するのに充分な
エネルギー(約400℃)を加えることによって、膜の
反射率は大きく減少する。この原理を応用することによ
ってレーザー光によるビット形成と再生が可能となる。
By applying sufficient energy (approximately 400° C.) to oxidize nickel to the film as it is formed (before recording), the reflectance of the film is significantly reduced. By applying this principle, it becomes possible to form and reproduce bits using laser light.

本発明の上記メモリー材料を形成させる基板の材質には
特に制約はなく、各種プラスチック(例えば、ポリメチ
ルメタクリレート、ポリカーボネートなど)、ガラス、
セラミック、金属などであってもよい。また、基板の表
面にはアドレス信号などのプレフォーマット、案内溝の
プレグルーブが形成されていてもよい。基板の形状は使
用用途に応じてテープ、ディスク、ドラム、ベルトなど
の任意のものであってもよい。
There are no particular restrictions on the material of the substrate on which the memory material of the present invention is formed, and various plastics (for example, polymethyl methacrylate, polycarbonate, etc.), glass,
It may be made of ceramic, metal, etc. Furthermore, a preformat for address signals and a pregroove for guide grooves may be formed on the surface of the substrate. The shape of the substrate may be arbitrary, such as a tape, a disk, a drum, or a belt, depending on the intended use.

本発明の光メモリー媒体は基本的には法仮と上記メモリ
ー祠料からなるが、目的に応じてさらに他の層(例えば
保訛層)を存在させてもよい。まtこ、エアΦサントイ
・ソチ)苫造(こしホコリやキズがつかないようにする
こともできる。
The optical memory medium of the present invention basically consists of a base material and the above-mentioned memory material, but depending on the purpose, other layers (for example, an accent protection layer) may be present. Air Φ Santoy Sochi) Tomazou (can also be used to prevent dust and scratches from forming).

次に、本発明の光メモリー媒体の作製法を具体的に説明
する。  。
Next, a method for manufacturing the optical memory medium of the present invention will be specifically explained. .

本発明による最適な方法は出発材料のひとつとして少な
くともニッケルを含む有機金属化合物あるいは膏機金属
錯体を真空反応層内にセットされた基板上にプラズマC
VD法により製膜する方法である。そのうちでもグロー
放電を利用したプラズマCVD法がさらに好ましい。そ
の代表的な作製条件を示すと、出発材料として例えばニ
ッケルアセチルアセトナート、麹酸ニッケル、酢酸ニッ
ケル、クエン酸ニッケル、安息香酸ニッケル、また、そ
れぞれフッ素化された材料などが用いられ、キャリアガ
スとしては例えばHe5NeSAr、N2などが用いら
れまた反応ガスとして例えば02、Co、CO2、CH
4、C2H4などが用いられる。グロー放電装置は直流
グロー放電装置あるいは容量結合型または誘導結合型の
交流グロー放電装置であってもよい。反応ガス圧力は0
.01〜数Torr好ましくは0.05〜2 Torr
である。7u力は 1〜300W好ましくは5〜100
 Wであり、放電時間は1〜120分好ましくは2〜6
0分である。基板温度は0〜350℃好ましくは20〜
200℃である。
The optimal method according to the present invention is to deposit an organometallic compound or a metal complex containing at least nickel as one of the starting materials onto a substrate set in a vacuum reaction layer using plasma plasma.
This is a method of forming a film using the VD method. Among these, the plasma CVD method using glow discharge is more preferable. Typical manufacturing conditions include starting materials such as nickel acetylacetonate, nickel kojate, nickel acetate, nickel citrate, and nickel benzoate, as well as fluorinated materials for each, and as a carrier gas. For example, He5NeSAr, N2, etc. are used, and reaction gases such as 02, Co, CO2, CH
4, C2H4, etc. are used. The glow discharge device may be a direct current glow discharge device or a capacitively or inductively coupled alternating current glow discharge device. Reaction gas pressure is 0
.. 01 to several Torr, preferably 0.05 to 2 Torr
It is. 7u power is 1~300W, preferably 5~100W
W, and the discharge time is 1 to 120 minutes, preferably 2 to 6 minutes.
It is 0 minutes. The substrate temperature is 0-350℃, preferably 20-350℃
The temperature is 200°C.

さらに、本発明の光メモリー媒体を作製する実施例を以
下にあげる。それぞれの実施例の作製条件を表1に示す
。但し、作製装置は第1図に示すプラズマCVD装置を
用いた。
Furthermore, examples for producing the optical memory medium of the present invention will be given below. Table 1 shows the manufacturing conditions for each example. However, the manufacturing apparatus used was a plasma CVD apparatus shown in FIG.

第1図において、1はRF主電源2は熱電対、3は電極
、4は基板、5は出発材料、6はヒーター、7は対向電
極、8は真空−1,9は油拡散ポンプ、10は油回転ポ
ンプ、11はヒーター制御ユニットである。
In Figure 1, 1 is an RF main power source 2 is a thermocouple, 3 is an electrode, 4 is a substrate, 5 is a starting material, 6 is a heater, 7 is a counter electrode, 8 is a vacuum 1, 9 is an oil diffusion pump, 10 1 is an oil rotary pump, and 11 is a heater control unit.

反応時の圧力は1.OX 10’ Torrに固定した
The pressure during the reaction was 1. It was fixed at OX 10' Torr.

表1 先メモリー薄膜の作製条件 得られた薄膜の反射率、吸収率、透過率は表2に示すよ
うに、製膜条件によって大きく異なった。また、それぞ
れの膜の反射、吸収、透過率は370〜800nmの波
長領域で±5%以内であった。実施例1〜11における
反射率、吸収率、透過率の違いは膜厚によるものであり
、膜構造の本質的な違いはない。
Table 1 Conditions for Preparing Memory Thin Films As shown in Table 2, the reflectance, absorption, and transmittance of the obtained thin films varied greatly depending on the film forming conditions. Further, the reflection, absorption, and transmittance of each film were within ±5% in the wavelength range of 370 to 800 nm. The differences in reflectance, absorption, and transmittance in Examples 1 to 11 are due to the film thickness, and there is no essential difference in film structure.

表 2  光メモリ−■の反射率、吸収率、透過$  
 (at800nm)第2〜4図に膜厚と反射率、吸収
率、透過率の関係を示した。膜の反射率は300人程文
才で直線的に増大した(第2図)。膜の吸収率は膜厚5
0〜100人で飽和傾向にあり、約40%を示した(第
3図)。膜の透過率は、膜厚100 L程度までに50
%まで急激に減少し、それ以降は除々に減少した。
Table 2 Optical memory - Reflectance, absorption, and transmission $
(at 800 nm) Figures 2 to 4 show the relationship between film thickness, reflectance, absorption rate, and transmittance. The reflectance of the film increased linearly with the age of about 300 people (Figure 2). The absorption rate of the film is 5
There was a tendency for saturation between 0 and 100 people, which was about 40% (Figure 3). The transmittance of the membrane is 50% up to a thickness of about 100 L.
%, and then gradually decreased thereafter.

XPSスペクトルから、これらの膜は主に炭素とニッケ
ルによって構成されており、C−0、C−Hl−0H,
NiO等を示すピークは顕著には認められなかった。
From the XPS spectra, these films are mainly composed of carbon and nickel, with C-0, C-Hl-0H,
No notable peaks indicating NiO or the like were observed.

表3に反射率46%、吸収率40%、透過率14%の膜
表面をArプラズマで5分、15分スパッタしたときの
Ni/Cを示す。スパッタ 5分の場合N i/ C=
 1.1 %スパッタ15分の場合Ni/C−9,I 
X to−1であり、N1AAのプラズマCVD薄膜が
炭素とニッケルがほぼ等元素比で構成されてることがわ
かった。また、実施例1〜11における反射率、吸収率
、透過率の違いは先に述べたように膜jvによるもので
あり、それぞれの膜は炭素とニッケルを主な構成成分と
することがXPSスペクトルより明らかになった。
Table 3 shows Ni/C when a film surface with a reflectance of 46%, an absorption rate of 40%, and a transmittance of 14% was sputtered with Ar plasma for 5 minutes and 15 minutes. Sputtering for 5 minutes Ni/C=
1.1% sputtering for 15 minutes Ni/C-9,I
It was found that the plasma CVD thin film of N1AA was composed of carbon and nickel in an almost equal elemental ratio. In addition, the differences in reflectance, absorption, and transmittance in Examples 1 to 11 are due to the film jv as described above, and the XPS spectra indicate that each film has carbon and nickel as its main components. It became clearer.

表3 これらの膜を大気中400℃で熱処理したところ褐色透
明に表化し、370〜800nmの波長領域にわたって
、反射率10%以下、吸収率20%以下、透過率70%
以上となった。熱処理前後における反射率変化の一例を
第5図に示した。熱処理後のXPSスペクトルによる分
析により、膜中にNiOの生成および炭素の脱離が認め
られた。
Table 3 When these films were heat-treated at 400°C in the air, they turned brown and transparent, with a reflectance of 10% or less, an absorption rate of 20% or less, and a transmittance of 70% over the wavelength range of 370 to 800 nm.
That's all. FIG. 5 shows an example of reflectance changes before and after heat treatment. Analysis by XPS spectroscopy after the heat treatment confirmed the formation of NiO and the desorption of carbon in the film.

次に、上述のようにして作製した膜の光書き込み性能を
以下の条件で評価した。
Next, the optical writing performance of the film produced as described above was evaluated under the following conditions.

サンプルを5On+iφの回転ディスクに固定し21t
3rpmで回転させながら、書き込み用レーザーとして
NEC製Arレーザ(G L G 3000、GLS3
000)を用い集光レンズによりサンプル上に 2μl
φに集光させ出力10mWで書き込みを行ったところ数
n5ccの照射時間で線幅約1μmの記録ピットを形成
することができた。また、ビット周辺部の形状を観察し
たところ、顕著な盛上りもなく極めてなめらかであった
。さらに、A「レーザの変わりに780〜800nmの
発振波長を白°する半導体レーザを用いて同様に書き込
むことができた。
The sample was fixed on a rotating disk of 5On+iφ and was heated to 21t.
While rotating at 3 rpm, a NEC Ar laser (GL G 3000, GLS3) was used as a writing laser.
000) onto the sample using a condensing lens.
When writing was performed with an output of 10 mW by condensing the light to φ, recording pits with a line width of about 1 μm could be formed in an irradiation time of several n5 cc. Further, when the shape of the peripheral part of the bit was observed, it was found to be extremely smooth without any noticeable ridges. Furthermore, writing could be done in the same way using a semiconductor laser that emits an oscillation wavelength of 780 to 800 nm instead of the A laser.

[効 果] 本発明によるN 、i −C膜をメモリー材料として用
いると、以下の効果を得ることができる。
[Effects] When the N, i-C film according to the present invention is used as a memory material, the following effects can be obtained.

金属、カルコゲン、有機化合物のように単純な熱による
溶融・昇華型メモリー材料とは異なりビット周辺部の盛
り上りによる再生時C/Nの低ドがない。
Unlike metals, chalcogen, organic compounds, and other simple thermally melted/sublimated memory materials, there is no low C/N ratio during playback due to swelling around the bit.

記録前後の反射率変化が大きいためコントラストが大き
い。
The contrast is large because the change in reflectance before and after recording is large.

記録部は安定なニッケル酸化物であり、記録ビットの寿
命は長い。また、非記録部は炭素含Hニッケルであり、
酸化が防止され安定である。
The recording part is made of stable nickel oxide, and the recording bits have a long life. In addition, the non-recording part is carbon-containing H nickel,
It is stable and prevents oxidation.

370〜800nmの波長領域にわたって吸収および反
射が大きいため、書き込みに種々のレーザを使用するこ
とができる。
Due to the high absorption and reflection over the wavelength range of 370-800 nm, various lasers can be used for writing.

出発材料であるニッケルアセチルアセトナート、酢酸ニ
ッケル、麹酸ニッケル、クエン酸ニッケル、安息香酸ニ
ッケル等は無公害、安価であるため生産コストが小さい
The starting materials, such as nickel acetylacetonate, nickel acetate, nickel kojate, nickel citrate, and nickel benzoate, are non-polluting and inexpensive, so the production cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプラズマCVD装置を示す模式図、第2図はN
1AAプラズマCVD薄膜の厚さと反射率の関係を示す
図、 第3図はN1AAプラズマCVD膜の厚さと吸収率の関
係を示す図、 第4図はN1AAプラズマCVD薄膜の厚さと透過率の
関係を示す図、 第5図は熱処理によるN1AAプラズマCVD薄膜の反
射率変化を示す図。
Figure 1 is a schematic diagram showing a plasma CVD apparatus, and Figure 2 is an N
Figure 3 is a diagram showing the relationship between the thickness and reflectance of a 1AA plasma CVD thin film, Figure 3 is a diagram showing the relationship between thickness and absorption rate of a N1AA plasma CVD film, and Figure 4 is a diagram showing the relationship between thickness and transmittance of a N1AA plasma CVD thin film. FIG. 5 is a diagram showing changes in reflectance of N1AA plasma CVD thin film due to heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 炭素及びニッケルを主成分とすることを特徴とする光メ
モリー媒体。
An optical memory medium characterized by containing carbon and nickel as main components.
JP63019597A 1987-12-25 1988-02-01 Optical storage medium Pending JPH01196394A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63019597A JPH01196394A (en) 1988-02-01 1988-02-01 Optical storage medium
US07/477,577 US5080947A (en) 1987-12-25 1990-02-09 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019597A JPH01196394A (en) 1988-02-01 1988-02-01 Optical storage medium

Publications (1)

Publication Number Publication Date
JPH01196394A true JPH01196394A (en) 1989-08-08

Family

ID=12003641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019597A Pending JPH01196394A (en) 1987-12-25 1988-02-01 Optical storage medium

Country Status (1)

Country Link
JP (1) JPH01196394A (en)

Similar Documents

Publication Publication Date Title
JPH01196394A (en) Optical storage medium
JPH01215590A (en) Optical memory medium
JPS6232087A (en) Preparation of optical recording medium
JPH0294041A (en) Optical recording medium and its production
JPH0441056B2 (en)
JPS62284787A (en) Optical memory medium
JPH0522590B2 (en)
JPS6233349A (en) Production of optical recording medium
JPS63276722A (en) Optical information recording medium
JPH0363178A (en) Data recording membrane and data recording and reproducing method
JPH01317246A (en) Optical disk
JPH03153389A (en) Optical recording medium
JPH01220150A (en) Production of information recording medium
JPS6232086A (en) Preparation of optical recording medium
JPH01173337A (en) Optical recording medium
JPH04332929A (en) Optical recording medium
JPH0355292A (en) Optical recording medium and manufacture thereof
JPS61254392A (en) Optical information-recording medium
JPH0361584A (en) Data recording medium
JPH01290135A (en) Optical information recording medium
JPH01224956A (en) Manufacture of optical recording medium
JPS61254391A (en) Optical information-recording medium
JPH01137437A (en) Optical recording medium
JPH02121889A (en) Data recording medium
JPH01192029A (en) Optical recording medium and production thereof