JPS623091A - Single crystal pulling up apparatus - Google Patents

Single crystal pulling up apparatus

Info

Publication number
JPS623091A
JPS623091A JP13986085A JP13986085A JPS623091A JP S623091 A JPS623091 A JP S623091A JP 13986085 A JP13986085 A JP 13986085A JP 13986085 A JP13986085 A JP 13986085A JP S623091 A JPS623091 A JP S623091A
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
single crystal
chamber
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13986085A
Other languages
Japanese (ja)
Inventor
Hideki Yamazaki
秀樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13986085A priority Critical patent/JPS623091A/en
Publication of JPS623091A publication Critical patent/JPS623091A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the reduction in magnetic flux density in the crucible wall part in the direction crossing the coil axis while reducing the coil diameter to a small value, by providing a magnetic material at a magnetic flux- penetrating part or a position opposite thereto in a chamber. CONSTITUTION:A single crystal pulling up apparatus obtained by forming most of a chamber (3a) from a nonmagnetic material 31, forming a wall part facing coils (1a) and (1b) partially from a magnetic material 32, forming a circular region almost equal to a range obtained by projecting the coils (1a) and (1b) in the axial direction from a magnetic material 32 in the chamber (3a). When the coils (1a) and (1b) are brought near, most of the magnetic flux passes through the magnetic material 32. Therefore, the expansion of the lines of magnetic force in the direction crossing the coil axis slight and the magnetic flux distribution is equalized as much. As a result, the reduction in magnetic flux density near the point (D) of the coil wall is suppressed to improve the quality of the resultant single crystal.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はチョクラルスキー法によって単結晶を作成する
単結晶引上装置に係り、特に融液の対流を抑えるために
磁界を作用させるときの磁束密度の均等化に関り−る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a single crystal pulling device for producing a single crystal by the Czochralski method, and particularly relates to a magnetic flux pulling device when applying a magnetic field to suppress convection of a melt. It is related to equalization of density.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

結晶作成法の一種にチョクラルスキー法がある。 One type of crystal creation method is the Czochralski method.

これは融液に浸した棒または種子結晶をゆっくり引き上
げながら先端に付着してくる液を固化させる方法である
This is a method in which a rod or seed crystal immersed in melt is slowly pulled up while the liquid adhering to the tip is solidified.

かかる単結晶の引上げに際して最近、融液に磁界を作用
させて対流を抑えることにより、融液温度の安定化、る
つは壁の溶融に伴う不純物の混入抑制、および、単結晶
の品質の向上が図られることが実証され、一部で実用化
されている。
Recently, when pulling such single crystals, by applying a magnetic field to the melt and suppressing convection, it is possible to stabilize the melt temperature, suppress the contamination of impurities due to melting of the melt wall, and improve the quality of the single crystal. It has been proven that this can be achieved, and it has been put into practical use in some areas.

第4図はこの種の従来の単結晶引上装置の構成を示す断
面図で、磁界を作るための1対のコイルIa、1bがそ
れぞれコイル収納ケース2に収納され、これらのコイル
1a、lb間に、円筒状の側壁を有するチャンバ3が設
けられている。また、チャンバ3の中心部には原料融液
5を容れるるつぼ4が保持され、さらに、るつぼ4の周
囲にヒータ7が設置されている。
FIG. 4 is a cross-sectional view showing the configuration of this type of conventional single crystal pulling apparatus, in which a pair of coils Ia and 1b for creating a magnetic field are housed in a coil storage case 2, and these coils 1a and lb In between is provided a chamber 3 with cylindrical side walls. Further, a crucible 4 containing a raw material melt 5 is held in the center of the chamber 3, and a heater 7 is further installed around the crucible 4.

ここで、チャンバ3は原料融液5が触れる雰囲気を大気
から隔絶するもので、内部にアルゴン等の不活性気体が
流されている。そして、ヒータ7によって溶解された原
料融液5に単結晶の種を浸し、これを低速で引上げて単
結晶6を作成する。
Here, the chamber 3 isolates the atmosphere that the raw material melt 5 comes into contact with from the atmosphere, and an inert gas such as argon is flowed inside. Then, a single crystal seed is immersed in the raw material melt 5 melted by the heater 7 and pulled up at low speed to form a single crystal 6.

ところで、単結晶作成中の融液5は第5図に拡大して示
したように矢印Bに沿って熱対流を生じ、るつぼ内壁成
分が融液5によって搬送され、生成された単結晶中に欠
陥を生じる。
By the way, the melt 5 during the production of a single crystal causes thermal convection along the arrow B as shown in the enlarged view in FIG. produce defects.

また、融液5は加熱されることにより沸騰状態となり、
激しい温度変化すなわち熱振動を起こす。
In addition, the melt 5 becomes boiling by being heated,
Causes severe temperature changes, i.e. thermal oscillations.

この熱振動は、成長中の単結晶の固液界面に微視的な再
溶解を起こさせ、成長した単結晶中に転位ループ、積層
欠陥等を発生させる。
This thermal vibration causes microscopic re-dissolution at the solid-liquid interface of the growing single crystal, and generates dislocation loops, stacking faults, etc. in the grown single crystal.

かかる熱対流、熱振動に起因する欠陥を防止するために
融液5に磁界を作用させるが、このとき、コイルla、
lbによって水平方向の磁界10を加えると、磁界に直
交して運動Jる導体と同じように、熱対流、熱振動によ
って移FIJ 17る融液はレンツの法則によってその
運動が抑制される。
In order to prevent defects caused by such thermal convection and thermal vibration, a magnetic field is applied to the melt 5, but at this time, the coils la,
When a horizontal magnetic field 10 is applied by lb, the movement of the melt, which is transferred by thermal convection and thermal vibration, is suppressed by Lenz's law, similar to a conductor moving perpendicular to the magnetic field.

この場合、ヒータ7はるつぼ4と同心に配置され、熱対
流を起こす力はるつぼ壁の近くが最も大きいと勿えられ
る。したがって、るつぼ壁の近くが最も強くなるように
磁界を加えることが望まれる。
In this case, the heater 7 is arranged concentrically with the crucible 4, and it can be said that the force for causing thermal convection is greatest near the crucible wall. Therefore, it is desirable to apply the magnetic field so that it is strongest near the crucible wall.

しかしながら実際には、第6図の横断面図で示すように
、コイル軸と直交する方向のるつぼ壁、すなわち、D点
の近傍では磁束の拡がりによって磁束密度が最小になる
However, in reality, as shown in the cross-sectional view of FIG. 6, the magnetic flux density becomes minimum due to the spread of the magnetic flux near the crucible wall in the direction perpendicular to the coil axis, that is, point D.

第7図はこのことを説明するための、るつぼの中心から
の径方向距離と磁束密度との関係を示す縮図である。
To explain this, FIG. 7 is a miniature diagram showing the relationship between the radial distance from the center of the crucible and the magnetic flux density.

すなわち、るつぼの直径380〔纜〕、コイル1a、1
bの相互間隔11l100(a、このコイルIa、1b
(7)外径800(m)として、第6図のXx′断面に
おける磁束密度の変化を曲線11に、YY’ 断面にお
ける磁束密度の変化を曲線12にそれぞれ示している。
That is, the diameter of the crucible is 380 [length], the coils 1a, 1
b mutual spacing 11l100 (a, this coil Ia, 1b
(7) Assuming an outer diameter of 800 (m), curve 11 shows the change in magnetic flux density in the Xx' cross section of FIG. 6, and curve 12 shows the change in magnetic flux density in the YY' cross section in FIG.

ここで、るつぼの中心C点を基準としたとぎ、コイル軸
方向のるつぼ壁A点の近傍では磁束密度が38(%〕も
多くなっているのに対して、コイル軸と直交する方向の
るつぼ壁り点の近傍では17〔%〕も小さくなっている
ことが判る。
Here, using the center point C of the crucible as a reference, the magnetic flux density is 38 (%) higher near point A on the crucible wall in the direction of the coil axis, whereas It can be seen that the value is reduced by 17% near the wall point.

るつぼ壁り点での磁束密度低下を抑えるにはコイルIa
、lbの直径を大きくすればよいが、この方法では大き
なコイルの存在によって単結晶引上げの操作性が著しく
阻害されるほか、構成が複雑高価になると共にコイル径
を縮少する型閉に逆行するもので・あった。
To suppress the decrease in magnetic flux density at the crucible wall point, use coil Ia.
, it is possible to increase the diameter of lb, but in this method, the presence of a large coil significantly impedes the operability of pulling the single crystal, the structure becomes complicated and expensive, and it goes against the mold closure method of reducing the coil diameter. There was something.

〔発明の目的〕[Purpose of the invention]

この発明は上記従来のものの欠点を除去するためになさ
れたもので、コイル径を小さく抑えたままコイル軸と直
交する方向のるつぼ壁部の磁束密度低下を格段に低く抑
え得る単結晶引上装置の提供を目的とする。
This invention was made in order to eliminate the drawbacks of the above-mentioned conventional devices, and provides a single crystal pulling device that can significantly suppress the decrease in magnetic flux density at the crucible wall in the direction perpendicular to the coil axis while keeping the coil diameter small. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明は、大気と隔絶された
チャンバの内部にるつぼを保持し、前記チャンバの外側
から水平方向の磁界を作用させることによって前記るつ
ぼ内のFa液の対流を抑えて単結晶を作成する単結晶引
上装置において、前記チャンバの磁束透過壁部またはこ
の磁束透過壁部に対向する位置に磁性体でなる板体を配
設し、この板体によって前記融液に作用する磁界の磁束
密度を均等化したことを特徴とするものである。
To achieve this objective, the present invention holds a crucible inside a chamber isolated from the atmosphere, and suppresses the convection of the Fa liquid in the crucible by applying a horizontal magnetic field from outside the chamber. In a single crystal pulling apparatus for producing a single crystal, a plate made of a magnetic material is disposed at a magnetic flux permeable wall of the chamber or at a position opposite to the magnetic flux permeable wall, and this plate acts on the melt. This is characterized by equalizing the magnetic flux density of the magnetic field.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例の構成を示す横断面図であり
、図中第4図、第6図と同一の符号を(=jしたものは
それぞれ同一の要素を示している。そして、チャンバは
通常、非磁性体で形成されるが、ここに示したブヤシバ
3aは大部分が非磁性体31で形成され、コイル1a、
1bに対向する壁部が部分的に磁性体32で形成された
点が従来装置と異なっている。
FIG. 1 is a cross-sectional view showing the configuration of an embodiment of the present invention. In the figure, the same reference numerals (=j) as in FIGS. 4 and 6 indicate the same elements. , the chamber is usually formed of a non-magnetic material, but the shank 3a shown here is mostly formed of a non-magnetic material 31, and the coil 1a,
This device differs from the conventional device in that the wall portion facing 1b is partially formed of magnetic material 32.

ここで、チャンバ3aのうち、コイル1a、1bを軸方
向に投影した範囲と略等しい円形領域が磁性体32で形
成されており、ここにコイル1a。
Here, in the chamber 3a, a circular region approximately equal to the range projected in the axial direction of the coils 1a and 1b is formed of the magnetic material 32, and the coil 1a is located here.

1bを接近させれば、磁束の大部分がこの磁性体を通過
する。したがって、従来装置と比較すると、コイル軸と
直交する方向の磁力線の拡がりも小さくその分だけ磁束
分布も均等化されることから、コイル壁り点の近傍の磁
束密度低下が抑えられる。
1b, most of the magnetic flux passes through this magnetic body. Therefore, compared to the conventional device, the spread of the magnetic lines of force in the direction orthogonal to the coil axis is smaller, and the magnetic flux distribution is equalized accordingly, thereby suppressing a decrease in the magnetic flux density near the coil wall point.

第2図はこの実施例のYY’断面における中心点Cから
の距離と磁束密度との関係を従来装置と比較して示した
線図である。
FIG. 2 is a diagram showing the relationship between the distance from the center point C and the magnetic flux density in the YY' section of this embodiment in comparison with a conventional device.

すなわち、従来装置では曲1i112で示したように、
中心点Cの磁束密度が4000 CQauss )であ
るときコイル軸と直交する方向のるつぼ壁部り点の磁束
密度が3330 (aauss )となって略17〔%
〕も減少したのに対して、この実施例では曲線12aに
示したようにコイル軸と直交する方向のるつは壁部り点
の磁束密度は3840(gauss)で略4〔%〕の減
少に留まっている。
In other words, in the conventional device, as shown in song 1i112,
When the magnetic flux density at the center point C is 4000 CQauss), the magnetic flux density at a point on the crucible wall in the direction perpendicular to the coil axis is 3330 (aauss), which is about 17%.
] decreased, whereas in this example, as shown by curve 12a, the magnetic flux density at the point on the wall in the direction perpendicular to the coil axis was 3840 (gauss), a decrease of approximately 4%. remains in place.

ちなみに、るつぼの中心C点の磁束密度を4000 (
gauss )とするとき、非磁性体で形成したチャン
バ3の壁部のうち、コイル軸近傍E点(第6図)の磁束
密度は9000 (gauss ) 、]コイルからコ
イルの半径分だけ外れた1点(第6図)の磁束密度は7
800 Coauss )となる。
By the way, the magnetic flux density at point C, the center of the crucible, is 4000 (
gauss), the magnetic flux density at point E near the coil axis (Fig. 6) among the walls of the chamber 3 made of non-magnetic material is 9000 (gauss),] 1 which is deviated from the coil by the radius of the coil. The magnetic flux density at the point (Figure 6) is 7
800 Coauss).

かかる磁束を第1図に示した磁性体部分32に通して、
磁気的に飽和しないようにするには、すなわち、均・−
な磁束密度を得るには100(s)程度の板厚が必要に
なる。しかし、その板厚を30〜40(履)に形成して
も磁束分布を改善する点で十分であった。
This magnetic flux is passed through the magnetic material portion 32 shown in FIG.
In order to avoid magnetic saturation, it is necessary to
In order to obtain a magnetic flux density of about 100 (s), a plate thickness of about 100 (s) is required. However, even if the plate thickness was made to be 30 to 40 mm, it was sufficient to improve the magnetic flux distribution.

第3図は本発明の他の実施例の横断面図であり、第1図
と同一の符号を付したものはそれぞれ同一の要素を示し
ている。そして、第1図ではチャンバの磁束通過壁部を
磁性体で形成したが、ここでは磁束透過壁部に対向する
位置に、磁性体′Cなる板体14を配設している。
FIG. 3 is a cross-sectional view of another embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same elements. In FIG. 1, the magnetic flux passing wall of the chamber is made of a magnetic material, but here a plate 14 made of a magnetic material 'C' is disposed at a position facing the magnetic flux passing wall.

かかる構成によれば部品点数が僅かに増加するものの上
述したと同様な効果が得られる他、板厚や大ぎさを自由
に選ぶことができる点で有利である、 以上、本発明を効果的な実施例について述べたが、本発
明はこれに限定されることなく、例えば磁性体が融液に
触れないようにチャンバの外周部位を磁性体で形成して
も、あるいは、チャンバの壁部に磁性体を埋設してもよ
く、要はチャンバの磁束通過壁部またはこの磁束通過壁
部に対向する位置に磁性体でなる板体を配設することに
よって融液に作用する磁界の磁束密度を均等化すること
ができる。
Although this configuration slightly increases the number of parts, it provides the same effects as described above and is advantageous in that the thickness and size of the plate can be freely selected. Although the embodiments have been described, the present invention is not limited thereto. In short, by arranging a plate made of a magnetic material at the magnetic flux passage wall of the chamber or at a position opposite to this magnetic flux passage wall, the magnetic flux density of the magnetic field acting on the melt can be equalized. can be converted into

〔発明の効果〕〔Effect of the invention〕

上述したように、この発明によれば、融液に磁界を作用
させるためのコイル径を小さく抑えたまま、コイル軸と
直交する方向のるつぼ壁部・の磁束密度低下を格段に低
く抑えることができるという効果がある。
As described above, according to the present invention, it is possible to suppress the decrease in magnetic flux density at the crucible wall in the direction orthogonal to the coil axis to a significantly low level while keeping the diameter of the coil for applying a magnetic field to the melt small. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の横断面図、第26図は同実
施例の作用を説明するために、るつぼの径方向距離と磁
束密度との関係を示す線図、第3図は他の実施例の横断
面図、第4図は従来の単結晶引上装置の縦断面図、第5
図は同装置の部分拡大断面図、第6図は同装置の横断面
図、第7図は同装置の作用を説明するために、るつぼの
径方向距離と磁束密度との関係を示す線図である。 1a、1b・・・コイル、3a・・・チャンバ、4・・
・るつぼ、5・・・融液、6・・・単結晶、7・・・ヒ
ータ、14・・・板体、31・・・非磁性体、32・・
・磁性体。 出願人代理人  猪  股    清 、dd’21X [gaussl 栓i肖WE舵− 62図 63 図 ら4 口 汽5 図 も6 閉 芝7 図
Fig. 1 is a cross-sectional view of one embodiment of the present invention, Fig. 26 is a diagram showing the relationship between the radial distance of the crucible and the magnetic flux density to explain the operation of the embodiment, and Fig. 3 is a diagram showing the relationship between the radial distance of the crucible and the magnetic flux density. A cross-sectional view of another embodiment, FIG. 4 is a vertical cross-sectional view of a conventional single crystal pulling apparatus, and FIG.
The figure is a partially enlarged sectional view of the same device, FIG. 6 is a cross-sectional view of the same device, and FIG. 7 is a diagram showing the relationship between the radial distance of the crucible and the magnetic flux density to explain the action of the device. It is. 1a, 1b...coil, 3a...chamber, 4...
- Crucible, 5... Melt, 6... Single crystal, 7... Heater, 14... Plate, 31... Non-magnetic material, 32...
・Magnetic material. Applicant's agent Kiyoshi Inomata, dd'21

Claims (1)

【特許請求の範囲】 1、大気と隔絶されたチャンバの内部にるつぼを保持し
、前記チャンバの外側から水平方向の磁界を作用させる
ことによって前記るつぼ内の融液の対流を抑えながら単
結晶を作成する単結晶引上装置において、前記チャンバ
の磁束透過壁部またはこの磁束透過壁部に対向する位置
に磁性体でなる板体を配設し、この板体によつて前記融
液に作用する磁界の磁束密度を均等化したことを特徴と
する単結晶引上装置。 2、前記板体は前記チャンバの対向側壁を部分的に磁性
体で形成したことを特徴とする特許請求の範囲第1項記
載の単結晶引上装置。
[Claims] 1. A crucible is held inside a chamber isolated from the atmosphere, and a single crystal is grown while suppressing convection of the melt in the crucible by applying a horizontal magnetic field from outside the chamber. In the single crystal pulling apparatus to be produced, a plate made of a magnetic material is disposed at the magnetic flux permeable wall of the chamber or at a position opposite to the magnetic flux permeable wall, and the plate acts on the melt. A single crystal pulling device characterized by equalizing the magnetic flux density of the magnetic field. 2. The single crystal pulling apparatus according to claim 1, wherein the plate body has a side wall facing the chamber partially formed of a magnetic material.
JP13986085A 1985-06-26 1985-06-26 Single crystal pulling up apparatus Pending JPS623091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13986085A JPS623091A (en) 1985-06-26 1985-06-26 Single crystal pulling up apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13986085A JPS623091A (en) 1985-06-26 1985-06-26 Single crystal pulling up apparatus

Publications (1)

Publication Number Publication Date
JPS623091A true JPS623091A (en) 1987-01-09

Family

ID=15255222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13986085A Pending JPS623091A (en) 1985-06-26 1985-06-26 Single crystal pulling up apparatus

Country Status (1)

Country Link
JP (1) JPS623091A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256787A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Method and device for growing single crystal
JPS62256791A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
US5868832A (en) * 1996-08-21 1999-02-09 Tesla Engineering Limited Magnetic field generation
JP2010100474A (en) * 2008-10-23 2010-05-06 Covalent Materials Corp Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
WO2022020551A1 (en) * 2020-07-23 2022-01-27 Globalwafers Co., Ltd. Systems and methods for reduced swinging and dropping of silicon crystals during production of silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256787A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Method and device for growing single crystal
JPS62256791A (en) * 1986-04-30 1987-11-09 Toshiba Ceramics Co Ltd Device for growing single crystal
US5868832A (en) * 1996-08-21 1999-02-09 Tesla Engineering Limited Magnetic field generation
JP2010100474A (en) * 2008-10-23 2010-05-06 Covalent Materials Corp Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
WO2022020551A1 (en) * 2020-07-23 2022-01-27 Globalwafers Co., Ltd. Systems and methods for reduced swinging and dropping of silicon crystals during production of silicon

Similar Documents

Publication Publication Date Title
JPH05194077A (en) Method for manufacture of single crystal silicon rod
KR100483450B1 (en) Process and apparatus for producing a silicon single crystal
KR101022933B1 (en) Apparatus and Method for manufacturing semiconductor single crystal using selective magnetic shielding
JPS623091A (en) Single crystal pulling up apparatus
JPH0212920B2 (en)
JPS61222984A (en) Unit for single crystal production
JP2004189559A (en) Single crystal growth method
JPH11278993A (en) Growth of single crystal
JPS6051690A (en) Manufacturing apparatus of single crystal
JP5240905B2 (en) Magnetic field applied silicon crystal growth method and apparatus
JP2021046342A (en) Apparatus and method for pulling single crystal
JP2007145666A (en) Method for manufacturing silicon single crystal
US5935327A (en) Apparatus for growing silicon crystals
JP2021080112A (en) Apparatus and method for pulling single crystal
JPS6081086A (en) Process and apparatus for growing single crystal
JPH10120485A (en) Single crystal production apparatus
JPS6270286A (en) Apparatus for producting single crystal
JPS61251594A (en) Apparatus for producing single crystal
JP4801869B2 (en) Single crystal growth method
JP2623465B2 (en) Single crystal pulling device
JP2001139398A (en) Method of growing single crystal
JPS61222985A (en) Production unit for single crystal
JP2004182560A (en) Method for growing single crystal
JPS6051691A (en) Growing apparatus of single crystal semiconductor
JPS60221392A (en) Device for forming single crystal