JPS62295470A - Photosensor - Google Patents

Photosensor

Info

Publication number
JPS62295470A
JPS62295470A JP61138943A JP13894386A JPS62295470A JP S62295470 A JPS62295470 A JP S62295470A JP 61138943 A JP61138943 A JP 61138943A JP 13894386 A JP13894386 A JP 13894386A JP S62295470 A JPS62295470 A JP S62295470A
Authority
JP
Japan
Prior art keywords
type
electrode
bright
metal oxide
current range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61138943A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujita
藤田 順彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61138943A priority Critical patent/JPS62295470A/en
Publication of JPS62295470A publication Critical patent/JPS62295470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To produce many signal currents at bright time in a simple structure by sequentially laminating integrally an N-type a-Si, I-type a-Si and metal oxide transparent electrodes on an electrode to form a photoconductive element, and setting the bias points of the elements in a predetermined sequential current range. CONSTITUTION:An N-type amorphous silicon (a-Si) 2, an I-type a-Si 3 and a metal oxide transparent electrode 4 are sequentially laminated integrally on a conductive substrate 1 which is also used as an electrode to form a photoconductive element, and the bias point of the element is set to a predetermined sequential current range. In a photosensor, a potential barrier is formed in a boundary between the a-Si 3 and the electrode 4, and there is a remarkable difference between the rising voltage and the inclination after rising. Accordingly, when a bias voltage VB of suitable amplitude is set forwardly (in a positive current range), the difference of current values at bright and dark times become large and the current value at the bright time is remarkably increased.

Description

【発明の詳細な説明】 a 発明の詳細な説明 〔産業上の利用分野〕 この発明は、イメージセンサなどに用いる光センサ、特
に光導電素子を用いた光センサに関するものである。
Detailed Description of the Invention a. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical sensor used in an image sensor or the like, and particularly to an optical sensor using a photoconductive element.

〔従来の技術〕[Conventional technology]

イメージセンサなどに用いる光センサ素子には、光導電
素子とフォトダイオードがある。一般に、光導電素子は
、フォトダイオードに比べ応答速度が遅く、また明暗比
(光を当てた明状態と、光を当てない暗状態の信号の比
)が小さいなどの欠点がある。しかし、その反面、感度
が高く(明状態の信号量大)、素子構造が単純であるな
どの特徴を有しているため、種々の分野において使用さ
れている。
Optical sensor elements used in image sensors and the like include photoconductive elements and photodiodes. In general, photoconductive elements have drawbacks such as a slower response speed than photodiodes and a smaller contrast ratio (the ratio of the signal in a bright state when exposed to light to the signal in a dark state when not exposed to light). However, on the other hand, it has features such as high sensitivity (large signal amount in bright state) and simple element structure, so it is used in various fields.

上記の光導電素子を光センサ素子として1次元或いは2
次元のマトリックス回路を構成し、マトリックス駆動を
行なった場合、逆方向電流の阻止機能が無いため、各光
導電素子に整流素子を直列に接続して逆方向電流を阻止
し、電気的なりロストークを防ぐ必要がある。
The above photoconductive element can be used as a one-dimensional or two-dimensional optical sensor element.
When a three-dimensional matrix circuit is configured and matrix drive is performed, there is no function to block reverse current, so a rectifier is connected in series to each photoconductive element to block reverse current and reduce electrical loss talk. It is necessary to prevent it.

このため、従来から光センサ素子に整流素子を接続する
方法がとられているが、その方法として、光センサ素子
の側部に配置した整流素子を電気配線により接続する方
法と、光センサ素子に電極を介して整流素子を積層する
方法がある。
For this reason, conventional methods have been used to connect a rectifying element to the optical sensor element, but there are two methods: connecting the rectifying element placed on the side of the optical sensor element with electrical wiring, and connecting the rectifying element to the optical sensor element. There is a method of stacking rectifying elements via electrodes.

〔発明が解決しようとする問題点、〕[The problem that the invention aims to solve]

光センサ素子と整流素子を電気配線によって接続する方
法は、2次元マトリックスを構成することが困難であり
、また1次元マトリックスの場合であっても、占有空間
が大きくなるためスペース上の問題があった。
In the method of connecting the optical sensor element and the rectifying element by electrical wiring, it is difficult to construct a two-dimensional matrix, and even in the case of a one-dimensional matrix, it occupies a large space, resulting in space problems. Ta.

また、電極を介して整流素子を積層する場合は、異種材
料である電極を成膜し、かつパターン化するなどの工程
が多く必要となり、不良率、特性のばらつきなども多い
などの問題があった。
Furthermore, when stacking rectifier elements via electrodes, many steps are required, such as forming electrodes made of different materials and patterning them, resulting in problems such as a high defect rate and variations in characteristics. Ta.

そこで、この発明は、占有空間が小さい点で有利な積層
構造を用いることとし、その場合の介在電極についての
問題点を解決した光センサを提供することを目的とする
ものである。
Therefore, an object of the present invention is to provide an optical sensor that uses a laminated structure, which is advantageous in that it occupies a small space, and that solves the problems associated with intervening electrodes in this case.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の光センサは、第1図に示すように、電極を兼
ねる導電性基板1上にn型非晶質シリコン(a−5iと
略記する)2、i型層−3i3および金属酸化物透明電
極4を順に積層一体化することにより光導電素子を構成
し、上記光導電素子のバイアス点を所定の順方向電流域
に設定した構成としたものである。
As shown in FIG. 1, the optical sensor of the present invention consists of a conductive substrate 1 which also serves as an electrode, an n-type amorphous silicon (abbreviated as a-5i) 2, an i-type layer 3i3, and a transparent metal oxide layer. A photoconductive element is constructed by sequentially laminating and integrating electrodes 4, and the bias point of the photoconductive element is set in a predetermined forward current range.

〔作用〕[Effect]

上記の光センサは、i型層−5i3と透明電極4との界
面に電位障壁が形成され、第2図に示すとときI−V特
性を示す。同図の曲線aは明暗、同すは暗時の特性であ
る。これらの曲線aとbは、その立上がり電圧と立上が
り後の傾きに顕著な差があることがわかる。
The optical sensor described above has a potential barrier formed at the interface between the i-type layer 5i3 and the transparent electrode 4, and exhibits an IV characteristic as shown in FIG. Curve a in the figure is the characteristic in bright and dark conditions, and curve a in the same figure is the characteristic in dark conditions. It can be seen that these curves a and b have a remarkable difference in the rising voltage and the slope after rising.

したがって、順方向(正電流域)に適切な大きさのバイ
アス電圧VBを設定すれば、明暗と暗時の電流値の差が
大になるとともに、明暗の電流値が非常に大きくなり、
通常この種のフォトダイオードが使用される逆方向バイ
アス電圧印加時の100倍あるいはそれ以上の値が得ら
れる。
Therefore, if a bias voltage VB of an appropriate magnitude is set in the forward direction (positive current region), the difference between the current value between bright and dark times will become large, and the current value between bright and dark times will become very large.
A value 100 times or more can be obtained when applying a reverse bias voltage, which is normally used with this type of photodiode.

また、逆方向バイアス時の電流が非常に小さいため、逆
方向電流の阻止効果がある。
Furthermore, since the current during reverse bias is very small, there is an effect of blocking reverse current.

〔実施例〕〔Example〕

鏡面研摩したニッケル基板1上にグロー放電分解法にて
、n型0)a−Si2、i型のa−3i3および透明電
極4を形成した。グロー放電分解の条件は、基板温度を
250 ”C、ガス圧力をl Torrとし、その他の
条件は第1表のごとく設定した。
An n-type 0) a-Si2, an i-type a-3i3, and a transparent electrode 4 were formed on a mirror-polished nickel substrate 1 by glow discharge decomposition. The conditions for glow discharge decomposition were that the substrate temperature was 250''C, the gas pressure was 1 Torr, and other conditions were set as shown in Table 1.

第1表 透明電極4はI To (SnO□か5wt%の酸化錫
インジウム)を蒸着法にて形成した。
The transparent electrode 4 in Table 1 was formed of I 2 To (SnO□ or 5 wt % indium tin oxide) by a vapor deposition method.

この場合、565 nmの光1001xを照射した時の
順方向の+1vバイアス時の明電流は100 ttA/
mm2であり、明暗比は3oであった。また、逆方向の
−1■バイアス時の電流値は0.171A/mm2であ
り、充分に逆方向の電流を阻止する効果がある。
In this case, the bright current at +1v bias in the forward direction when irradiated with 565 nm light 1001x is 100 ttA/
mm2, and the contrast ratio was 3o. Further, the current value at the time of -1■ bias in the reverse direction is 0.171 A/mm2, which is effective in sufficiently blocking current in the reverse direction.

なお、n型層を微結晶化することにより、明電流は20
0μA/mm2  となり大きな明信号が得られた。
Note that by microcrystalizing the n-type layer, the bright current can be increased to 20
The voltage was 0 μA/mm2, and a large bright signal was obtained.

また、基板として絶縁材料を使用する場合は、第3図の
ように、基板5上に電極1′を形成し、その上面に第1
図の場合と同様の層を形成する。基板5としてガラスの
ような透明絶縁材料を使用する場合は、第4図に示すよ
うに基板5を金属酸化物透明電極4側に設けてもよい。
If an insulating material is used as the substrate, an electrode 1' is formed on the substrate 5 as shown in FIG.
Form the same layers as in the figure. When a transparent insulating material such as glass is used as the substrate 5, the substrate 5 may be provided on the metal oxide transparent electrode 4 side as shown in FIG.

〔効果〕〔effect〕

以上説明したように、この発明によれば、非常に簡単な
構造で、明暗の信号電流を多く取ることができるととも
に、明暗比を大きくすることができ、しかも逆方向の電
流を阻止することができる。
As explained above, according to the present invention, with a very simple structure, it is possible to obtain a large amount of bright and dark signal current, increase the brightness ratio, and prevent currents in the opposite direction. can.

したがって、1次元のみならず、2次元のイメージセン
サが構成でき、更に工程の大幅削減、不良率、特性のば
らつきなどの低減を図ることができる。
Therefore, not only a one-dimensional image sensor but also a two-dimensional image sensor can be constructed, and furthermore, it is possible to significantly reduce the number of steps, reduce the defective rate, and reduce variations in characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の断面図、第2図は同上の1−■特性図
、第3図及び第4図は他の実施例の断面図である。
FIG. 1 is a sectional view of an embodiment, FIG. 2 is a 1--■ characteristic diagram same as above, and FIGS. 3 and 4 are sectional views of other embodiments.

Claims (3)

【特許請求の範囲】[Claims] (1)電極上にn型a−Si、i型a−Siおよび金属
酸化物透明電極を順に積層一体化することにより光導電
素子を構成し、上記光導電素子のバイアス点を所定の順
方向電流域に設定したことを特徴とする光センサ。
(1) A photoconductive element is constructed by laminating and integrating an n-type a-Si, an i-type a-Si, and a metal oxide transparent electrode on an electrode, and the bias point of the photoconductive element is set in a predetermined forward direction. An optical sensor characterized by being set in a current range.
(2)金属酸化物透明電極が、酸化錫インジウムである
ことを特徴とする特許請求の範囲第1項に記載の光セン
サ。
(2) The optical sensor according to claim 1, wherein the metal oxide transparent electrode is indium tin oxide.
(3)n型a−Siが微結晶化していることを特徴とす
る特許請求の範囲第1項又は第2項に記載の光センサ。
(3) The optical sensor according to claim 1 or 2, wherein n-type a-Si is microcrystallized.
JP61138943A 1986-06-14 1986-06-14 Photosensor Pending JPS62295470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138943A JPS62295470A (en) 1986-06-14 1986-06-14 Photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138943A JPS62295470A (en) 1986-06-14 1986-06-14 Photosensor

Publications (1)

Publication Number Publication Date
JPS62295470A true JPS62295470A (en) 1987-12-22

Family

ID=15233776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138943A Pending JPS62295470A (en) 1986-06-14 1986-06-14 Photosensor

Country Status (1)

Country Link
JP (1) JPS62295470A (en)

Similar Documents

Publication Publication Date Title
US4698658A (en) Amorphous semiconductor device
EP0307484A1 (en) Color sensor
JP2001053329A (en) Pin-type photoelectric conversion element
JPS61141185A (en) Manufacture of photovoltaic element
JPS62295470A (en) Photosensor
JP2706942B2 (en) Light sensor
JP3398161B2 (en) Photoelectric conversion device
JPS61203668A (en) Image sensor
JPH02148773A (en) Optical sensor
JPS62269358A (en) Image sensor
JPS62295471A (en) Photosensor element
JPH0729649Y2 (en) Photoelectric conversion device
JP2764297B2 (en) Photoelectric conversion device
JPH08153888A (en) Photoelectric converter and optical sensor employing it
JP3407917B2 (en) Light sensor
JPS61108165A (en) Solid-state image pickup sensor
JPH0323680A (en) Photoelectric transducer
JPS61203666A (en) Manufacture of photo-diode
JP3450880B2 (en) Photodiode for camera
JPS61284957A (en) Image sensor
JPS63164281A (en) Position detecting device
JPH0770754B2 (en) Method for forming resistance layer in semiconductor optical position detector
JPS58102553A (en) Long sized one dimensional thin film sensor
JPS64773A (en) Photovoltaic element
JPH01302870A (en) Photosensor