JP3398161B2 - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JP3398161B2
JP3398161B2 JP01675992A JP1675992A JP3398161B2 JP 3398161 B2 JP3398161 B2 JP 3398161B2 JP 01675992 A JP01675992 A JP 01675992A JP 1675992 A JP1675992 A JP 1675992A JP 3398161 B2 JP3398161 B2 JP 3398161B2
Authority
JP
Japan
Prior art keywords
layer
light
electrode layer
photoelectric conversion
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01675992A
Other languages
Japanese (ja)
Other versions
JPH05218486A (en
Inventor
浩一郎 新楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01675992A priority Critical patent/JP3398161B2/en
Publication of JPH05218486A publication Critical patent/JPH05218486A/en
Application granted granted Critical
Publication of JP3398161B2 publication Critical patent/JP3398161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、受光素子等の光電変換
装置において、特に静電耐圧を向上させるための遮光構
造を有した光電変換装置に関する。 【0002】 【従来の技術】従来、ダイオード構造を有する光電変換
装置は、透光性のガラス基板上に透明電極層、半導体
層、裏面電極層、及び樹脂保護層が順次積層された構造
が一般的である。そして、ガラス基板を透過した入射光
により、透明電極層と裏面電極層とで挟まれた半導体層
が発電する。また、この半導体層はある接合容量を有す
るキャパシタとしても作用する。 【0003】ところで、光電変換装置の出力端子に静電
気が印加された場合に、装置の端子間容量に反比例した
電圧が出力端子にかかるが、光電変換装置が例えばカメ
ラ用フォトダイオードであれば、有効な発電領域が微小
であり、端子間容量が発電領域の面積に比例するような
構成となっているので静電気耐圧が著しく低く、測定工
程や実装工程などにおいて生じた静電気により容易に破
壊されることがあり問題であった。 【0004】そこで、発電領域となる半導体層の一部を
遮光層で被覆して非受光部を形成し、この非受光部に形
成された接合容量および受光部の接合容量にて端子間容
量を構成して、有効発電領域となる受光部の微小面積に
対して、大きな端子間容量をとることによって静電気耐
圧を向上させる技術が提案されている(実開平1-139459
号公報等参照)。 【0005】 【従来技術の問題点】しかしながら、光電変換装置が小
型であれば、上述した対策を講じたとしても充分な静電
耐圧が得られないことがあるうえ、電気回路上同一のダ
イオード構造を有する半導体層を遮光層で覆う構成であ
るので、半導体層の光発電部と遮光部との閉回路におい
て、遮光部は光電流に対して順方向となり、この箇所が
光電流のリーク部分となることにより、発電効率が低下
し特性の劣化を招来するという問題があった。 【0006】 【目的】そこで、本発明は遮光層を有する光電変換装置
において、上記従来の諸問題を解消し、本来の静電気耐
圧を向上させるとともに、特性劣化を招来しない信頼性
の極めて高い光電変換装置を提供することを目的とす
る。 【0007】 【課題を解決するための手段】上記目的を達成するため
に、本発明の光電変換装置は、入射光が透過する絶縁基
体の主面上に、下面受光側に配設される透明電極層と上
面非受光側に配設される裏面電極層とで挟まれた半導体
層を2つ並設するとともに、前記2つの半導体層におけ
る一方の半導体層の受光側に遮光層を配設し、且つ前記
2つの半導体層を極性が互いに逆のダイオード構造とな
るように接続したことを特徴とする。 【0008】 【実施例】本発明に係る一実施例について図面に基づき
詳細に説明する。まず、図1に示す光電変換装置S1
は、例えばカメラ用フォトダイオードであり、外部光L
が透過する絶縁基体1の主面上に、下面受光側に配設さ
れる透明電極層と上面非受光側に配設される裏面電極層
とで挟まれた半導体層を2つ並設するとともに、これら
2つの半導体層における一方の半導体層の光入射側に遮
光層3を設け、さらに、2つの半導体層は極性が互いに
逆のダイオード構造となるように、半導体層の上下に配
設された電極層が接続されている。すなわち、入射光を
透過させる絶縁基体1の主面上に第1透明電極層2が積
層され、この第1透明電極層2上に所定形状にパターニ
ングされた遮光層3及び第2透明電極層4が積層されて
いる。ここで、第2透明電極層4は第1透明電極層2に
接続されているとともに、遮光層3を第1透明電極層2
で挟むようにして形成されている。また、第2透明電極
層4上には所定形状にパターニングされ2つの並設した
半導体層5a,5bがそれぞれ積層されている。さら
に、これら半導体層5a,5b上に裏面電極層6a(+
側),6b(−側)が積層され、第2透明電極層4には
裏面電極層6aが接続され、図2に示すように電気回路
上互いに逆方向のダイオード構造を有する半導体層5
a,5bが並列接続された構成となっており、半導体層
5aで発生した電力を検出することにより受光量を精確
にセンシングできるようになっている。 【0009】次に、上記光電変換装置S1の各層につい
て説明する。絶縁基体1は、厚さ0.4 〜1.1 mm程度の充
分に洗浄した周知のガラス基板などの透光性の絶縁体が
用いられるが、例えばガラス基板がアルカリ金属等の不
純物を多く含んだものでは、積層面側に酸化シリコン等
の絶縁膜を被着させ、絶縁基体1に積層させる層中への
不純物拡散を防止するとよい。 【0010】第1透明電極層2は、少なくとも後記する
遮光層3や第2透明電極層4との密着性などを向上させ
るために設けたものであって、本実施例では絶縁基体1
を500 ℃程度に加熱し、その上に例えば酸化スズやIT
O(酸化インジウム・スズ)等を主体とする材質のもの
をCVD法,スパッタ法,電子ビーム蒸着法,スプレー
法などの周知の成膜方法により厚さ600 〜4500Å程度に
被着している。 【0011】遮光層3は、例えばアルミニウム,ニッケ
ル,クロム,チタン,金,銀等の単体金属もしくはこれ
らの組合せからなる合金等を真空蒸着法などにより第1
透明電極層2上に少なくとも3000Å以上の厚さに被着し
ており、受光領域の不必要な拡大を防止する。なお、遮
光層3は第1透明電極層2の上に設ける代わりに絶縁基
体1のもう一方の主面側へ設けるようにしてもよく、要
は2つの並設した半導体層において一方の半導体層(半
導体層5b)の受光側を遮光できるようにすればよい。 【0012】第2透明電極層4は、上記第1透明電極層
2と同様な材質,方法で厚さ数百Å程度に形成される
が、これの材質は遮光層3と半導体層5a,5bとの両
者に相性のよいもので足り、これら両層との接着強度が
保たれ且つオーミック接触となっていればよく、必ずし
も第1透明電極層2と同一の材質でなくともよい。な
お、この層の膜質を向上させ、かつ半導体層5a,5b
の特性を損なわないように、膜質を向上させるフッ素の
ドープ層と半導体層5a,5bへのフッ素の拡散を防止
する非ドープ層との2層構造を成すように形成してもよ
い。 【0013】半導体層5a,5bは、第2透明電極層4
上にp−i−nの3層構造の水素化アモルファスシリコ
ン(以下、a−Si:Hと略記)で構成されており、こ
れら各層は周知の気相成長法により形成され、例えばプ
ラズマCVD法により以下のようにして形成される。す
なわち、p層は第2透明電極層4上に被着形成され、a
−Si:H形成用ガスであるシラン等に対して不純物ド
ープ用ガスであるジボラン等を所定の比率で混合して厚
さ約200 Å程度に形成する。i層はa−Si:H形成用
ガスのみにより厚さ約7000Å程度にp層上に形成し、さ
らにこの上にn層がa−Si:H形成用ガスに不純物ド
ープ用ガスであるホスフィン等を所定の比率で混合して
厚さ約500 Å程度に形成する。なお、半導体層5a,5
bはそれぞれアモルファスである必要はなく、またシリ
コンやp−i−nの3層構造に限定されるものではな
く、要は図2に示すように並設された半導体層5aと半
導体5bとが互いに電気回路上で逆方向のダイオード構
造を有し並列接続されていればよい。 【0014】裏面電極層6a,6bはそれぞれ遮光層3
と同様な材質,方法で厚さ約2500Å程度に半導体層5
a,5b上に被着形成される。ここで、陽極となる裏面
電極層6aは第2透明電極層4にも接触している。な
お、これら裏面電極層6a,6bは遮光層3と必ずしも
同一の材質でなくともよい。また、これら電極層間は半
導体層5a,5bのn層がエッチングされている。 【0015】このように、上記光電変換装置S1では遮
光層3を第1透明電極層2と第2透明電極層4とで挟ん
だ構造をとるので、半導体層5内に金属元素が拡散侵入
することにより欠陥凖位が生じて、発電効率を大幅に低
下させ特性劣化を招来するという問題を極力防止するこ
とができ、しかも第1透明電極層2は絶縁基体1と遮光
層3と馴染みがよいので、従来のように遮光層3が絶縁
基体1から剥離することがなく、信頼性の高いものを提
供することができる。 【0016】次に、上記光電変換装置S1の静電気耐圧
試験を行った結果について説明する。図3に示すよう
に、光電変換装置S1とコンデンサとをスイッチSWを
介して電圧計Vと並列接続し、±300V,200pFの静電気
を3度印加しても破壊に到ることがなく、特性の劣化も
生じなかった。これは、発電しない半導体層5b側、す
なわち逆方向並列回路側に印加電荷が流れる(順方向バ
イアスとなる)ことで、発電する受光部側の半導体層5
aに印加される静電荷が減少したためと考えられる。一
方、従来の順方向ダイオードを設けた光電変換装置では
最大の静電気耐圧でも±150V程度であった。なお、こ
の場合の受光部の面積は本発明および従来のもの共に数
mm2であった。 【0017】なお、上記光電変換装置S1をより特性向
上を図るために、第1透明電極層2と遮光層3との間に
光減衰層を設け、この光減衰層として例えばa−Si:
H層もしくは結晶質のc−Si層を用いることによっ
て、遮光層3の反射光をこの層により減衰させ、受光面
での外乱光が発生するのを防止し、光電変換装置S2の
明電流値の線形性を維持させるようにしてもよい。 【0018】また、上記光減衰層の半導体層を少なくと
も半導体層5bより欠陥凖位密度が大きい(例えば2 〜
3 桁程度) 層とすることにより、遮光層3と光減衰層と
のショットキーダイオード構造による光発電を防止し、
光減衰層で発生したキャリアが構造欠陥にトラップさ
せ、これを再結合中心にして消滅させて光電流を抑止
し、いっそう信頼性の高い光電変換装置を提供すること
もできる。ここで、光減衰層の具体例としては、a−S
i:Hのハイドープ層、すなわち不純物濃度を1 ラ104 p
pm 程度以上の層とするか、a−Si層とすることによ
って例えば欠陥凖位密度をa−Si:Hより 2〜3 桁程
度大きく(1ラ1014〜1016cm-3)させる。 【0019】なお、本実施例ではカメラ用フォトダイオ
ードについて示したが、ダイオード構造を有する光電変
換装置であれば適用が可能であり、例えばカラーセンサ
などの各種光センサに適用できる。また、実施例で示し
た半導体層は一例にすぎず周知のダイオード構造を採用
することができる。 【0020】 【発明の効果】以上説明したように、本発明の光電変換
装置によれば、入射光が透過する絶縁基体の主面上に、
下面受光側に配設される透明電極層と上面非受光側に配
設される裏面電極層とで挟まれた半導体層を2つ並設す
るとともに、これら2つの半導体層における一方の半導
体層の受光側に遮光層を配設し、且つ2つの半導体層を
極性が互いに逆のダイオード構造となるように接続した
ので、光電変換装置が小型であっても印加電荷を逃すこ
とができ、静電気耐圧を充分に向上させることができ、
さらに遮光層の剥離が生じにくい構成とすることができ
る。これにより、発電効率を低下させず特性劣化を招来
しない信頼性の極めて高い光電変換装置を提供すること
ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device such as a light receiving element, and more particularly to a photoelectric conversion device having a light shielding structure for improving electrostatic withstand voltage. 2. Description of the Related Art Conventionally, a photoelectric conversion device having a diode structure generally has a structure in which a transparent electrode layer, a semiconductor layer, a back electrode layer, and a resin protective layer are sequentially laminated on a translucent glass substrate. It is a target. Then, the semiconductor layer sandwiched between the transparent electrode layer and the back electrode layer generates electric power by the incident light transmitted through the glass substrate. This semiconductor layer also functions as a capacitor having a certain junction capacitance. When static electricity is applied to the output terminal of the photoelectric conversion device, a voltage inversely proportional to the capacitance between the terminals of the device is applied to the output terminal. However, if the photoelectric conversion device is, for example, a photodiode for a camera, it is effective. The power generation area is very small, and the capacitance between terminals is proportional to the area of the power generation area, so the electrostatic withstand voltage is extremely low, and it is easily destroyed by static electricity generated in the measurement process, mounting process, etc. There was a problem. Therefore, a non-light-receiving portion is formed by covering a part of the semiconductor layer serving as a power generation region with a light-shielding layer. A technology has been proposed to improve the electrostatic withstand voltage by forming a large inter-terminal capacitance with respect to a small area of the light receiving section which is an effective power generation area (Japanese Utility Model Application Laid-Open No. 1-139459).
Reference). [0005] However, if the photoelectric conversion device is small, sufficient electrostatic breakdown voltage may not be obtained even if the above measures are taken, and the same diode structure in the electric circuit may be obtained. In the closed circuit between the photovoltaic unit and the light-shielding unit of the semiconductor layer, the light-shielding unit is in the forward direction with respect to the photocurrent, and this portion is a part where the photocurrent leaks. As a result, there is a problem that the power generation efficiency is reduced and characteristics are deteriorated. Accordingly, the present invention is directed to a photoelectric conversion device having a light-shielding layer, which solves the above-mentioned conventional problems, improves the original electrostatic withstand voltage, and has extremely high reliability without causing deterioration in characteristics. It is intended to provide a device. In order to achieve the above object, a photoelectric conversion device according to the present invention is provided on a main surface of an insulating substrate through which incident light is transmitted, the transparent device being provided on a lower surface light receiving side. Two semiconductor layers sandwiched between an electrode layer and a back electrode layer disposed on the upper non-light receiving side are arranged in parallel, and a light shielding layer is disposed on the light receiving side of one of the two semiconductor layers. And the two semiconductor layers are connected so as to form a diode structure having polarities opposite to each other. An embodiment according to the present invention will be described in detail with reference to the drawings. First, the photoelectric conversion device S1 shown in FIG.
Is, for example, a photodiode for a camera, and external light L
Two semiconductor layers sandwiched between a transparent electrode layer disposed on the lower light-receiving side and a back electrode layer disposed on the upper non-light-receiving side are provided on the main surface of the insulating base 1 through which light passes. A light-shielding layer 3 is provided on the light incident side of one of the two semiconductor layers, and the two semiconductor layers are disposed above and below the semiconductor layers so as to have diode structures having polarities opposite to each other. The electrode layers are connected. That is, a first transparent electrode layer 2 is laminated on a main surface of an insulating substrate 1 that transmits incident light, and a light-shielding layer 3 and a second transparent electrode layer 4 patterned in a predetermined shape on the first transparent electrode layer 2. Are laminated. Here, the second transparent electrode layer 4 is connected to the first transparent electrode layer 2 and the light shielding layer 3 is connected to the first transparent electrode layer 2.
It is formed so as to be sandwiched between. On the second transparent electrode layer 4, two semiconductor layers 5a and 5b which are patterned in a predetermined shape and are arranged side by side are respectively laminated. Further, the back electrode layer 6a (+
2), 6b (-side) are laminated, the back surface electrode layer 6a is connected to the second transparent electrode layer 4, and the semiconductor layer 5 having a diode structure in the opposite direction on the electric circuit as shown in FIG.
a and 5b are connected in parallel, and the amount of received light can be accurately sensed by detecting the power generated in the semiconductor layer 5a. Next, each layer of the photoelectric conversion device S1 will be described. As the insulating substrate 1, a light-transmitting insulator such as a well-cleaned well-known glass substrate having a thickness of about 0.4 to 1.1 mm is used. For example, if the glass substrate contains many impurities such as alkali metals, It is preferable that an insulating film such as silicon oxide be deposited on the stacking surface side to prevent impurity diffusion into the layer to be stacked on the insulating base 1. The first transparent electrode layer 2 is provided to improve at least the adhesion to the light-shielding layer 3 and the second transparent electrode layer 4 described later.
Is heated to about 500 ° C, and then, for example, tin oxide or IT
A material mainly composed of O (indium tin oxide) or the like is applied to a thickness of about 600 to 4500 ° by a known film forming method such as a CVD method, a sputtering method, an electron beam evaporation method, and a spray method. The light-shielding layer 3 is made of, for example, a single metal such as aluminum, nickel, chromium, titanium, gold, and silver, or an alloy of a combination thereof by a vacuum deposition method or the like.
It is applied to the transparent electrode layer 2 so as to have a thickness of at least 3000 mm, thereby preventing unnecessary enlargement of the light receiving area. The light-shielding layer 3 may be provided on the other main surface side of the insulating base 1 instead of being provided on the first transparent electrode layer 2. In other words, one of the two side-by-side semiconductor layers The light receiving side of (semiconductor layer 5b) may be shielded from light. The second transparent electrode layer 4 is formed in the same material and method as the first transparent electrode layer 2 to have a thickness of about several hundreds of mm, and is made of a light shielding layer 3 and semiconductor layers 5a and 5b. It is only necessary that the material is compatible with both of them, and it is sufficient that the adhesive strength with both of these layers is maintained and an ohmic contact is made, and the material is not necessarily the same as that of the first transparent electrode layer 2. Note that the film quality of this layer is improved and the semiconductor layers 5a, 5b
May be formed so as to form a two-layer structure of a fluorine-doped layer for improving the film quality and an undoped layer for preventing diffusion of fluorine into the semiconductor layers 5a and 5b. The semiconductor layers 5a and 5b are formed on the second transparent electrode layer 4
The upper layer is made of hydrogenated amorphous silicon (hereinafter abbreviated as a-Si: H) having a three-layer structure of pin, and these layers are formed by a well-known vapor phase growth method, for example, a plasma CVD method. Is formed as follows. That is, the p layer is formed on the second transparent electrode layer 4,
-Si: An impurity doping gas such as diborane or the like is mixed at a predetermined ratio with silane or the like forming gas to form a film having a thickness of about 200 mm. The i-layer is formed on the p-layer to a thickness of about 7,000 ° using only a-Si: H forming gas, and an n-layer is further formed on the a-Si: H forming gas by phosphine or the like which is an impurity doping gas. Are mixed at a predetermined ratio to form a thickness of about 500 mm. The semiconductor layers 5a, 5
b does not need to be amorphous, and is not limited to the three-layer structure of silicon or pin. In short, the semiconductor layers 5a and 5b arranged side by side as shown in FIG. It suffices if they have opposite diode structures on the electric circuit and are connected in parallel. The back electrode layers 6a and 6b are respectively
The semiconductor layer 5 is formed to a thickness of about 2500 mm using the same material and method as described above.
a, 5b. Here, the back electrode layer 6 a serving as an anode is also in contact with the second transparent electrode layer 4. The back electrode layers 6a and 6b are not necessarily made of the same material as the light shielding layer 3. The n layers of the semiconductor layers 5a and 5b are etched between these electrode layers. As described above, the photoelectric conversion device S1 has a structure in which the light shielding layer 3 is sandwiched between the first transparent electrode layer 2 and the second transparent electrode layer 4, so that the metal element diffuses into the semiconductor layer 5. As a result, it is possible to prevent a problem that a defect level is generated, which greatly reduces power generation efficiency and causes characteristic deterioration, and that the first transparent electrode layer 2 is well compatible with the insulating substrate 1 and the light shielding layer 3. Therefore, unlike the conventional case, the light-shielding layer 3 does not peel off from the insulating base 1 and a highly reliable one can be provided. Next, the result of conducting an electrostatic withstand voltage test of the photoelectric conversion device S1 will be described. As shown in FIG. 3, a photoelectric conversion device S1 and a capacitor are connected in parallel with a voltmeter V via a switch SW, and even if static electricity of ± 300 V, 200 pF is applied three times, no destruction occurs, and the characteristics are not increased. No deterioration occurred. This is because the applied charge flows to the semiconductor layer 5b that does not generate power, that is, the reverse parallel circuit side (becomes a forward bias), so that the semiconductor layer 5 on the light receiving unit side that generates power
It is considered that the electrostatic charge applied to a decreased. On the other hand, in a conventional photoelectric conversion device provided with a forward diode, the maximum electrostatic withstand voltage is about ± 150 V. In this case, the area of the light receiving section is several in both the present invention and the conventional one.
It was mm 2. In order to further improve the characteristics of the photoelectric conversion device S1, a light-attenuating layer is provided between the first transparent electrode layer 2 and the light-shielding layer 3, and the light-attenuating layer may be, for example, a-Si:
By using the H layer or the crystalline c-Si layer, the reflected light of the light-shielding layer 3 is attenuated by this layer to prevent the generation of disturbance light on the light receiving surface, and the light current value of the photoelectric conversion device S2 is reduced. May be maintained. The semiconductor layer of the light attenuating layer has a defect level density higher than that of at least the semiconductor layer 5b (for example, 2 to 5).
(Approximately three digits) to prevent photovoltaic power generation due to the Schottky diode structure between the light shielding layer 3 and the light attenuation layer.
Carriers generated in the light attenuating layer are trapped by structural defects, and are eliminated by using the defects as centers of recombination to suppress a photocurrent, so that a more reliable photoelectric conversion device can be provided. Here, as a specific example of the light attenuation layer, aS
i: H-doped layer, that is, the impurity concentration is 1 p 104 p
For example, the defect level density is increased by about 2 to 3 orders of magnitude (1 × 10 14 to 10 16 cm −3 ) than that of a-Si: H by forming a layer of about pm or more or an a-Si layer. In this embodiment, a photodiode for a camera has been described. However, the present invention can be applied to any photoelectric conversion device having a diode structure, and can be applied to various optical sensors such as a color sensor. Further, the semiconductor layers shown in the embodiments are merely examples, and a well-known diode structure can be adopted. As described above, according to the photoelectric conversion device of the present invention, the main surface of the insulating substrate through which the incident light is transmitted,
Two semiconductor layers sandwiched between a transparent electrode layer disposed on the lower light receiving side and a back electrode layer disposed on the upper non-light receiving side are arranged side by side, and one of the two semiconductor layers is formed of one of the semiconductor layers. Since a light-blocking layer is provided on the light-receiving side and the two semiconductor layers are connected so as to form a diode structure having polarities opposite to each other, the applied charge can be released even if the photoelectric conversion device is small, and the electrostatic breakdown voltage can be reduced. Can be sufficiently improved,
Further, a structure in which peeling of the light-shielding layer hardly occurs can be achieved. This makes it possible to provide a highly reliable photoelectric conversion device that does not reduce power generation efficiency or cause deterioration in characteristics.

【図面の簡単な説明】 【図1】本発明に係る一実施例の光電変換装置の要部断
面図である。 【図2】半導体層の等価回路を示す図である。 【図3】静電気耐圧試験の電気回路を示す図である。 【符号の説明】 1:絶縁基体 2:第1透明電極層 3:遮光層 4:第2透明電極層 5a,5b:半導体層 6a,6b:裏面電極層 S1:光電変換装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a main part of a photoelectric conversion device according to one embodiment of the present invention. FIG. 2 is a diagram showing an equivalent circuit of a semiconductor layer. FIG. 3 is a diagram showing an electric circuit of an electrostatic withstand voltage test. DESCRIPTION OF SYMBOLS 1: Insulating base 2: First transparent electrode layer 3: Light shielding layer 4: Second transparent electrode layers 5a, 5b: Semiconductor layers 6a, 6b: Back electrode layer S1: Photoelectric conversion device

Claims (1)

(57)【特許請求の範囲】 【請求項1】 入射光が透過する絶縁基体の主面上に、
下面受光側に配設される透明電極層と上面非受光側に配
設される裏面電極層とで挟まれた半導体層を2つ並設す
るとともに、前記2つの半導体層における一方の半導体
層の受光側に遮光層を配設し、且つ前記2つの半導体層
を極性が互いに逆のダイオード構造となるように接続し
たことを特徴とする光電変換装置。
(57) [Claim 1] On the main surface of an insulating base through which incident light passes,
Two semiconductor layers sandwiched between a transparent electrode layer disposed on the lower light receiving side and a back electrode layer disposed on the upper non-light receiving side are arranged in parallel, and one of the two semiconductor layers is formed of one of the semiconductor layers. A photoelectric conversion device, wherein a light-shielding layer is provided on a light-receiving side, and the two semiconductor layers are connected to form a diode structure having polarities opposite to each other.
JP01675992A 1992-01-31 1992-01-31 Photoelectric conversion device Expired - Fee Related JP3398161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01675992A JP3398161B2 (en) 1992-01-31 1992-01-31 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01675992A JP3398161B2 (en) 1992-01-31 1992-01-31 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPH05218486A JPH05218486A (en) 1993-08-27
JP3398161B2 true JP3398161B2 (en) 2003-04-21

Family

ID=11925165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01675992A Expired - Fee Related JP3398161B2 (en) 1992-01-31 1992-01-31 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP3398161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492028B2 (en) 2005-02-18 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method of the same, and a semiconductor device
JP4532418B2 (en) * 2005-02-18 2010-08-25 株式会社半導体エネルギー研究所 Optical sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05218486A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US4281208A (en) Photovoltaic device and method of manufacturing thereof
US8362354B2 (en) Photovoltaic apparatus and method of manufacturing the same
KR930020751A (en) Fin diode
JP2986875B2 (en) Integrated solar cell
US4698658A (en) Amorphous semiconductor device
JPH0671097B2 (en) Color sensor
US4507519A (en) Photoelectronic conversion device
JP3398161B2 (en) Photoelectric conversion device
US5035753A (en) Photoelectric conversion device
JPH04153623A (en) Wiring structure
JPH05218483A (en) Photoelectric conversion device
EP0310353A2 (en) High gain thin film sensor
JPH05145095A (en) Photovoltaic element
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP2883370B2 (en) Photovoltaic device
JP2889963B2 (en) Contact image sensor
JP3450880B2 (en) Photodiode for camera
JPH0323679A (en) Photoelectric transducer
EP0601200A1 (en) Semiconductor device
JPH05291607A (en) Pin diode and contact image sensor using it
JPH02148773A (en) Optical sensor
JPH11177109A (en) Solar battery
JPH0235783A (en) Photosensor
JPH05114748A (en) Method of manufacturing photovoltaic device
JPS6235681A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees