JPH05218483A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH05218483A
JPH05218483A JP4016758A JP1675892A JPH05218483A JP H05218483 A JPH05218483 A JP H05218483A JP 4016758 A JP4016758 A JP 4016758A JP 1675892 A JP1675892 A JP 1675892A JP H05218483 A JPH05218483 A JP H05218483A
Authority
JP
Japan
Prior art keywords
layer
light
photoelectric conversion
conversion device
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4016758A
Other languages
Japanese (ja)
Inventor
Kouichirou Shinraku
浩一郎 新楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4016758A priority Critical patent/JPH05218483A/en
Publication of JPH05218483A publication Critical patent/JPH05218483A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photoelectric conversion device which is very excellent in reliability keeping high in dielectric breakdown strength without deteriorating in characteristics. CONSTITUTION:A first transparent electrode layer 2, a light shading layer 3, a second transparent electrode layer 4, and back electrode layers 6a and 6b are successively laminated on the rear of an insulating base 1 which transmits incident light, and a non-light receiving part is provided onto a semiconductor layer 5 with the light shading layer 3. A layer of two-layered structure composed of a light attenuating layer of semiconductor smaller than the semiconductor layer 5 in forbidden band width and a metal layer may be made to serve as a light shading layer, or the light attenuating layer may be set larger than the semiconductor layer 5 in defect density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受光素子等の光電変換
装置において、特に静電耐圧を向上させるための遮光構
造を有した光電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device such as a light receiving element, and more particularly to a photoelectric conversion device having a light shielding structure for improving electrostatic withstand voltage.

【0002】[0002]

【従来の技術】従来よりダイオード構造を有する光電変
換装置は、透光性のガラス基板上に透明電極層、半導体
層、裏面電極層、及び樹脂保護層が順次積層された構造
が一般的である。そして、ガラス基板を透過した入射光
により、透明電極層と裏面電極層とで挟まれた半導体層
が発電する。またこの半導体層はある接合容量を有する
キャパシタとしても作用する。
2. Description of the Related Art Conventionally, a photoelectric conversion device having a diode structure generally has a structure in which a transparent electrode layer, a semiconductor layer, a back electrode layer, and a resin protective layer are sequentially laminated on a translucent glass substrate. .. Then, the incident light transmitted through the glass substrate causes the semiconductor layer sandwiched between the transparent electrode layer and the back electrode layer to generate power. This semiconductor layer also acts as a capacitor having a certain junction capacitance.

【0003】ところで、光電変換装置の出力端子に静電
気が印加された場合に、装置の端子間容量に反比例した
電圧が出力端子にかかるが、光電変換装置が例えばカメ
ラ用フォトダイオードであれば、有効な発電領域が微小
であり、端子間容量が発電領域の面積に比例するような
構成となっているので静電気耐圧が著しく低く、測定工
程や実装工程などにおいて静電気により容易に破壊され
ることがあり問題であった。
By the way, when static electricity is applied to the output terminal of the photoelectric conversion device, a voltage inversely proportional to the inter-terminal capacitance of the device is applied to the output terminal. However, if the photoelectric conversion device is a camera photodiode, for example, it is effective. Since the power generation area is very small and the inter-terminal capacitance is proportional to the area of the power generation area, the electrostatic withstand voltage is extremely low and it may be easily destroyed by static electricity in the measurement process and mounting process. It was a problem.

【0004】そこで、発電領域となる半導体層の一部を
遮光層で被覆して非受光部を形成し、この非受光部に形
成された接合容量および受光部の接合容量にて端子間容
量を構成して、有効発電領域となる受光部の微小面積に
対して、大きな端子間容量をとることによって静電気耐
圧を向上させる技術が提案されている(実開平1-139459
号公報等参照)。
Therefore, a non-light-receiving portion is formed by covering a part of the semiconductor layer serving as a power generation region with a light-shielding layer, and the inter-terminal capacitance is determined by the junction capacitance formed in this non-light-receiving portion and the junction capacitance of the light-receiving portion. A technology has been proposed that improves electrostatic withstand voltage by configuring a large inter-terminal capacitance with respect to a very small area of the light receiving portion that is an effective power generation area (Actual Kaihei 1-139459).
No.

【0005】[0005]

【従来技術の問題点】しかしながら、上記従来の光電変
換装置は遮光層として反射率の高い金属層を用い、この
金属層上に光発電を行う半導体層が位置しているもので
あって、このような光電変換装置では金属層の形成後に
半導体層を直接積層することになるために、半導体層に
金属層の構成元素が拡散し、半導体層の禁制帯幅中に不
純物に基づく欠陥凖位を発生させ、光励起された電子及
び正孔がこの凖位にトラップされたり、この凖位を介し
て励起された電子及び正孔が再結合して消滅するなどし
て発電効率の低下を招来し、ひいては光電変換装置の特
性劣化につながるという問題が生じる。
However, in the above-mentioned conventional photoelectric conversion device, a metal layer having a high reflectance is used as a light-shielding layer, and a semiconductor layer for photovoltaic power generation is located on the metal layer. In such a photoelectric conversion device, since the semiconductor layer is directly laminated after the formation of the metal layer, the constituent elements of the metal layer are diffused in the semiconductor layer, and the defect level due to impurities is generated in the forbidden band width of the semiconductor layer. Generated, the photoexcited electrons and holes are trapped in this step, or the electrons and holes excited through this step recombine and disappear, leading to a decrease in power generation efficiency, As a result, there arises a problem that the characteristics of the photoelectric conversion device are deteriorated.

【0006】また、遮光層が金属層のみであると、遮光
層の反射面で反射された光が通過する基板側の層内で多
重反射を起こし、その反射光の一部が基板の受光面にま
で到達することがあり、その外乱光により光電変換装置
の受光量に対する明電流の線形性に悪影響を及ぼし、た
とえ静電気耐圧を向上させることができても光電変換装
置としての特性を劣化させることになり問題である。
If the light-shielding layer is only a metal layer, multiple reflection occurs in the layer on the substrate side through which the light reflected by the light-reflecting surface of the light-shielding layer passes, and part of the reflected light is the light-receiving surface of the substrate. The ambient light adversely affects the linearity of the bright current with respect to the amount of light received by the photoelectric conversion device, and deteriorates the characteristics of the photoelectric conversion device even if the electrostatic withstand voltage can be improved. It is a problem.

【0007】さらに、基板上に金属層を形成させる場
合、基板と金属層との熱膨張率などの相違により両者の
密着性が問題となることがあり、基板から金属層が剥離
するなどして光電変換装置としての信頼性に欠けるとい
う問題を有していた。
Further, when a metal layer is formed on a substrate, the adhesion between the substrate and the metal layer may be a problem due to the difference in the coefficient of thermal expansion between the substrate and the metal layer. There is a problem that the photoelectric conversion device lacks reliability.

【0008】[0008]

【目的】そこで、本発明は遮光層を有する光電変換装置
において、上記従来の諸問題を解消し、本来の静電気耐
圧を維持しながら特性劣化を招来しない信頼性の極めて
高い光電変換装置を提供することを目的とする。
[Object] Accordingly, the present invention provides a photoelectric conversion device having a light-shielding layer, which solves the above-mentioned problems of the related art and has an extremely high reliability that does not cause characteristic deterioration while maintaining the original electrostatic breakdown voltage. The purpose is to

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光電変換装置は、入射光が透過する絶縁基
体の裏面上に第1透明電極層、遮光層、第2透明電極
層、半導体層及び裏面電極層を順次積層し、前記遮光層
でもって前記半導体層に非受光部を形成したことを特徴
とする。
In order to achieve the above object, the photoelectric conversion device of the present invention comprises a first transparent electrode layer, a light shielding layer and a second transparent electrode layer on the back surface of an insulating substrate through which incident light is transmitted. The semiconductor layer and the back electrode layer are sequentially laminated, and the non-light-receiving portion is formed in the semiconductor layer by the light shielding layer.

【0010】また、遮光層を前記半導体層より禁制体幅
が小さい半導体から成る光減衰層と金属層との2層構造
としてもよく、さらにこの光減衰層を前記半導体層より
欠陥密度を大きくする構成としてもよい。
The light-shielding layer may have a two-layer structure of a light attenuating layer made of a semiconductor having a forbidden body width smaller than that of the semiconductor layer and a metal layer, and the light attenuating layer has a higher defect density than the semiconductor layer. It may be configured.

【0011】[0011]

【実施例】本発明に係る実施例について図面に基づき詳
細に説明する。 <第1実施例>まず、図1に示す光電変換装置S1は、
例えばカメラ用フォトダイオードであり、外部光Lを受
光する透光性の絶縁基体1の上に第1透明電極層2が積
層され、さらにこの第1透明電極層2上に所定形状にパ
ターニングされた遮光層3及び第2透明電極層4が積層
されている。ここで、第2透明電極層4は第1透明電極
層2に接続されているとともに、遮光層3を第1透明電
極層2で挟むようにして形成されている。また、第2透
明電極層4上には所定形状にパターニングされた半導体
層5が積層されており、さらにこの半導体層5上に裏面
電極層6a,6bが積層され、第2透明電極層4には裏
面電極層6aが接続されている。このように構成された
光電変換装置S1は、半導体層5で発生した電力を検出
することにより受光量を精確にセンシングできる。
Embodiments of the present invention will be described in detail with reference to the drawings. <First Embodiment> First, the photoelectric conversion device S1 shown in FIG.
For example, it is a photodiode for a camera, in which a first transparent electrode layer 2 is laminated on a translucent insulating substrate 1 which receives the external light L, and is further patterned on the first transparent electrode layer 2 into a predetermined shape. The light shielding layer 3 and the second transparent electrode layer 4 are laminated. Here, the second transparent electrode layer 4 is connected to the first transparent electrode layer 2 and is formed so as to sandwich the light shielding layer 3 between the first transparent electrode layers 2. Further, a semiconductor layer 5 patterned into a predetermined shape is laminated on the second transparent electrode layer 4, and back electrode layers 6a and 6b are further laminated on the semiconductor layer 5 to form a second transparent electrode layer 4 on the second transparent electrode layer 4. Is connected to the back electrode layer 6a. The photoelectric conversion device S1 thus configured can accurately sense the amount of received light by detecting the power generated in the semiconductor layer 5.

【0012】次に、上記光電変換装置S1の各層につい
て説明する。絶縁基体1は、厚さ0.4 〜1.1 mm程度の充
分に洗浄した周知のガラス基板などの透光性の絶縁体が
用いられるが、例えばガラス基板がアルカリ金属等の不
純物を多く含んだものでは、積層面側に酸化シリコン等
の絶縁膜を被着させ、絶縁基体1に積層させる層中へ不
純物が拡散するのを防止するとよい。
Next, each layer of the photoelectric conversion device S1 will be described. As the insulating substrate 1, a transparent insulator such as a well-cleaned well-known glass substrate having a thickness of about 0.4 to 1.1 mm is used. For example, when the glass substrate contains a large amount of impurities such as alkali metal, It is preferable that an insulating film such as silicon oxide is deposited on the laminated surface side to prevent impurities from diffusing into the layer laminated on the insulating substrate 1.

【0013】第1透明電極層2は、少なくとも後記する
遮光層3や第2透明電極層との密着性などを向上させる
ために設けたものであって、本実施例では絶縁基体1を
500℃程度に加熱し、その上に例えば酸化スズやITO
(酸化インジウム・スズ)等を主体とする材質のものを
CVD法,スパッタ法,電子ビーム蒸着法,スプレー法
などの周知の成膜方法により厚さ600 〜4500Å程度に被
着している。
The first transparent electrode layer 2 is provided to improve at least the adhesion to the light shielding layer 3 and the second transparent electrode layer described later. In this embodiment, the insulating substrate 1 is used.
It is heated to about 500 ℃ and tin oxide or ITO is applied on top of it.
A material mainly composed of (indium tin oxide) or the like is deposited to a thickness of about 600 to 4500Å by a well-known film forming method such as a CVD method, a sputtering method, an electron beam evaporation method, or a spray method.

【0014】遮光層3は、例えばアルミニウム,ニッケ
ル,クロム,チタン,金,銀等の単体金属もしくはこれ
らの組合せからなる合金等を真空蒸着法などにより第1
透明電極層2上に少なくとも3000Å以上の厚さに被着し
ており、受光領域の不必要な拡大を防止する。
The light-shielding layer 3 is made of, for example, a single metal such as aluminum, nickel, chromium, titanium, gold or silver, or an alloy of a combination thereof, which is formed by a vacuum deposition method or the like.
The transparent electrode layer 2 is deposited to a thickness of at least 3000 Å or more to prevent unnecessary expansion of the light receiving area.

【0015】第2透明電極層4は、上記第1透明電極層
2と同様な材質, 方法で厚さ数百Å程度に形成される
が、これの材質は遮光層3と半導体層5との両者に相性
のよいもの、すなわち、これら両層との接着強度が保た
れ且つオーミック接触となっている必要があり、必ずし
も第1透明電極層2と同一の材質でなくともよい。な
お、この層の膜質を向上させ、かつ半導体層5の特性を
損なわないように、膜質を向上させるフッ素のドープ層
と半導体層5へのフッ素の拡散を防止する非ドープ層と
の2層構造を成すように形成してもよい。
The second transparent electrode layer 4 is formed with the same material and method as the first transparent electrode layer 2 to have a thickness of about several hundred Å. The material is the same as that of the light shielding layer 3 and the semiconductor layer 5. It is necessary that they are compatible with each other, that is, it is necessary to maintain the adhesive strength with both of these layers and make ohmic contact, and the material is not necessarily the same as that of the first transparent electrode layer 2. A two-layer structure of a fluorine-doped layer that improves the film quality and a non-doped layer that prevents the diffusion of fluorine into the semiconductor layer 5 so as not to impair the characteristics of the semiconductor layer 5 is obtained. You may form so that it may be formed.

【0016】半導体層5は、第2透明電極層4上にp−
i−nの3層構造の水素化アモルファスシリコン(以
下、a−Si:Hと略記)で構成されており、これら各
層は周知の気相成長法により形成され、例えばプラズマ
CVD法により以下のようにして形成される。すなわ
ち、p層は第2透明電極層4上に被着形成され、a−S
i:H形成用ガスであるシラン等に対して不純物ドープ
用ガスであるジボラン等を所定の比率で混合して厚さ約
200 Å程度に形成する。i層はa−Si:H形成用ガス
のみにより厚さ約7000Å程度にp層上に形成し、さらに
この上にn層がa−Si:H形成用ガスに不純物ドープ
用ガスであるホスフィン等を所定の比率で混合して厚さ
約500 Å程度に形成する。
The semiconductor layer 5 is formed on the second transparent electrode layer 4 by p-.
It is composed of hydrogenated amorphous silicon (hereinafter abbreviated as a-Si: H) having a three-layer structure of in, and each of these layers is formed by a well-known vapor phase growth method. Is formed. That is, the p layer is deposited on the second transparent electrode layer 4, and
i: H-forming gas such as silane is mixed with impurity doping gas such as diborane at a predetermined ratio to have a thickness of about
Form around 200Å. The i layer is formed only on the a-Si: H forming gas to a thickness of about 7,000 Å on the p layer, and the n layer is formed on the i layer by phosphine, which is a gas for doping the a-Si: H forming gas with impurities. Are mixed at a predetermined ratio to form a thickness of about 500Å.

【0017】裏面電極層6a,6bはそれぞれ遮光層3
と同様な材質,方法で厚さ約2500Å程度に半導体層5上
に被着形成される。ここで、陽極となる裏面電極層6a
は第2透明電極層4にも接触している。なお、これら裏
面電極層6a,6bは遮光層3と必ずしも同一の材質で
なくともよい。なお、これら電極間の半導体層5はn層
がエッチングされている。
The back electrode layers 6a and 6b are respectively the light shielding layer 3
The same material and method as described above are deposited on the semiconductor layer 5 to a thickness of about 2500 Å. Here, the back surface electrode layer 6a serving as an anode
Are also in contact with the second transparent electrode layer 4. The back electrode layers 6a and 6b are not necessarily made of the same material as the light shielding layer 3. The semiconductor layer 5 between these electrodes has an n layer etched.

【0018】上記光電変換装置S1では、遮光層3を第
1透明電極層2と第2透明電極層4とで挟んだ構造をと
るので、半導体層5内に金属元素が拡散侵入することに
より欠陥凖位が生じて、発電効率を大幅に低下させ特性
劣化を招来するという問題を極力防止することができ、
しかも第1透明電極層2は絶縁基体1と遮光層3と馴染
みがよいので、従来のように遮光層3が絶縁基体1から
剥離することがなく、信頼性の高いものを提供すること
ができる。
Since the photoelectric conversion device S1 has a structure in which the light-shielding layer 3 is sandwiched between the first transparent electrode layer 2 and the second transparent electrode layer 4, a defect is caused by the metal element diffusing and penetrating into the semiconductor layer 5. It is possible to prevent as much as possible the problem that the tilting occurs, the power generation efficiency is significantly reduced, and the characteristics are deteriorated.
Moreover, since the first transparent electrode layer 2 is well compatible with the insulating substrate 1 and the light shielding layer 3, the light shielding layer 3 is not separated from the insulating substrate 1 as in the conventional case, and a highly reliable one can be provided. ..

【0019】<第2実施例>次に、図2に示すように、
第2実施例の光電変換装置S2は、第1実施例の光電変
換装置S1の第1透明電極層2と遮光層3との間に光減
衰層7を設けたものであって、光減衰層7としてa−S
i:H層もしくは結晶質のc−Si層を用いることによ
って、遮光層3の反射光をこの層により減衰させ、受光
面での外乱光が発生するのを防止し、光電変換装置S2
の明電流値の線形性を維持することができる。なお、上
記減衰の程度は光吸収係数で 1×10-5cm -1 以上であ
り、この膜厚は数百Å以上であればよい。また、光減衰
層7の成膜は半導体層5のi層の形成と同様であるが、
完全な結晶層とさせるにはレーザーアニールやエピタキ
シャル成長によってこれを実現させる。また、この層の
禁止帯幅は発電部である半導体層5の感度波長の光を吸
収、消費させるために、少なくとも半導体層5の禁止帯
幅以下である必要があるが、そのためには、半導体層5
の結晶化以外にa−Si:Ge:Hを用いる方法があ
る。また、局在凖位密度(欠陥凖位密度)の高い非水素
化アモルファスシリコン(a−Si)を用いてもよい。
また、この材質はシリコン系に限定するものではなく各
種半導体を用いることができる。
<Second Embodiment> Next, as shown in FIG.
The photoelectric conversion device S2 of the second embodiment is one in which the light attenuation layer 7 is provided between the first transparent electrode layer 2 and the light shielding layer 3 of the photoelectric conversion device S1 of the first embodiment. A-S as 7
By using the i: H layer or the crystalline c-Si layer, the reflected light of the light-shielding layer 3 is attenuated by this layer to prevent the occurrence of ambient light on the light-receiving surface, and the photoelectric conversion device S2
The linearity of the bright current value can be maintained. The degree of attenuation is 1 × 10 −5 cm −1 or more in light absorption coefficient, and the film thickness may be several hundred Å or more. Further, the film formation of the light attenuation layer 7 is similar to the formation of the i layer of the semiconductor layer 5,
This is achieved by laser annealing or epitaxial growth to obtain a complete crystal layer. In addition, the bandgap of this layer must be at least equal to or less than the bandgap of the semiconductor layer 5 in order to absorb and consume light of the sensitivity wavelength of the semiconductor layer 5 which is the power generation part. Layer 5
There is a method of using a-Si: Ge: H other than the crystallization of. Alternatively, non-hydrogenated amorphous silicon (a-Si) having a high localized density of defects (defect density) may be used.
Further, this material is not limited to the silicon type, and various semiconductors can be used.

【0020】<第3実施例>次に、本発明に係る第3実
施例について説明する。第3実施例の光電変換装置S3
は図2の光減衰層7の半導体層を少なくとも半導体層5
より欠陥凖位密度が大きい(例えば2 〜3 桁程度) 層8
とすることにより、遮光層3と光減衰層8とのショット
キーダイオード構造による光発電を防止し、光減衰層8
で発生したキャリアが構造欠陥にトラップされ、これを
再結合中心にして消滅させて光電流を抑止し、第2実施
例よりいっそう信頼性の高い光電変換装置を提供するこ
とができる。
<Third Embodiment> Next, a third embodiment of the present invention will be described. Photoelectric conversion device S3 of the third embodiment
Is at least the semiconductor layer of the light attenuation layer 7 of FIG.
Layer 8 with a higher defect density (for example, 2 to 3 digits)
By doing so, the photovoltaic layer 3 and the light attenuating layer 8 prevent the photovoltaic power generation due to the Schottky diode structure, and the light attenuating layer 8
The carriers generated in (1) are trapped in the structural defects and are eliminated by using them as recombination centers to suppress the photocurrent, so that it is possible to provide a more reliable photoelectric conversion device than the second embodiment.

【0021】この光減衰層8の具体例としては、a−S
i:Hのハイドープ層、すなわち不純物濃度を1 ×104
ppm 程度以上とするか、a−Si層とすることによって
例えば欠陥凖位密度をa−Si:Hより 2〜3 桁程度大
きく(1×1014〜1016cm -3 )することによってこれを実
現させる。
A specific example of the light attenuation layer 8 is aS
i: H highly doped layer, that is, an impurity concentration of 1 × 10 4
The density of defects is increased by about 2 to 3 orders of magnitude (1 × 10 14 to 10 16 cm −3 ) from that of a-Si: H, for example, by setting it to about ppm or more or by forming an a-Si layer. make it happen.

【0022】なお、上述の実施例においてはカメラ用フ
ォトダイオードの例について示したが、例えばカラーセ
ンサなどのダイオード構造を有する各種の光電変換装置
に適用が可能である。また、半導体層についても上述の
実施例は一例にすぎず周知の構造を採用することができ
る。
In the above-mentioned embodiments, the example of the photodiode for the camera is shown, but it can be applied to various photoelectric conversion devices having a diode structure such as a color sensor. Also, regarding the semiconductor layer, the above-mentioned embodiment is only an example, and a well-known structure can be adopted.

【0023】[0023]

【発明の効果】以上説明したように、本発明の光電変換
装置によれば、遮光層を第2透明電極層と透明電極層と
で挟む構造としたので、有効発電領域となる受光面が小
さくても本来の発電特性を維持することができ、素子特
性の劣化を防止することができる。
As described above, according to the photoelectric conversion device of the present invention, since the light-shielding layer is sandwiched between the second transparent electrode layer and the transparent electrode layer, the light-receiving surface serving as an effective power generation region is small. However, it is possible to maintain the original power generation characteristics and prevent deterioration of element characteristics.

【0024】また、遮光層の反射を減衰する層を設ける
ことにより、光電変換装置の照度に対する明電流値の線
形特性を維持することができる。
Further, by providing the layer for attenuating the reflection of the light shielding layer, the linear characteristic of the bright current value with respect to the illuminance of the photoelectric conversion device can be maintained.

【0025】さらに、上記減衰層を欠陥凖位密度の大き
い層とすることで遮光層での光電流を消滅させることが
でき、いっそう信頼性の高い光電変換装置を提供でき
る。
Furthermore, by making the attenuation layer a layer having a high defect density, the photocurrent in the light-shielding layer can be extinguished, and a more reliable photoelectric conversion device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光電変換装置の第1実施例を示す
要部断面図である。
FIG. 1 is a cross-sectional view of essential parts showing a first embodiment of a photoelectric conversion device according to the present invention.

【図2】本発明に係る光電変換装置の第2及び第3実施
例を示す要部断面図である。
FIG. 2 is a cross-sectional view of essential parts showing second and third embodiments of the photoelectric conversion device according to the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・ 絶縁基体 2 ・・・ 第1透
明電極層 3 ・・・ 遮光層 4 ・・・ 第2透
明電極層 5 ・・・ 半導体層 6 ・・・ 裏面電
極層 7,8 ・・・ 光減衰層 S1,S2,S3 ・・・ 光電変換装置
1 ... Insulating substrate 2 ... First transparent electrode layer 3 ... Light-shielding layer 4 ... Second transparent electrode layer 5 ... Semiconductor layer 6 ... Back electrode layer 7, 8 ... Light Attenuation layer S1, S2, S3 ... Photoelectric conversion device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入射光が透過する絶縁基体の裏面上に第
1透明電極層、遮光層、第2透明電極層、半導体層及び
裏面電極層を順次積層し、前記遮光層でもって前記半導
体層に非受光部を形成したことを特徴とする光電変換装
置。
1. A first transparent electrode layer, a light shielding layer, a second transparent electrode layer, a semiconductor layer and a back surface electrode layer are sequentially laminated on the back surface of an insulating substrate through which incident light is transmitted, and the semiconductor layer is formed by the light shielding layer. A photoelectric conversion device, characterized in that a non-light-receiving portion is formed on the.
【請求項2】 前記遮光層を前記半導体層より禁制帯幅
が小さい半導体から成る光減衰層と該光減衰層上に積層
した金属層との2層構造としたことを特徴とする請求項
1に記載の光電変換装置。
2. The light-shielding layer has a two-layer structure including a light-attenuating layer made of a semiconductor having a band gap smaller than that of the semiconductor layer and a metal layer laminated on the light-attenuating layer. The photoelectric conversion device described in 1.
【請求項3】 前記光減衰層を前記半導体層より欠陥凖
位密度を大きくしたことを特徴とする請求項2に記載の
光電変換装置。
3. The photoelectric conversion device according to claim 2, wherein the light attenuation layer has a defect density higher than that of the semiconductor layer.
JP4016758A 1992-01-31 1992-01-31 Photoelectric conversion device Pending JPH05218483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016758A JPH05218483A (en) 1992-01-31 1992-01-31 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016758A JPH05218483A (en) 1992-01-31 1992-01-31 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH05218483A true JPH05218483A (en) 1993-08-27

Family

ID=11925139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016758A Pending JPH05218483A (en) 1992-01-31 1992-01-31 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH05218483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319032A (en) * 2005-05-11 2006-11-24 Nec Lcd Technologies Ltd Laminated diode, diode unit, and its manufacturing method
US7538482B2 (en) * 2005-10-25 2009-05-26 Au Optronics Corp. Flat display panel and black matrix thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319032A (en) * 2005-05-11 2006-11-24 Nec Lcd Technologies Ltd Laminated diode, diode unit, and its manufacturing method
US7538482B2 (en) * 2005-10-25 2009-05-26 Au Optronics Corp. Flat display panel and black matrix thereof

Similar Documents

Publication Publication Date Title
US4281208A (en) Photovoltaic device and method of manufacturing thereof
US4772335A (en) Photovoltaic device responsive to ultraviolet radiation
US20090014064A1 (en) Photovoltaic apparatus and method of manufacturing the same
JPS59143362A (en) Passivation film
US4781765A (en) Photovoltaic device
JPH0793451B2 (en) Multi-junction amorphous silicon solar cell
US4507519A (en) Photoelectronic conversion device
WO1989003593A1 (en) Low noise photodetection and photodetector therefor
JPH05218483A (en) Photoelectric conversion device
JP3342257B2 (en) Photovoltaic element
JPH0945946A (en) Solar cell and fabrication thereof
JP3398161B2 (en) Photoelectric conversion device
JP2717015B2 (en) Color sensor
JPS6193678A (en) Photoelectric conversion device
US5458695A (en) Solar cell and process for fabricating the same
JP2952906B2 (en) Photodiode
JPH09181343A (en) Photoelectric conversion device
JPH09181347A (en) Photoelectric converter
JP2994716B2 (en) Photovoltaic device
JPH0323679A (en) Photoelectric transducer
JPH0673371B2 (en) Solid-state image sensor
JPH05291607A (en) Pin diode and contact image sensor using it
JPH08153888A (en) Photoelectric converter and optical sensor employing it
JPS59172783A (en) Photosensor
JP2869178B2 (en) Photovoltaic device