JPS62293760A - Static memory - Google Patents

Static memory

Info

Publication number
JPS62293760A
JPS62293760A JP61138503A JP13850386A JPS62293760A JP S62293760 A JPS62293760 A JP S62293760A JP 61138503 A JP61138503 A JP 61138503A JP 13850386 A JP13850386 A JP 13850386A JP S62293760 A JPS62293760 A JP S62293760A
Authority
JP
Japan
Prior art keywords
well
bipolar transistor
gate electrode
gate
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61138503A
Other languages
Japanese (ja)
Inventor
Takeya Ezaki
豪弥 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61138503A priority Critical patent/JPS62293760A/en
Publication of JPS62293760A publication Critical patent/JPS62293760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Static Random-Access Memory (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve integrity by a method wherein an MOS-FET and a bipolar transistor are formed in series in a same well and a lateral transistor is employed as the bipolar transistor. CONSTITUTION:Surface inversion layers 61 and 62 are induced in the surface of a P-type well 2 directly under respective electrodes by applying positive potential to gate electrodes 41 and 42. 2nd diffused layer 52 is grounded and used as an emitter, the P-type well 2 is used as a base and 1st diffused layer 51 is, together with the inversion layer 62, used as a collector to constitute a bipolar transistor 200. On the other hand, the 1st gate electrode 41, the 1st diffused layer 51 and 3rd diffused layer 53 are used as a gate, a source and a drain respectively to constitute an MOSFET 100. With this constitution, the memory operation can be performed only by two transistors in the same well so that the integrity two times of the integrity of the conventional constitution can be obtained. 1: N-type substrate, 3: gate insulating film, 7: switching transistor, B: word line, 9: bit line, 10: oxide film side wall.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は電源が印加されていれば情報を再生することな
く保持できるスタティックメモリーに関するものである
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a static memory that can retain information without being reproduced as long as power is applied.

従来の技術 スタティックメモリーは従来2ケのMO3FII:Tと
2ケの負荷抵抗あるいは2ケのnおよび2ケのpチャネ
ルMO3FICT  から成っていた。ダイナミックメ
モリーはこれに対してコンデンサ1ケで記憶するため、
スタティックメモリーの集積度はダイナミックメモリー
の4分の1の集積度で推移してきており、1ビット当り
の単位も高かった。
Prior art static memories traditionally consisted of two MO3FII:Ts and two load resistors or two n-channel and two p-channel MO3FICTs. Dynamic memory, on the other hand, uses a single capacitor to store data, so
The density of static memory has been one-fourth that of dynamic memory, and the unit per bit has also been high.

発明が解決しようとする問題点 従来のスタティックメモリーは素子数が多く、すなわち
集積度が低いという問題点を有していた。
Problems to be Solved by the Invention Conventional static memories have a problem of a large number of elements, that is, a low degree of integration.

本発明はこの点を解決しようとするものである。The present invention seeks to solve this problem.

問題点を解決するための手段 集積度の向上のため、同一ウェル内にMOSFETとバ
イポーラトランジスタを直列に形成し、バイポーラトラ
ンジスタとしては横型(ラテラル)を用いることで製造
の簡略化を図る。
Means for Solving the Problems In order to improve the degree of integration, a MOSFET and a bipolar transistor are formed in series in the same well, and a lateral type bipolar transistor is used to simplify manufacturing.

作用 MOSFET のドレイン近傍での弱いアバランシェに
より発生する少数キャリアがバイポーラトランジスタの
ベース電流として供給されることにより、エミッタ〜コ
レクタ間に電流が流れそれがMOSFET のドレイン
電流となる。この時のバイポーラトランジスタの電流増
幅率をhfe、MOSFET のアバランシェ増倍率を
mとするとhfeX(m−1))1 なる条件が満たされると、コレクタ〜エミッタ間電圧が
ドレイン−ソー2間電圧に比べて十分小さい第1の状態
′0ルベルが実現される。′1#レベルは電流が流れて
いなくてバイポーラ側がオフ、MOSFET がオンに
なっている状態である。
Minority carriers generated by weak avalanche near the drain of the working MOSFET are supplied as the base current of the bipolar transistor, so that a current flows between the emitter and the collector, which becomes the drain current of the MOSFET. At this time, if the current amplification factor of the bipolar transistor is hfe and the avalanche multiplication factor of the MOSFET is m, then hfe A sufficiently small first state '0 level is realized. At the '1# level, no current flows, the bipolar side is off, and the MOSFET is on.

信号は、バイポーラとMOSFET の接続点の電位と
して読み出し/書込み(Read 7/wr1tθ)さ
れる。
The signal is read/written (Read 7/wr1tθ) as the potential at the connection point between the bipolar and MOSFET.

実施例 図に示す本発明の一実施例につき以下説明する。Example An embodiment of the present invention shown in the figures will be described below.

N型シリコン半導体基板1の1主面に領域が限定された
P型ウェル2、同ウェル表面にゲート絶縁膜3を介して
設置された第1;よび第2のゲート電極41,42、ウ
ェル2の表面のゲート電極41.42の端部近傍に設け
られたに型の第1゜2.3拡散層51.E52,53と
が形成されている。第1および第3の拡散層51.53
はゲート電極41と重なり部分を有しているが、第2の
拡散層52は、ゲート電極42とオフセットになってい
る。ゲート電極41.42に正電位を印加することで、
表面反転層61.62がそれぞれの電極直下のPウェル
表面に誘起される。
A P-type well 2 having a limited area on one main surface of an N-type silicon semiconductor substrate 1, first and second gate electrodes 41 and 42 installed on the surface of the well with a gate insulating film 3 interposed therebetween, and the well 2. A diagonal-shaped first 2.3 diffusion layer 51. is provided near the end of the gate electrode 41.42 on the surface of the gate electrode 41.42. E52 and E53 are formed. First and third diffusion layers 51.53
has an overlapping portion with the gate electrode 41, but the second diffusion layer 52 is offset from the gate electrode 42. By applying a positive potential to the gate electrodes 41 and 42,
Surface inversion layers 61, 62 are induced on the P-well surface directly beneath each electrode.

第2拡散層52は接地されていて、ニミッタとなり、P
ウェル2はベースで第1拡散層61は反転層62を含め
てコレクタとなることでバイポーラトランジスタ200
を構成する。図中Wbは従ってラテラルバイポーラトラ
ンジスタのベース巾である。第1ゲート電極41.第1
拡散層61゜第3拡散層63ばそれぞれゲート、リース
、ドレインとなってMOSFET 100を構成する。
The second diffusion layer 52 is grounded and serves as a nimitter, and P
The well 2 serves as a base, and the first diffusion layer 61 including the inversion layer 62 serves as a collector to form a bipolar transistor 200.
Configure. Wb in the figure is therefore the base width of the lateral bipolar transistor. First gate electrode 41. 1st
The diffusion layer 61 and the third diffusion layer 63 serve as a gate, a lease, and a drain, respectively, and constitute the MOSFET 100.

ドレインは正電源VDfl に接続されている。The drain is connected to the positive power supply VDfl.

第1.第2.第3拡散層61,52.53は、ゲー)4
1.42に自己整合して形成された酸化物側壁10を利
用して形成される。
1st. Second. The third diffusion layers 61, 52, and 53 are
It is formed using oxide sidewalls 10 that are self-aligned to 1.42 mm.

ドレイン63近傍では、ドレイン電流が流れると強電界
のため電離衝突(アバランシェ)により正孔を発生する
。これがPウェル内をエミウタ52へ向って流れ、バイ
ポーラトランジスタ200のベース電流となる。エミ・
ンタ52から電子が巾Wbのベースへ注入され反転層6
2へ到達しコレクタ電流となるが、これはそのままMO
SFET100のドレイン電流となることで、電流が流
れつづける。
In the vicinity of the drain 63, when a drain current flows, holes are generated due to ionization collision (avalanche) due to the strong electric field. This flows within the P-well toward the emitter 52 and becomes the base current of the bipolar transistor 200. Emi
Electrons are injected from the contactor 52 into the base of width Wb and form the inversion layer 6.
2 and becomes the collector current, but this remains as MO
The current continues to flow as it becomes the drain current of the SFET 100.

ベース巾Wbは、現状技術で0.2〜0.3μmになし
得るので、従来の1μm以上のベース巾に比べれば大巾
に微細化される。他方、コレクタ電位が高くなると反転
層62は消えて空乏化するので、これだけベース巾が小
さくても本バイポーラトランジスタは高耐圧である。
The base width Wb can be made 0.2 to 0.3 μm with the current technology, so it is much finer than the conventional base width of 1 μm or more. On the other hand, when the collector potential becomes high, the inversion layer 62 disappears and becomes depleted, so even if the base width is this small, the present bipolar transistor has a high breakdown voltage.

コレクタあるいはソースである第1の拡散層61は、メ
モリーセルの信号書込み・読出しのノードであり、ワー
ドライン8でオン・オフが制御されビットライン9へ接
続されたスイッチトランジスタ7の一方の端子に接続さ
れている。
The first diffusion layer 61, which is the collector or source, is a node for writing and reading signals in the memory cell, and is connected to one terminal of the switch transistor 7, which is turned on and off by the word line 8 and connected to the bit line 9. It is connected.

メモリーの2状態は、 ′Oルベル=バイポーラトランジスタがよりオン状態 =電流オン ′1ルベル=バイポーラトランジスタはオフ状態 =電流オフ に対応して記憶される。The two states of memory are 'O lebel = bipolar transistor is more on state = current on '1 Lebel = bipolar transistor is off state = current off is stored correspondingly.

発萌の効果 以上のように、本発明によれば同一ウェル内の2ケのト
ランジスタだけで記憶動作が実加されるので、従来比2
倍の集積度が得られる。
As mentioned above, according to the present invention, the storage operation is performed using only two transistors in the same well, so the storage efficiency is 22% compared to the conventional method.
Double the degree of integration can be obtained.

ラテラルバイポーラトランジスタの’fife  は極
めて大きい(102〜1o5 )ので、 hfe(m−
1):)1より、MOSFET のアバランシェ増倍率
mは小さくてもよい。これは低い電源電圧(VDD)で
もメモリー動作をすることを意味しておシ、従って本発
明のスタティックメモリーは低電力である。
'fife of a lateral bipolar transistor is extremely large (102 to 1o5), so hfe(m-
1):) According to 1, the avalanche multiplication factor m of the MOSFET may be small. This means that the memory operates even at a low power supply voltage (VDD), and therefore the static memory of the present invention is low power.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例のスタティックメモリーの断面図
である。 1・・・・・・N型基板、2・・・・・・Pウェル、4
1.42・・・・・・ゲート電極、61.62・・・・
・・表面反転層、100・・・・・・MOSFET 、
200・・・・・・バイポーラトランジスタ。
The figure is a sectional view of a static memory according to an embodiment of the present invention. 1...N type substrate, 2...P well, 4
1.42...Gate electrode, 61.62...
...Surface inversion layer, 100...MOSFET,
200...Bipolar transistor.

Claims (1)

【特許請求の範囲】[Claims] 1導電型半導体基板の1主面に領域が限定された2導電
型ウェル、このウェルの表面上に絶縁膜を介して設置さ
れた第1および第2のゲート電極、このゲート電極の端
部近傍の上記ウェル表面に設けられた1導電型の第1、
第2、第3の拡散層とを含み、第1拡散層は第1、第2
ゲート電極の間にあってそれぞれと重なり部分を有し、
第2拡散層は第2ゲート電極の他端にオフセットになっ
ていて、第3拡散層は第1ゲート電極の他端にあってこ
の電極と重なり部分を有していて、前記第1ゲート電極
、第1および第3拡散層でMOSFETが、前記第2ゲ
ート電極直下の上記ウェル表面に表面反転層が形成され
ていてその反転層につながる第1拡散層、第2拡散層お
よび上記ウェルで横型バイポーラトランジスタが構成さ
れていて、前記MOSFETのアバランシェによる少数
キャリアが前記バイポーラトランジスタのベース電流と
して供給されることにより情報を記憶するように構成し
たスタティックメモリー。
A two-conductivity type well whose area is limited to one main surface of a one-conductivity type semiconductor substrate, first and second gate electrodes installed on the surface of this well with an insulating film interposed therebetween, and the vicinity of the end of this gate electrode. a first conductivity type provided on the surface of the well;
the first diffusion layer includes the first and second diffusion layers;
It is located between the gate electrodes and has an overlapping portion with each of the gate electrodes,
The second diffusion layer is offset from the other end of the second gate electrode, and the third diffusion layer is located at the other end of the first gate electrode and has an overlapping portion with the first gate electrode. , a MOSFET is formed in the first and third diffusion layers, and a surface inversion layer is formed on the surface of the well directly under the second gate electrode, and the first diffusion layer, second diffusion layer, and the well connected to the surface inversion layer are horizontal type. A static memory comprising a bipolar transistor and configured to store information by supplying minority carriers due to avalanche of the MOSFET as a base current of the bipolar transistor.
JP61138503A 1986-06-13 1986-06-13 Static memory Pending JPS62293760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138503A JPS62293760A (en) 1986-06-13 1986-06-13 Static memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138503A JPS62293760A (en) 1986-06-13 1986-06-13 Static memory

Publications (1)

Publication Number Publication Date
JPS62293760A true JPS62293760A (en) 1987-12-21

Family

ID=15223648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138503A Pending JPS62293760A (en) 1986-06-13 1986-06-13 Static memory

Country Status (1)

Country Link
JP (1) JPS62293760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669654A1 (en) * 1994-02-24 1995-08-30 STMicroelectronics Limited Memory cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669654A1 (en) * 1994-02-24 1995-08-30 STMicroelectronics Limited Memory cell

Similar Documents

Publication Publication Date Title
JP3039245B2 (en) Semiconductor memory device
JPS6050066B2 (en) MOS semiconductor integrated circuit device
JPH10275910A (en) Semiconductor device
US4661831A (en) Integrated RS flip-flop circuit
JP4336758B2 (en) Memory device
JP2690242B2 (en) Semiconductor fixed storage device
JPS62293760A (en) Static memory
US4449142A (en) Semiconductor memory device
JPS61222254A (en) Semiconductor memory device
JPH0722182B2 (en) Complementary semiconductor device
US4525812A (en) Semiconductor memory device
JPS6024591B2 (en) Static induction transistor read-only memory device
JPH04250663A (en) Semiconductor memory device
JPH05283641A (en) Semiconductor storage device
JP3058948B2 (en) Semiconductor device
JPS6139743B2 (en)
JPH0354866B2 (en)
JP2585708Y2 (en) Semiconductor memory
JPH01262657A (en) Semiconductor storage device
JP2952828B2 (en) Semiconductor device and storage element using the same
JPH0374872A (en) Semiconductor integrated circuit device
JPS6037999B2 (en) memory circuit
JPH04275455A (en) Semiconductor memory device
JPS60194561A (en) Semiconductor memory device
JPH0311549B2 (en)