JPS61222254A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS61222254A
JPS61222254A JP60062110A JP6211085A JPS61222254A JP S61222254 A JPS61222254 A JP S61222254A JP 60062110 A JP60062110 A JP 60062110A JP 6211085 A JP6211085 A JP 6211085A JP S61222254 A JPS61222254 A JP S61222254A
Authority
JP
Japan
Prior art keywords
transistor
transistors
gate
potential
word line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062110A
Other languages
Japanese (ja)
Inventor
Tetsuya Iizuka
飯塚 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60062110A priority Critical patent/JPS61222254A/en
Publication of JPS61222254A publication Critical patent/JPS61222254A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Abstract

PURPOSE:To make it possible to implement high integration of elements, by providing transfer gate transistors on driver transistors so that they are over lapped. CONSTITUTION:The voltages of a pair of bit line BL and the inverse of BL are made to be a power source voltage or a high voltage similar to the power source voltage. Data are kept by transistors T1-T4 by this method. In the writing operation, at first, a word line WL is made to become a high potential and the transistors T3 and T4 are conducted. The bit lines BL and the inverse of BL are made to be H/L or L/H in correspondence with the data. Thus, the state of the flip-flop of the transistors T1-T4 is determined. Then, the potential of the word line is lowered, and the transistors T3 and T4 are made nonconducting and are returned to a high potential together with the bit line. In the reading operation, at first, the word line is made to be the high potential, and the transistors T3 and T4 are made to be a conducting state. The decrease of either potential of the bit line BL or the inverse of BL is detected in corre spondence with the state in a memory cell, and the data is read out. Thereafter, the word line is returned to the low potential, and both bit lines BL and the inverse of BL are returned to the high potential.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体記憶装置に関し、特にメモリセルのトラ
ンスファゲートトランジスタの配置に改良を加えたもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device, and particularly to an improved arrangement of transfer gate transistors in a memory cell.

〔発明の技術的背景〕[Technical background of the invention]

従来、リフレッシュ動作の不要な半導体記憶装置として
は、第3図及び第4図に示すものが知られている。ここ
で、第3図は1セル分の平面図、第4図はその回路図を
示す。
Conventionally, as a semiconductor memory device that does not require a refresh operation, those shown in FIGS. 3 and 4 are known. Here, FIG. 3 shows a plan view of one cell, and FIG. 4 shows its circuit diagram.

図において、TltT*は一対のドライバトランジスタ
である。ここで、トランジスタT1のドレイン領域(D
I)7はトランジスタT、のゲート電i (ox )’
に、トランジスタT2のドレイン領域(Dg)3はトラ
ンジスタT1のダート電極(Gt)’に夫々接続される
。前記トランジスタT1 +T、には負荷として高抵抗
素子几□ 、几、が夫々接続され、フ!J、7’70ツ
ノ回路を構成している。前記トランジスタT1 、T、
のソース領域5,6は、夫々コンタクト7□ 、7□を
介してvss端子に接続されている。また、前記高抵抗
素子R1、几、は一端が共通接続し、これがvcc端子
に接続されている。
In the figure, TltT* is a pair of driver transistors. Here, the drain region (D
I) 7 is the gate voltage i (ox)' of the transistor T.
In addition, the drain region (Dg) 3 of the transistor T2 is connected to the dart electrode (Gt)' of the transistor T1, respectively. High resistance elements 几□, 几 are connected as loads to the transistor T1 +T, respectively, and F! J, constitutes a 7'70 horn circuit. The transistors T1, T,
Source regions 5 and 6 are connected to the vss terminal via contacts 7□ and 7□, respectively. Further, one end of the high resistance element R1 is connected in common, and this is connected to the vcc terminal.

前記フリ、プフロ、ゾ回路の各ノードには、夫々トラン
スファゲートトランジスタT、、T4が接続されている
。これらトランジスタTI+T4は、メモリセル内部の
データと後記ビット線対のデータのやシとシを行う。こ
れらトランジスタT、、T4の夫々のダート電極J(G
m)19(G4)は、ワード線(WL)に接続されてい
る。
Transfer gate transistors T, T4 are connected to each node of the FRI, PFRO, and ZO circuits, respectively. These transistors TI+T4 communicate the data inside the memory cell and the data on the bit line pair described later. The dirt electrodes J (G
m) 19 (G4) is connected to the word line (WL).

また、同トランジスタTI+T4のドレイン領域10C
D、 )、17(D、 )は、夫々コンタクト’l e
lat−介してピット線(BL、BL)に接続されてい
る。更に、トランジスタT、、T、のソース領域12(
S、 )、73(84)は、夫々コンタクト’my’@
を介して高抵抗素子R8,几2に接続されている。なお
、7.はトランジスタT。
In addition, the drain region 10C of the same transistor TI+T4
D, ) and 17 (D, ) are contact'le
It is connected to the pit lines (BL, BL) via the lat-. Furthermore, the source regions 12 (
S, ), 73 (84) are the contact 'my'@
It is connected to high resistance element R8 and 几2 via. In addition, 7. is a transistor T.

のドレイン領域3とトランジスタT1のfゲート電極4
とのコンタクトを示す。
drain region 3 of transistor T1 and f gate electrode 4 of transistor T1.
Indicates contact with.

なお、上記装置において、トランジスタTl 。Note that in the above device, the transistor Tl.

T、のダート電極4,2と、トランジスタTI+T4の
ダート電極8.9t−兼ねるワード線は夫々多結晶シリ
コンからな)、第1層目に形成されている。また、高抵
抗素子B□ 、R1も夫々多結晶シリコンからなシ、第
2層目に形成されている。
The dirt electrodes 4 and 2 of T, and the word line which also serves as the dirt electrode 8.9t of transistor TI+T4 are formed in the first layer, respectively, of polycrystalline silicon. Furthermore, the high resistance elements B□ and R1 are also made of polycrystalline silicon and are formed in the second layer.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来の半導体記憶装置によれば、高抵抗
素子几□とトランジスタT8、高抵抗素子几、とトラン
ジスタT、が夫々型なった構造を有するものの、4個の
トランジスタT□〜Ta’fr2次元上に配置するため
、素子の集積度を向上することが困難である。
However, according to the conventional semiconductor memory device, although the high-resistance element □ and the transistor T8 have the same structure as the high-resistance element □ and the transistor T, the four transistors T□ to Ta'fr are two-dimensional. It is difficult to improve the degree of integration of the device because the device is placed on top of the device.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、素子の高集
積化を図ることのできる半導体記憶装置を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a semiconductor memory device in which elements can be highly integrated.

〔発明の概要〕[Summary of the invention]

本発明は、トランス7アダートトランジスタをドライバ
トランジスタ上に重なるように設けることによって、素
子の高集積化を図ったことを骨子とする。
The gist of the present invention is to achieve high integration of elements by providing a transformer 7 add transistor so as to overlap the driver transistor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図及び第5図を
参照して説明する。ここで、第1図は本発明に係る半導
体記憶装置を構成する1つのメモリセルの平面図、第2
図は第1図のX−Y−X線に沿う断面図、第5図は同メ
モリセルの回路図である。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1, 2, and 5. Here, FIG. 1 is a plan view of one memory cell constituting a semiconductor memory device according to the present invention, and FIG.
The figure is a sectional view taken along the X-Y-X line in FIG. 1, and FIG. 5 is a circuit diagram of the same memory cell.

図中の21は、例えばP型のシリコン基板である。この
基板21の表面にはフィールド酸化膜22が設けられて
いる。このフィールド酸化膜22で囲まれた基板21の
素子領域には、ドライバトランジスタT1のN+型のと
ス領域(S□)23、ドレイン領域(DI)24及びβ
ライパトランジスタT、のN+型のソース領域(8,)
’5、ドレイン領域(D、)、?6が夫々設けられてい
る。前記ソース、ドレイン領域23.24間のチャネル
上には;多結晶シリ・ンからなるゲートz極(G、)>
7がe−)絶縁82Bを介して設けられている。一方、
ソース、ドレイン領域25゜26間のチャネル上には、
多結晶シリコンからなるダート電極(G、)29がダー
ト絶縁膜を介して設けられている。
21 in the figure is, for example, a P-type silicon substrate. A field oxide film 22 is provided on the surface of this substrate 21. The element region of the substrate 21 surrounded by the field oxide film 22 includes an N+ type source region (S□) 23, a drain region (DI) 24, and a β
N+ type source region (8,) of the Leiper transistor T.
'5, drain region (D,), ? 6 are provided respectively. On the channel between the source and drain regions 23 and 24 is a gate z pole (G, ) made of polycrystalline silicon.
7 is provided via e-) insulation 82B. on the other hand,
On the channel between the source and drain regions 25°26,
A dirt electrode (G, ) 29 made of polycrystalline silicon is provided via a dirt insulating film.

前記トランジスタT□ sTM上には、トランス77ゲ
ートトランジスタT、、T4が重なるように設けられて
いる。即ち、トランジスタT8のダート電極27上には
、厚い酸化膜30を介して例えば多結晶シリコン層をレ
ーザーアニーリング等によ)再結晶化して得られる薄膜
層31が設けられている。具体的には、N+型のソース
領域(S、)32、ドレイン領域(D、)JJが設けら
れている。このソース、ドレイン領域32゜33間のチ
ャネル上には、ダート絶縁膜34を介して多結晶シリコ
ンからなるゲート電極(G3)35が設けられている。
On the transistor T□sTM, transformer 77 gate transistors T, , T4 are provided so as to overlap with each other. That is, a thin film layer 31 obtained by recrystallizing a polycrystalline silicon layer (by laser annealing or the like) is provided on the dirt electrode 27 of the transistor T8 via a thick oxide film 30. Specifically, an N+ type source region (S, ) 32 and drain region (D, ) JJ are provided. A gate electrode (G3) 35 made of polycrystalline silicon is provided on the channel between the source and drain regions 32 and 33 with a dirt insulating film 34 in between.

このダート電極35はワード線(WL)に接続されてい
る。
This dirt electrode 35 is connected to a word line (WL).

ここで、前記ソース、ドレイン領域32゜33は、r−
)電極35に対して自己整合的に形成されている。前記
ドレイン領域33には、コンタクト36.ヲ介しテヒy
 ) H(B L ) 3 Fが接続されている。ま九
、トランスファゲートトランジスタT、もトランジスタ
T、と同様な構造となっている。第1図において、38
はN+型のソース領域(S4)、39はN+型のドレイ
ン領域(D4)を、40はダート電極(G、)を、41
はドレイン領域39とコンタクト36.を介して接続す
るビット線(BL)を示す。なお、第1図において、コ
/タクト36.でトランジスタT、のドレイン領域(D
、)’4とトランジスタT、の電甑(G、)>5とトラ
ンジスタT4のソース領域(84)J#とが接続し、コ
ンタクト364でトランジスタT、のドレイン領域(D
、C6とトランジスタT1のダート電極(G□)27と
トランジスタT、のソース領域(S、)、V2とが接続
されている。
Here, the source and drain regions 32 and 33 are r-
) is formed in a self-aligned manner with respect to the electrode 35. The drain region 33 is provided with a contact 36 . Thank you for your help.
) H(B L ) 3 F is connected. Also, the transfer gate transistor T has the same structure as the transistor T. In Figure 1, 38
is an N+ type source region (S4), 39 is an N+ type drain region (D4), 40 is a dirt electrode (G,), and 41 is an N+ type source region (S4).
are drain region 39 and contact 36. The bit line (BL) connected through the BL is shown. In addition, in FIG. 1, the contact/tact 36. and the drain region (D
, )'4 and the voltage (G, )>5 of the transistor T, are connected to the source region (84) J# of the transistor T4, and the drain region (D
, C6, the dirt electrode (G□) 27 of the transistor T1, the source region (S, ) of the transistor T, and V2 are connected.

次に、前述した構造の装置の動作原理について述べる。Next, the operating principle of the device having the above-described structure will be described.

トランジスタTm+T4は、ワード線が低レベルにある
場合、NチャネルのMO& )ランジスタであるから非
導通状態にあるが、微少なリーク電流が存在する。この
電流の値は、通常、ドライバトランジスタT1*Tlの
リーク電流よりも大きい。従って、ビット線対BL。
When the word line is at a low level, the transistor Tm+T4 is non-conductive because it is an N-channel MO&) transistor, but there is a small leakage current. The value of this current is typically larger than the leakage current of the driver transistor T1*Tl. Therefore, bit line pair BL.

BLを電源電圧又はそれに準じた高い電圧にしておくこ
とにより、トランジスタT1とトランジスタ(負荷素子
)で4、及びトランジスタT、とトランジスタ(負荷素
子)Tsで2組のイ/パータ対が出来上がり、これらが
7リツプフロツプ回路を形成している。これにより、ト
ランジスタT1〜T4でデータを保持することができる
。ここで、書き込み動作は、まず、ワード線WLを高電
位にしてトランジスタTStT4t″導通せしめ、ビッ
ト線BL 、BLt−書込みデータに応じてル化又はし
情にすることによりトランジスタT、〜T4のフリ、f
フロッグの状態を決める。次に、ワード線電位を下げて
トランジスタT、、T、t−非導通にし、更にビット線
を共に高電位に戻す。また、読出し動作は、まずワード
線を高電位にしてトランジスタT、、T、を導通状態に
し、メモリセル内の状態に応じてビット線BL 、BL
のいずれかの電位が低下するのを検知してデータを読み
出す。
By keeping BL at the power supply voltage or a high voltage equivalent to it, 4 I/P pairs are created with the transistor T1 and the transistor (load element), and 2 pairs with the transistor T and the transistor (load element) Ts. form a 7 lip-flop circuit. Thereby, data can be held in the transistors T1 to T4. Here, in the write operation, first, the word line WL is set to a high potential to make the transistor TStT4t'' conductive, and the bit lines BL and BLt are turned on or off according to the write data, thereby freeing the transistors T and T4. , f
Determine the state of the frog. Next, the word line potential is lowered to make transistors T, , T, and t non-conductive, and both bit lines are returned to high potential. In addition, in a read operation, first, the word line is set to a high potential, transistors T, , T are made conductive, and the bit lines BL, BL
The data is read by detecting a drop in the potential of either of the two.

この後、ワード線を低電位に戻し、ビット線BL 、B
Lを共に高電位に戻す。
After this, the word line is returned to a low potential, and the bit lines BL, B
Return both L to high potential.

しかして、本発明によれば、以下に示す効果を有する。According to the present invention, the following effects are achieved.

■ トランスファゲートトランジスタT1 。■ Transfer gate transistor T1.

T4をドライバトランジスタT□ 、T、上に夫々型な
るように設けるため、2次元平面上に2個のトランジス
タの密度でメモリセルが実現でき、従来と比べ約2倍の
集積度を得ることができる。
Since T4 is provided on the driver transistors T□ and T, respectively, a memory cell can be realized with a density of two transistors on a two-dimensional plane, and the degree of integration can be approximately doubled compared to the conventional method. can.

■ ドライバトランジスタのコンダクタンスとトランス
ファゲートトランジスタのそれとの比(β比)を大きく
とシやすく高集積化し易い。
■ If the ratio (β ratio) between the conductance of the driver transistor and that of the transfer gate transistor is large, it is easy to achieve high integration.

なお、通常、このβ比はメモリセルの安定度を高めるた
めに大きくとる必要があシ、ドライバトランジスタのチ
ャネル幅を大きく、トランスファゲートトランジスタの
チャネル長を大きくとっているが、これはそれだけ余分
に面積を要することを意味する。しかし、本発明によれ
ば、薄膜膚31でソース、ドレイン領域を形成したトラ
ンスファゲートトランジスタのモビリティは基板表面の
ドライバトランジスタに比して小さいため、各トランジ
スタのL+Wを最小寸法で実現できる。
Note that this β ratio usually needs to be set large in order to improve the stability of the memory cell, so the channel width of the driver transistor and the channel length of the transfer gate transistor are set large; This means that it requires a large area. However, according to the present invention, the mobility of the transfer gate transistor in which the source and drain regions are formed with the thin film layer 31 is smaller than that of the driver transistor on the substrate surface, so that L+W of each transistor can be realized with the minimum size.

■ ビット線の浮遊容量が小さく高速動作しやすい。従
来(第3図)のようにビット線が接合容量をもった場合
と比べ、絶縁膜に取シ囲まれているため、浮遊容量が極
めて小さい。従って、メモリサイズが小さくなることに
よりビ、ト線長が短いことと含まって、ビット線全体の
容量を小さくするため、高速動作を実現できる。
■ Bit line stray capacitance is small, making it easy to operate at high speed. Compared to the conventional case (FIG. 3) where the bit line has a junction capacitance, the stray capacitance is extremely small because it is surrounded by an insulating film. Therefore, since the memory size is reduced and the bit line length is shortened, the capacitance of the entire bit line is reduced, so high-speed operation can be realized.

■ メモリセルの7リツプフロ、fの負荷として従来の
ように高抵抗のポリシリコン層で実現し、専用のvcc
の電源配線に接続する応用にも適用可能で、上記■〜■
のメリットは生かされる。
■ The memory cell's 7-lip flow, f load is realized with a conventional high-resistance polysilicon layer, and a dedicated VCC
It can also be applied to applications that connect to power supply wiring, and the above ■~■
The benefits of this will be taken advantage of.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、素子の高集積化を図
ることが可能な半導体記憶装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a semiconductor memory device in which elements can be highly integrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る半導体記憶装置のメモ
リセルの平面図、第2図は第1図のx−y−X線に沿う
断面図、第3図は従来の半導体記憶装置のメモリセルの
平面図、第4図は同メモリセルの回路図、第5図は第1
図のメモリセルの回路図である。 21・・・P型のシリコン基板、22・・・フィールド
酸化膜、23,25,32.38・・・N+型のソース
領域、24 、26 、33 、39−N”f!l(D
トレイン領域、2F、29,35.40・・・グー)電
極、28.34・・・ダート絶縁膜、3o・・・厚い酸
化膜、31・・・薄膜層、36□、36.・・・コンタ
クト、37.41・・・ビット線。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 口=コ一一−ソース、ドしイン@宝入゛L−−J −−
−ケ°°−ト電極 ロ:コーーーS丁氏坑素壬 ローコーー−WL
FIG. 1 is a plan view of a memory cell of a semiconductor memory device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the x-y-X line of FIG. 1, and FIG. 3 is a conventional semiconductor memory device. 4 is a plan view of the memory cell, FIG. 4 is a circuit diagram of the same memory cell, and FIG.
FIG. 3 is a circuit diagram of the memory cell shown in FIG. 21...P type silicon substrate, 22...Field oxide film, 23, 25, 32.38...N+ type source region, 24, 26, 33, 39-N''f!l(D
Train region, 2F, 29, 35.40...Goo) electrode, 28.34...Dirt insulating film, 3o...Thick oxide film, 31...Thin film layer, 36□, 36. ...Contact, 37.41...Bit line. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Mouth = Ko 11 - Source, Dosin @Hoiri゛L--J ---
-Keto Electrode Loco-WL

Claims (3)

【特許請求の範囲】[Claims] (1)双安定状態を有するメモリセルが半導体基板上に
マトリクス状に配置された半導体記憶装置において、メ
モリセルのトランスファゲートトランジスタをドライバ
トランジスタ上に重なるように設けたことを特徴とする
半導体記憶装置。
(1) A semiconductor memory device in which memory cells having a bistable state are arranged in a matrix on a semiconductor substrate, characterized in that a transfer gate transistor of the memory cell is provided to overlap a driver transistor. .
(2)ドライバトランジスタが半導体基板表面のソース
、ドレイン領域と、これら領域間のチャネル上にゲート
絶縁膜を介して設けられたゲート電極とから構成され、
かつトランスファゲートトランジスタがドライバトラン
ジスタのゲート上に厚い絶縁膜を介して設けられ、多結
晶シリコン層の再結晶により得られたソース、ドレイン
領域と、これら領域間のチャネル上にゲート絶縁膜を介
して設けられたゲート電極とから構成されていることを
特徴とする特許請求の範囲第1項記載の半導体記憶装置
(2) The driver transistor is composed of source and drain regions on the surface of the semiconductor substrate, and a gate electrode provided on the channel between these regions with a gate insulating film interposed therebetween,
A transfer gate transistor is provided on the gate of the driver transistor via a thick insulating film, and the source and drain regions obtained by recrystallizing the polycrystalline silicon layer and the channel between these regions are provided via a gate insulating film on the gate of the driver transistor. 2. The semiconductor memory device according to claim 1, further comprising a gate electrode.
(3)トランスファゲートトランジスタのリーク電流を
ドライバトランジスタのそれより高くし、ビット線電位
が低レベルになる時間長を所定値以上に設定し、各々の
メモリセルに固有の電源配線を省略したことを特徴とす
る特許請求の範囲第1項記載の半導体記憶装置。
(3) The leakage current of the transfer gate transistor is made higher than that of the driver transistor, the time length for which the bit line potential is at a low level is set to a predetermined value or more, and the power supply wiring specific to each memory cell is omitted. A semiconductor memory device according to claim 1.
JP60062110A 1985-03-28 1985-03-28 Semiconductor memory device Pending JPS61222254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062110A JPS61222254A (en) 1985-03-28 1985-03-28 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062110A JPS61222254A (en) 1985-03-28 1985-03-28 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS61222254A true JPS61222254A (en) 1986-10-02

Family

ID=13190588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062110A Pending JPS61222254A (en) 1985-03-28 1985-03-28 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61222254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245661A (en) * 1986-04-18 1987-10-26 Hitachi Ltd Semiconductor memory
JPS6337650A (en) * 1986-08-01 1988-02-18 Hitachi Ltd Semiconductor memory
JPH0685208A (en) * 1991-12-30 1994-03-25 American Teleph & Telegr Co <Att> Semiconductor integrated circuit
US7306981B2 (en) 2001-11-16 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor manufacturing method
US7339235B1 (en) 1996-09-18 2008-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having SOI structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503787A (en) * 1973-05-16 1975-01-16
JPS5753972A (en) * 1980-07-24 1982-03-31 Siemens Ag
JPS59130459A (en) * 1983-01-17 1984-07-27 Hitachi Ltd Semiconductor memory integrated circuit device
JPS60134461A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Semiconductor memory device
JPS60239052A (en) * 1984-05-14 1985-11-27 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503787A (en) * 1973-05-16 1975-01-16
JPS5753972A (en) * 1980-07-24 1982-03-31 Siemens Ag
JPS59130459A (en) * 1983-01-17 1984-07-27 Hitachi Ltd Semiconductor memory integrated circuit device
JPS60134461A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Semiconductor memory device
JPS60239052A (en) * 1984-05-14 1985-11-27 Hitachi Ltd Semiconductor integrated circuit device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245661A (en) * 1986-04-18 1987-10-26 Hitachi Ltd Semiconductor memory
JPS6337650A (en) * 1986-08-01 1988-02-18 Hitachi Ltd Semiconductor memory
JPH0685208A (en) * 1991-12-30 1994-03-25 American Teleph & Telegr Co <Att> Semiconductor integrated circuit
US7339235B1 (en) 1996-09-18 2008-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having SOI structure and manufacturing method thereof
US7306981B2 (en) 2001-11-16 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor manufacturing method
US7833851B2 (en) 2001-11-16 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2918307B2 (en) Semiconductor storage element
US5732014A (en) Merged transistor structure for gain memory cell
US6097625A (en) Magnetic random access memory (MRAM) array with magnetic tunnel junction (MTJ) cells and remote diodes
JP2005514775A (en) Memory cell using differential negative resistance field effect transistor
JPH05167041A (en) Laminated type cmos sram having polysilicon transistor load
KR840007312A (en) Semiconductor Memory with Multilayer Capacitor Memory Cells
US5281843A (en) Thin-film transistor, free from parasitic operation
JP3039245B2 (en) Semiconductor memory device
KR100293079B1 (en) Semiconductor device comprising high density integrated circuit having a large number of insulated gate field effect transistors
US5555208A (en) Static random access memory
JPH06104405A (en) Static memory
JPS61222254A (en) Semiconductor memory device
JP4336758B2 (en) Memory device
JPS62154287A (en) Semiconductor memory device
JPH0738066A (en) Junction field dynamic ram and preparation thereof
JPH0727980B2 (en) Semiconductor device having high resistance layer
JP3400894B2 (en) Static semiconductor memory device
JPH07302846A (en) Semiconductor memory device
JPH1092954A (en) Semiconductor storage device
US5166763A (en) Static type semiconductor memory device and method of manufacturing thereof
US3705419A (en) Silicon gate fet-niobium oxide diode-memory cell
JP2563803B2 (en) Semiconductor memory device
JP3132437B2 (en) Semiconductor storage device
JPH0158594B2 (en)
JP2650733B2 (en) Semiconductor integrated circuit device