JPS62293143A - Measuring instrument for corpuscle - Google Patents

Measuring instrument for corpuscle

Info

Publication number
JPS62293143A
JPS62293143A JP61136490A JP13649086A JPS62293143A JP S62293143 A JPS62293143 A JP S62293143A JP 61136490 A JP61136490 A JP 61136490A JP 13649086 A JP13649086 A JP 13649086A JP S62293143 A JPS62293143 A JP S62293143A
Authority
JP
Japan
Prior art keywords
light
particle
detection area
scattered light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61136490A
Other languages
Japanese (ja)
Inventor
Tamio Hoshina
星名 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP61136490A priority Critical patent/JPS62293143A/en
Publication of JPS62293143A publication Critical patent/JPS62293143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To give sufficient linearity to response characteristics to particle size although a laser beam source is used and to eliminate mismeasurement by irradiating the same corpuscle detection area with light beams from >=2 homonochromaticous light sources such as laser beam sources which differ in wavelengths. CONSTITUTION:The two laser beam sources 5A and 5B which differ in wavelength are arranged and the laser beams 6A and 6B emitted by the light sources 5A and 5B are projected on the same corpuscle detection area 4 at the same time. The corpuscles to be measured are spouted out of a nozzle 2 along with gaseous sample 1, and protected and guided by sheath air 3 to reach the area 4 as one flow. The corpuscles to be measured in case of passing through the area 4 are projected with the rays of light 6A and 6B at the same time to generate scattered light. This scattered light is converged by a lens 7 and converted into an impulsive electric output by a photoelectric converter 8.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、微粒子測定装置に関し、更に詳しく述べると
微粒子検出領域へ光線を照射する光源の改良に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a particle measuring device, and more specifically, to an improvement of a light source that irradiates a particle detection area with a light beam.

〔従来技術〕[Prior art]

現在光散乱式微粒子測定装置の光源としては、白熱電球
若しくはレーザ光源が通常用いられている。
Currently, an incandescent light bulb or a laser light source is usually used as a light source for a light scattering type particle measuring device.

レーザ光源を用いた微粒子測定装置は、白熱電球を光源
として用いた微粒子測定装置に比して、その焦点で光束
を細くすることが可能で、このためエネルギー密度を高
めてより小さい粒径の微粒子まで検出可能であり、0.
1μmといった極小粒径の検出に多く利用されている。
Compared to particle measuring devices that use incandescent light bulbs as light sources, particle measuring devices that use a laser light source can narrow the luminous flux at the focal point, increasing the energy density and detecting particles with smaller diameters. It is detectable up to 0.
It is often used to detect extremely small particle sizes such as 1 μm.

またレーザ光源は長寿命である為長期に亘り光源の交換
が不要となる利点も有している。
Furthermore, since the laser light source has a long life, it also has the advantage of not requiring replacement of the light source for a long period of time.

第3図はレーザ光源を用いた従来の光散乱式微粒子測定
装置に於ける微粒子検出部の主要部を示す図である。
FIG. 3 is a diagram showing the main part of a particulate detection section in a conventional light scattering type particulate measuring device using a laser light source.

1は測定対象となる微粒子を含んだ気体試料(空気)で
あり、空気加圧系(図示せず)若しくは空気吸引系(図
示せず)の働きに依りノズル2の先端よりシースエア3
と共に噴き出し、前記シースエア3に保護・誘導され一
条の流れとなって微粒子検出領域4を通過する。
Reference numeral 1 denotes a gas sample (air) containing fine particles to be measured, and sheath air 3 is drawn from the tip of the nozzle 2 by the action of an air pressurization system (not shown) or an air suction system (not shown).
At the same time, the particles are ejected, protected and guided by the sheath air 3, and pass through the particle detection area 4 as a single stream.

レーザ光源5より前記微粒子検出領域4で前記気体試料
1と交差すべくレーザ光線6が照射されている。このた
め前記気体試料1中に含まれる微粒子が、前記微粒子検
出領域4を通過する毎にこれによる散乱光が生じること
となる。7はこの散乱光を集光するためのレンズであり
、このレンズ7で集光された散乱光は光電変換器8へと
導かれ、パルス状の電気信号に変換される。この電気信
号は適宜の電気回路(図示せず)へと導かれ、電気的処
理が施され最終的に粒径分布・個数等の測定結果が得ら
れることとなる。
A laser beam 6 is emitted from a laser light source 5 so as to intersect the gas sample 1 in the particle detection region 4 . Therefore, every time the particles contained in the gas sample 1 pass through the particle detection area 4, scattered light is generated. Reference numeral 7 denotes a lens for condensing this scattered light, and the scattered light condensed by this lens 7 is guided to a photoelectric converter 8 and converted into a pulsed electric signal. This electrical signal is guided to a suitable electrical circuit (not shown) and subjected to electrical processing to finally obtain measurement results such as particle size distribution and number.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のような従来の単色光のレーザ光源を用いた光散乱
式微粒子測定装置に於いては、散乱光を生ずる粒子の大
きさと、特定方向へ散乱する光線の相対強度との間の関
係は概ね比例している。すなわち応答特性に直線性があ
り単調に増加している。従って微粒子の粒径が大きくな
ればなるほど、この微粒子により生じる特定方向への散
乱光の強度も強くなる。
In the conventional light scattering type particle measurement device using a monochromatic laser light source as described above, the relationship between the size of the particles that generate scattered light and the relative intensity of the light beam scattered in a specific direction is generally as follows. It's proportional. In other words, the response characteristics have linearity and increase monotonically. Therefore, the larger the particle size of the fine particles, the stronger the intensity of the scattered light in a specific direction generated by the fine particles.

しかしながら照射するレーザ光線の波長に応じ特定の粒
径範囲にある微粒子の散乱光強度と粒径の関係に実用上
無視し得ない直線性の欠如が必ず存在する。
However, there is always a lack of linearity in the relationship between the scattered light intensity and particle size of fine particles within a specific particle size range depending on the wavelength of the laser beam to be irradiated, which cannot be ignored in practice.

ここでこのような装置に於いて、散乱光を生しる球形粒
子の直径をDP、照射単色レーザ光線の波長をλとして
、 α=π・Dp/λ なるサイズパラメータαを考え、このサイズパラメータ
αに対する70°方向への散乱光の相対強度Iの関係を
算出し第4図にしめす。この第4図に示すサイズパラメ
ータαと相対強度Iとの関係は使用するレーザ光線の波
長の如何によらず成り立つ。
Here, in such a device, where the diameter of the spherical particle that generates the scattered light is DP, and the wavelength of the irradiated monochromatic laser beam is λ, consider a size parameter α of α=π・Dp/λ, and this size parameter The relationship between the relative intensity I of the scattered light in the 70° direction with respect to α is calculated and shown in FIG. The relationship between the size parameter α and the relative intensity I shown in FIG. 4 holds regardless of the wavelength of the laser beam used.

尚これについての説明は、例えば昭和60年2月1日発
行の「空気清浄」第22巻4号、1ページないし5ペー
ジ等に詳述がある。
A detailed explanation of this can be found, for example, in "Air Cleaning", Vol. 22, No. 4, pages 1 to 5, published on February 1, 1985.

第4図から明らかなように、αが1〜1.5の領域に顕
著な直線性の欠如が存在する。この範囲の粒径を持った
微粒子については異なる粒径の微粒子が同じ強度の散乱
光を発したり、粒径の小さい微粒子のほうがより強い散
乱光を発する不都合が生じる。このことは通常、散乱光
の強度に依って被検出微粒子の粒径を分類・計数してい
る微粒子測定装置にとって微粒子の粒径を誤認する、も
しくは粒径を特定できないことを意味し、装置の性能上
山々しき問題である。
As is clear from FIG. 4, there is a significant lack of linearity in the region where α is 1 to 1.5. Regarding fine particles having a particle size within this range, a disadvantage arises in that fine particles of different particle sizes emit scattered light of the same intensity, and fine particles with a small particle size emit stronger scattered light. This means that particle measuring devices, which normally classify and count the particle size of detected particles based on the intensity of scattered light, misidentify the particle size or are unable to identify the particle size, and the device This is a serious problem in terms of performance.

尚この現象は照射光の波長に応じである特定範囲の粒径
の微粒子に於いては、その散乱光の光源が、唯一点とは
見做し得なくなる、即ち波長に対し無視し得ない複数箇
所となるのが原因であり、これら複数箇所の光源からの
散乱光が互いに干渉し合う為惹き起こされる物理現象で
ある。
This phenomenon depends on the wavelength of the irradiated light.For fine particles with a particle size within a certain range, the light source of the scattered light cannot be considered to be a single point, but rather has multiple sources that cannot be ignored with respect to the wavelength. This is a physical phenomenon caused by the fact that the light sources at these multiple locations interfere with each other.

従って白熱電球の如き雑多な波長を略均等に含む、所謂
白色光源を照射光源として用いた場合にはこの現象は生
じない。
Therefore, this phenomenon does not occur when a so-called white light source, which includes miscellaneous wavelengths approximately evenly, such as an incandescent light bulb, is used as the irradiation light source.

以上述べた如く、従来の単色レーザ光源を単独で微粒子
検出部の光源として用いた場合には、その適用装置の粒
径に対する応答特性の直線性がレーザ光線の波長に対応
した特定の粒径範囲で欠如している為、粒径が誤認され
粒径分布の精度の高い計測が不可能であるという重大な
問題があった。
As mentioned above, when a conventional monochromatic laser light source is used alone as a light source for a particulate detection unit, the linearity of the response characteristic to the particle size of the device to which it is applied is limited to a specific particle size range corresponding to the wavelength of the laser beam. There was a serious problem in that the particle size was misidentified and highly accurate measurement of particle size distribution was impossible.

〔発明の目的〕[Purpose of the invention]

本発明は、前述した如く微粒子測定に利点の多いレーザ
光源を用い、しかも白熱電球の有する特賞を加味したも
のであり、従ってレーザ光源を用いながらもその粒径に
対する応答特性が充分な直線性を有し誤計測の危惧のな
い微粒子測定装置を提供することを目的とする。
The present invention uses a laser light source, which has many advantages in particle measurement as described above, and also takes into account the special advantages of an incandescent light bulb.Therefore, even though it uses a laser light source, its response characteristics to particle size have sufficient linearity. The object of the present invention is to provide a particulate measuring device that is free from the risk of erroneous measurements.

C問題点を解決するための手段〕 以上の目的を達成する為に本発明に係る微粒子測定装置
に於いて、波長が相異なる2以上のレーザ光源の如き単
色光源を具え、これらの光源からの光線を、同じ微粒子
検出領域に同時に照射するようにする。
Means for Solving Problem C] In order to achieve the above object, the particle measuring device according to the present invention includes two or more monochromatic light sources such as laser light sources with different wavelengths, and The light beams are made to irradiate the same particulate detection area at the same time.

〔実施例〕〔Example〕

以下1本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明を適用した光散乱式微粒子測定装置に於
ける微粒子検出部の要部を示す図である。
FIG. 1 is a diagram showing a main part of a particulate detection section in a light scattering type particulate measuring device to which the present invention is applied.

尚第3図に於けると同等部分には同一符号が付されてい
る。
In FIG. 3, the same parts are given the same reference numerals.

本実施例に於いては、波長の相異なる2本のレーザ光源
5A及び5Bが配置され、前記光源5A。
In this embodiment, two laser light sources 5A and 5B with different wavelengths are arranged, and the light source 5A.

5Bからそれぞれ発するレーザ光線6A及び6Bが同じ
微粒子検出領域4に同時に照射されている。
Laser beams 6A and 6B respectively emitted from 5B are irradiated onto the same particulate detection area 4 at the same time.

被測定微粒子は試料気体1 (本実施例においては空気
)と共にノズル2の先端より噴き出し、シースエア3に
保護・誘導され一条の流れとなって前記微粒子検出領域
4に至る。前記被測定微粒子はこの微粒子検出領域4を
ijl過する際に前記レーザ光線6A及び6Bに同時に
照射され散乱光を生じる。この散乱光は第3図に於ける
と同様レンズ7にて集光され、光電変換器8によりパル
ス状の電気出力に変換、処理される。
The particles to be measured are ejected from the tip of the nozzle 2 together with the sample gas 1 (air in this embodiment), protected and guided by the sheath air 3, and reach the particle detection area 4 in a single stream. When the particles to be measured pass through the particle detection area 4, they are simultaneously irradiated with the laser beams 6A and 6B to generate scattered light. This scattered light is collected by a lens 7 as in FIG. 3, and converted into a pulsed electrical output by a photoelectric converter 8 and processed.

次ぎに本実施例の効果を、70゛方向へ散乱する光線の
粒径に対する相対強度の関係を示す第2図に基づいて説
明する。面この第2図は従来例として掲げた第4図に対
応するものである。
Next, the effects of this embodiment will be explained based on FIG. 2, which shows the relationship between the relative intensity and the particle size of light rays scattered in the 70° direction. This FIG. 2 corresponds to FIG. 4 shown as a conventional example.

第2図では波長の異なる二つのレーザ光線についての相
対強度を同時に図示する必要上、煩雑さをさけるため横
軸は第4図の如きサイズパラメータαの代わりに粒径D
pを用いる。
In Fig. 2, since it is necessary to simultaneously illustrate the relative intensities of two laser beams with different wavelengths, the horizontal axis is plotted with the particle diameter D instead of the size parameter α as in Fig. 4 to avoid complication.
Use p.

最初にIaはレーザ光線6A(波長をλaとする)のみ
を気体試料に照射したと仮定した場合の粒径に対する散
乱光の相対強度の応答特性であり、次ぎにIbはレーザ
光線6B(波長λb、λa〈λbとする)のみを気体試
料に照射したと仮定した場合の粒径に対する散乱光の相
対強度の応答特性である。しかしながら実際にはレーザ
光線6A及び6Bが同時に気体試料に照射されているた
め、本実施例に於ける粒径に対する散乱光の相対強度は
、前述のIaとIbとを合成したrtで示される平滑化
された応答特性を持ち、レーザ光線6Aまたはレーザ光
線6Bをそれぞれ単独に照射した場合に比して、その散
乱光の相対強度の応答特性に於ける直線性は著しく改善
されており、白色光源の場合の散乱光の応答特性の直線
性に近いものとなっている。
First, Ia is the response characteristic of the relative intensity of the scattered light with respect to the particle size when it is assumed that only the laser beam 6A (wavelength is λa) is irradiated to the gas sample, and then Ib is the response characteristic of the relative intensity of the scattered light with respect to the particle size. , λa<λb) is assumed to be irradiated onto a gas sample. However, in reality, the gas sample is irradiated with the laser beams 6A and 6B at the same time, so the relative intensity of the scattered light with respect to the particle size in this example is a smooth one expressed by rt, which is the combination of Ia and Ib mentioned above. The linearity of the response characteristic of the relative intensity of the scattered light is significantly improved compared to when the laser beam 6A or the laser beam 6B is irradiated individually. The linearity of the response characteristic of scattered light is close to that in the case of .

なお、本実施例では2個のレーザ光源を配置し2条のレ
ーザ光線を照射した例を示したが、2個に限るものでは
なく要は2以上のレーザ光線を同じ微粒子検出領域に照
射すればたりる。勿論、より多くの互いに波長の異なる
レーザ光源を用いその光線を同時に微粒子検出領域に照
射すれば、その散乱光はより白色光源により生ずる散乱
光に近づくこととなり、散乱光の相対強度の粒径に対す
る直線性が増すのでより好ましい。
In this example, an example was shown in which two laser light sources were arranged and two laser beams were irradiated, but the number is not limited to two, and in short, it is possible to irradiate two or more laser beams to the same particulate detection area. Batariru. Of course, if more laser light sources with different wavelengths are used to simultaneously irradiate the particle detection area with their light beams, the scattered light will approach the scattered light generated by a white light source, and the relative intensity of the scattered light will depend on the particle size. This is more preferable because linearity increases.

また試料として気体(空気)のみについて説明したが、
液体であっても本発明が適用され得ることは言うまでも
ない。
Also, although we only explained gas (air) as a sample,
It goes without saying that the present invention can be applied to liquids as well.

(発明の効果〕 以上説明した如く本発明に依れば、同一の粒子検出領域
に於いて流体試料流にその波長が相異なる2以上の単色
光線を同時に照射し得るので、被検出微粒子により生じ
る散乱光の相対強度の微粒子の粒径に対する応答特性が
、白熱電球等の白色光源による光線を微粒子検出領域に
照射した場合に於けると同程度の直線性を有しながらも
、同時にレーザ光源を使用したことによる、装置が高感
度で、より小さい粒径の微粒子まで検出可能なことまた
光源が掻めて長寿命で保守が容易である等の捨て難い特
長を合わせ持った微粒子測定装置を提供することが可能
となり、その効果は極めて大である。
(Effects of the Invention) As explained above, according to the present invention, it is possible to simultaneously irradiate a fluid sample flow with two or more monochromatic light beams with different wavelengths in the same particle detection area, so that Although the response characteristic of the relative intensity of the scattered light to the particle size of the particle has the same level of linearity as when the particle detection area is irradiated with light from a white light source such as an incandescent light bulb, at the same time it is We provide a particulate measuring device that has features that are difficult to discard, such as high sensitivity, the ability to detect even smaller particles, and a light source that is long-lasting and easy to maintain. It has become possible to do so, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す微粒子検出部の要部構
成図、第2図は同じくその応答特性図を示す。第3図は
従来の光散乱式微粒子測定装置に於ける微粒子検出部の
要部構成図を、第4図は同じくその応答特性図を示す。
FIG. 1 is a block diagram of a main part of a particulate detection section showing an embodiment of the present invention, and FIG. 2 is a response characteristic diagram thereof. FIG. 3 shows a configuration diagram of the main part of a particulate detection section in a conventional light scattering type particulate measuring device, and FIG. 4 similarly shows a response characteristic diagram thereof.

Claims (2)

【特許請求の範囲】[Claims] (1)微粒子検出領域に於いて流体試料中に浮遊混在す
る微粒子に光線を照射し、得られる散乱光を測定して前
記微粒子を検出、処理する光散乱式微粒子測定装置に於
いて、 前記微粒子を照射する光源として波長が相異なる2以上
の単色光源を用い、 前記各単色光源からの光線を前記流体試料の通過する同
一の微粒子検出領域に同時に照射することを特徴とする
微粒子測定装置。
(1) In a light scattering type particle measuring device that detects and processes the particles by irradiating light beams onto particles floating in a fluid sample in a particle detection area and measuring the resulting scattered light, the particles A particulate measuring device characterized in that two or more monochromatic light sources with different wavelengths are used as light sources for irradiating, and the light rays from each of the monochromatic light sources are simultaneously irradiated onto the same particulate detection area through which the fluid sample passes.
(2)前記単色光源としてレーザ光源を用いることを特
徴とする特許請求の範囲第(1)項記載の微粒子測定装
置。
(2) The particle measuring device according to claim (1), wherein a laser light source is used as the monochromatic light source.
JP61136490A 1986-06-12 1986-06-12 Measuring instrument for corpuscle Pending JPS62293143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136490A JPS62293143A (en) 1986-06-12 1986-06-12 Measuring instrument for corpuscle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136490A JPS62293143A (en) 1986-06-12 1986-06-12 Measuring instrument for corpuscle

Publications (1)

Publication Number Publication Date
JPS62293143A true JPS62293143A (en) 1987-12-19

Family

ID=15176367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136490A Pending JPS62293143A (en) 1986-06-12 1986-06-12 Measuring instrument for corpuscle

Country Status (1)

Country Link
JP (1) JPS62293143A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224642A (en) * 1988-03-04 1989-09-07 Canon Inc Particle analyzing device
JPH0274845A (en) * 1988-09-09 1990-03-14 Canon Inc Particle measuring apparatus
JPH0274846A (en) * 1988-09-09 1990-03-14 Canon Inc Particle measuring apparatus
JPH02226046A (en) * 1989-02-27 1990-09-07 Shimadzu Corp Measuring apparatus of distribution of grain size
JP2000097841A (en) * 1998-08-22 2000-04-07 Malvern Instruments Ltd Device and method for measuring particle-size distribution
JP5719473B1 (en) * 2014-09-25 2015-05-20 リオン株式会社 Particle counter for chemicals
CN105699275A (en) * 2014-11-24 2016-06-22 新乡天翼过滤技术检测有限公司 Microparticle counting system using laser imaging and projection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195436A (en) * 1984-03-05 1985-10-03 ベクトン・ディッキンソン・アンド・カンパニー Flowing blood corpuscle counter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195436A (en) * 1984-03-05 1985-10-03 ベクトン・ディッキンソン・アンド・カンパニー Flowing blood corpuscle counter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224642A (en) * 1988-03-04 1989-09-07 Canon Inc Particle analyzing device
JPH0274845A (en) * 1988-09-09 1990-03-14 Canon Inc Particle measuring apparatus
JPH0274846A (en) * 1988-09-09 1990-03-14 Canon Inc Particle measuring apparatus
JPH02226046A (en) * 1989-02-27 1990-09-07 Shimadzu Corp Measuring apparatus of distribution of grain size
JP2000097841A (en) * 1998-08-22 2000-04-07 Malvern Instruments Ltd Device and method for measuring particle-size distribution
JP5719473B1 (en) * 2014-09-25 2015-05-20 リオン株式会社 Particle counter for chemicals
JP2016065833A (en) * 2014-09-25 2016-04-28 リオン株式会社 Medical solution particle counter
US9823190B2 (en) 2014-09-25 2017-11-21 Rion Co., Ltd. Particle counter for chemical solution
CN105699275A (en) * 2014-11-24 2016-06-22 新乡天翼过滤技术检测有限公司 Microparticle counting system using laser imaging and projection

Similar Documents

Publication Publication Date Title
EP0316171B1 (en) Particle asymmetry analyser
JP2786187B2 (en) Particle size detector
JP3138278B2 (en) Device for measuring light scattering by particles
US5260764A (en) Optical particle analyzing apparatus having two types of light source
US9766174B2 (en) Optical measuring device and optical measuring method
JP2771206B2 (en) Portable particle analyzer
US3873204A (en) Optical extinction photoanalysis apparatus for small particles
JPH0260256B2 (en)
JP2008534960A (en) A flow cytometer for distinguishing small particles in suspension.
JPH0715437B2 (en) Biological cell scattered light measurement device for flow cytometer
JP2022172075A (en) Optical flow cytometer for epi-fluorescence measurement
JP3532274B2 (en) Particle detector
US9594011B2 (en) Method and instrumentation for determining a physical property of a particle
JPS62293143A (en) Measuring instrument for corpuscle
JPH08128944A (en) Particle classifying equipment
JP2000230901A (en) Optical unit
JP2006010353A (en) Fine particle measuring instrument
JPH1130580A (en) Particle-measuring apparatus
JPS63201554A (en) Particle analyzing device
JP2003004625A (en) Flow sight meter
JP2879798B2 (en) Particle detector for use in particle size detector
JP2006250725A (en) Flow cell unit, flow site meter and fluorescence detection method
JPH08178830A (en) Detector
JPS63231244A (en) Cell analysis instrument
JPH0498145A (en) Counting device for particulates in fluid