JPH0274846A - Particle measuring apparatus - Google Patents

Particle measuring apparatus

Info

Publication number
JPH0274846A
JPH0274846A JP63226002A JP22600288A JPH0274846A JP H0274846 A JPH0274846 A JP H0274846A JP 63226002 A JP63226002 A JP 63226002A JP 22600288 A JP22600288 A JP 22600288A JP H0274846 A JPH0274846 A JP H0274846A
Authority
JP
Japan
Prior art keywords
light
irradiation
particles
sample particles
irradiation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63226002A
Other languages
Japanese (ja)
Other versions
JPH0621859B2 (en
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63226002A priority Critical patent/JPH0621859B2/en
Priority to US07/402,358 priority patent/US4999513A/en
Priority to FR8911791A priority patent/FR2636429B1/en
Priority to DE3930027A priority patent/DE3930027C2/en
Publication of JPH0274846A publication Critical patent/JPH0274846A/en
Publication of JPH0621859B2 publication Critical patent/JPH0621859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform analysis more accurately by projecting light beams on specimen particles in a plurality of directions, and obtaining the data of the specimen particles in a plurality of the directions. CONSTITUTION:Laser light from a laser source 1 is deflected through a light deflector 2. The image is formed at a part to be checked of a flowing part 6 in a flow cell 5 through an objective lens 4. The image of light from a laser light source 11 is likewise formed through a light deflector 12 in the direction perpendicular to the above described scanning light. Only the laser light from either direction is projected by the control with a control circuit 15. The light which is transmitted through or scattered by specimen particles is condensed through a condenser lens 8. Only the transmitted light passes through a stop 9. The intensity of the transmitted light is detected with a photodetector 10. The light is condensed through a condenser lens 16. Only the transmitted light is selected through a stop 17. The intensity of the transmitted light is detected with a photodetector 18.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は流れる検体粒子に対して光ビームを照射し検体
粒子に関する情報を検出して、粒子測定を行なう粒子測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle measuring device that performs particle measurement by irradiating flowing sample particles with a light beam and detecting information regarding the sample particles.

[従来の技術] 従来の粒子測定装置、例えばフローサイトメータでは、
1個ずつ高速で流れる細胞等の検体粒子に一方向から光
を照射し、それによって発生する散乱光や蛍光を測光す
ることにより、検体粒子の粒子径や性質に関する情報が
得られ、多数の細胞についてのこれらの情報から検体粒
子を計量的に解析していた。
[Prior Art] In conventional particle measuring devices, such as flow cytometers,
By irradiating light from one direction on specimen particles such as cells that are flowing one by one at high speed and measuring the scattered light and fluorescence generated by this, information about the particle size and properties of the specimen particles can be obtained. The sample particles were quantitatively analyzed from this information.

この従来のフローサイトメータにおいて、検体粒子に照
射する光ビームの形状及びサイズを、流れ方向は検体粒
子とほぼ同等かやや大きいサイズに設定し、流れ直交方
向は検体粒子よりも大きなサイズに設定することにより
、検体粒子の流わ位置にずれが生じても均一な強度で光
照射を行なうことができる。またこの他に、流れ方向の
ビームサイズを検体粒子のサイズよりも細くしたスリッ
ト形状のビームを照射することにより、検体粒子のより
詳細な情報を検出するスリットスキャン方式も用いられ
ている。また最近では抗体で感作したラテックス粒子に
被検試料を加え、抗原抗体反応によってラテックス粒子
の凝集が起こり、このラテックス凝集体の大きさをフロ
ーサイトメータな使って検出することにより、被検試料
中の特定抗原を判別する使い方もなされてきた。
In this conventional flow cytometer, the shape and size of the light beam that irradiates the sample particles is set to be approximately the same size or slightly larger than the sample particles in the flow direction, and set to be larger than the sample particles in the direction perpendicular to the flow. As a result, light irradiation can be performed with uniform intensity even if there is a shift in the flow position of the sample particles. In addition to this, a slit scan method is also used in which more detailed information about the sample particles is detected by irradiating a beam with a slit shape in which the beam size in the flow direction is smaller than the size of the sample particles. Recently, a test sample is added to latex particles sensitized with antibodies, and the antigen-antibody reaction causes aggregation of the latex particles, and the size of the latex aggregates is detected using a flow cytometer. It has also been used to identify specific antigens inside.

またフローサイトメータとは別に、検体粒子の画像情報
による粒子測定は、光学顕微鏡や電子顕微鏡等の装置を
用いて行なうことが一般になされている。特に最近は静
止した細胞を微小レーザスポットで2次元的に走査する
ことにより、コントラストの高い細胞の内部構造を反映
する画像を得る装置も用いられるようになってぎた。本
願出願人は先に出願した、特願昭63−100572に
て前記フローサイトメータと走査型顕微鏡の両者の機能
を兼ね備えた機能を持つ粒子測定装置を提案した。
In addition to a flow cytometer, particle measurement based on image information of sample particles is generally performed using a device such as an optical microscope or an electron microscope. Particularly recently, devices have come into use that obtain high-contrast images that reflect the internal structure of cells by two-dimensionally scanning stationary cells with a minute laser spot. The applicant of the present application previously filed Japanese Patent Application No. 100572/1983, in which he proposed a particle measuring device having the functions of both the flow cytometer and the scanning microscope.

[発明が解決しようとしている問題点コしかしながら、
特願昭63−100572の装置や、フローサイトメー
タ            では、各々の検体粒子につ
いて1方向からの情報しか取り出すことができず、検体
粒子の立体的な把握ができなかった。
[The problem that the invention is trying to solve, however,
The apparatus disclosed in Japanese Patent Application No. 63-100572 and the flow cytometer could only extract information from one direction about each sample particle, and it was not possible to understand the sample particle three-dimensionally.

本発明は各々の検体粒子について複数方向からの情報が
得られ、精度の高い解析が可能な粒子測定装置の提供を
目的とする。
An object of the present invention is to provide a particle measuring device that can obtain information about each sample particle from multiple directions and perform highly accurate analysis.

[問題を解決するための手段] 上述した問題点を解決するため、被検部に検体粒子を通
過させる手段と、前記被検部において検体粒子の通過方
向と交差する方向から光ビームを照射する第1の照射手
段と、検体粒子の通過方向と交差し前記第1の照射手段
の照射方向とは異なる方向から光ビームを照射する第2
の照射手段と、前記被検部からの光を前記第1、第2の
照射手段に対してそれぞれ測光する測光手段を備える。
[Means for Solving the Problem] In order to solve the above-mentioned problems, there is provided a means for passing the sample particles through the test section, and a light beam is irradiated on the test section from a direction intersecting the passing direction of the test particles. a first irradiation means, and a second irradiation means that irradiates a light beam from a direction that intersects with the passing direction of the sample particles and is different from the irradiation direction of the first irradiation means.
irradiation means, and photometry means for measuring the light from the test area with respect to the first and second irradiation means, respectively.

[実施例] 以下、本発明の粒子測定装置の実施例を図面を用いて詳
細に説明する。
[Example] Hereinafter, an example of the particle measuring device of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例の構成図、第2図はレーザビー
ム照射方向から見たフローセル部の側面図である。検体
粒子を光照射するための第1の光照射手段として、レー
ザ光源1から発射されたレーザ光は、光路中に設けられ
た光偏向器2によって、検体粒子の流れと直交する平面
内で高速に偏向走査される。なおレーザ光源1からの直
進方向にはストッパ3が設けられ、0次光がカットされ
る。光偏向器2で偏向されたレーザ光は、対物レンズ4
にてフローセル5内の流通部6の被検部にテレセントリ
ックに結像される。ここで結像スポットのサイズは検体
粒子サイズよりも小さいものとする。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. 2 is a side view of the flow cell section viewed from the laser beam irradiation direction. As a first light irradiation means for irradiating sample particles with light, a laser beam emitted from a laser light source 1 is deflected at high speed within a plane perpendicular to the flow of sample particles by an optical deflector 2 provided in the optical path. is deflected and scanned. Note that a stopper 3 is provided in the straight direction from the laser light source 1 to cut off the zero-order light. The laser beam deflected by the optical deflector 2 passes through the objective lens 4.
The image is telecentrically formed on the test part of the flow section 6 in the flow cell 5. Here, the size of the imaging spot is assumed to be smaller than the sample particle size.

また、前記走査光の照射方向及び検体粒子の通過方向に
直交する方向からは、第2の光照射手段として、レーザ
光源11、光偏向器12、対物しンズ←噌、及びストッ
パ14が前記第1の照射手段と同様に配置され、被検部
を第1の照射手段とは直交方向からテレセントリックに
走査する。
Further, from the direction orthogonal to the irradiation direction of the scanning light and the passing direction of the specimen particles, the laser light source 11, the optical deflector 12, the objective lens ←, and the stopper 14 serve as the second light irradiation means. The second irradiation means is arranged in the same manner as the first irradiation means, and telecentrically scans the test area from a direction orthogonal to the first irradiation means.

ここで前記光偏向器2及び12は、後述の方法にて一方
が被検部を走査している時は他方はブランキングになる
ように制御回路15にて制御される。すなわち、検体粒
子が複数方向から同時にレーザ照射されることなく、あ
る時間にはどちらか一方からのレーザ光しか照射されな
い。
Here, the optical deflectors 2 and 12 are controlled by a control circuit 15 in a manner to be described later, so that when one is scanning the subject, the other is blanking. That is, the sample particles are not irradiated with laser light from multiple directions simultaneously, but are irradiated with laser light from only one direction at a certain time.

フローセル5内の流通部6には例えば血球細胞やラテッ
クス凝集体等の検体粒子がシースフロー方式で第1図の
紙面垂直方向、すなわち第2図の上下方向に1個ずつあ
るいは1塊ずつ順々に流される。よって第2図のように
レーザスポット50が高速に走査される被検部に検体粒
子がさしかかると、検体粒子が流れ横方向に走査される
ことになる。この時、レーザ走査の光学系はテレセント
リックであるため、検体粒子に対してどのスキャン位置
でも同一の方向より照射ビームが入射し均一の走査が行
なわれる。こうしてレーザ光が複数方向から交互に高速
に走査されている流通部λの被検部に検体粒子7が通過
することにより、粒子の通過速度に対して走査速度が十
分大きく設定されているため、検体粒子は被検部通過の
際に各方向から複数回走査され、検体粒子に対して複数
方向から実質上2次元的な走査が行なわれることになる
Sample particles, such as blood cells and latex aggregates, are introduced into the flow section 6 in the flow cell 5 one by one or in clusters in the direction perpendicular to the page of FIG. 1, that is, in the vertical direction of FIG. be swept away by Therefore, as shown in FIG. 2, when specimen particles approach a test area where the laser spot 50 is scanned at high speed, the specimen particles flow and are scanned in the lateral direction. At this time, since the optical system for laser scanning is telecentric, the irradiation beam is incident on the sample particle from the same direction at any scanning position, and uniform scanning is performed. In this way, the specimen particles 7 pass through the test portion of the flow section λ where the laser light is scanned alternately from multiple directions at high speed, and the scanning speed is set sufficiently large compared to the passing speed of the particles. The specimen particles are scanned multiple times from each direction as they pass through the test area, resulting in substantially two-dimensional scanning of the specimen particles from multiple directions.

検体粒子7に対し、第1の光照射手段によってレーザ光
が走査され、検体粒子7を透過、及び検体粒子7で散乱
した光、あるいは検体粒子から発する蛍光は、フローセ
ル5を挟んで第1の光照射手段と対向する位置に配置さ
れる集光レンズ8にて集光され、光偏向器2と共役位置
に配される絞り9にて透過光のみが通過し、光検出器1
0にて透過光強度が検出される。なお、透過光ではなく
検体粒子の散乱光を検出したい場合は、絞り9の代りに
絞り9の開口と同一の面積のストッパを配することによ
り、透過光をカットして散乱光を検出することが可能で
ある。
The sample particles 7 are scanned with a laser beam by the first light irradiation means, and the light transmitted through the sample particles 7 and scattered by the sample particles 7, or the fluorescence emitted from the sample particles is transmitted to the first light source with the flow cell 5 in between. The light is condensed by a condenser lens 8 disposed at a position facing the light irradiation means, and only the transmitted light passes through an aperture 9 disposed at a conjugate position with the light deflector 2.
The transmitted light intensity is detected at 0. Note that if you want to detect the scattered light of the sample particles instead of the transmitted light, you can cut the transmitted light and detect the scattered light by placing a stopper with the same area as the aperture of the diaphragm 9 instead of the diaphragm 9. is possible.

また、フローセル5を挟んで第2の光照射手段と対向す
る位置には集光レンズ16が配置され、集光レンズ16
で集光された被検部からの透過光及び散乱光は、絞り1
7によって透過光のみが選択され、光検出器18にて透
過光強度が検出される。なお、透過光ではなく散乱光を
検出する場合は上記と同様である。前記光検出器10及
び18の出力はそれぞれメモリ13に接続され、時系列
的に別々にメモリ上に蓄えられる。
Further, a condenser lens 16 is arranged at a position facing the second light irradiation means with the flow cell 5 in between.
The transmitted light and scattered light from the test area collected by the aperture 1
7 selects only the transmitted light, and the photodetector 18 detects the intensity of the transmitted light. Note that the case where scattered light is detected instead of transmitted light is similar to the above. The outputs of the photodetectors 10 and 18 are respectively connected to a memory 13 and stored separately in the memory in chronological order.

次に第3図及び第4図を用いて、制御回路15における
光偏向器2.12の駆動法について説明する。駆動信号
発生器19では第4図(1)のように、50%デユーテ
ィの矩形波を発生する。この信号は二岐され、一方は鋸
歯状波発生器21に人力され、他方はインバータ20に
よって第4図(4)のように波形が反転され鋸歯状波発
生器22に人力される。実際には第4図(2)、第4図
(5)のU、BLK信号が有効走査範囲を決定する。こ
れら鋸歯状波発生器21.22によって、それぞれ第4
図(3)、第4図(6)のような鋸歯状の波形の信号が
得られ、これらの信号はそれぞれ電圧制御型発才辰器2
3.33、増幅器24.34を経て光偏向器の駆動信号
となり、光偏向器2.12においてトランスデユーサを
駆動して光を偏向して走査する。こうして一方が有効走
査範囲を走査中は、他方はブランキング状態となり、各
方向から見た粒子情報を別々に区別して取り出すことが
できる。
Next, a method of driving the optical deflector 2.12 in the control circuit 15 will be explained using FIGS. 3 and 4. The drive signal generator 19 generates a 50% duty rectangular wave as shown in FIG. 4(1). This signal is split into two branches, one of which is input to the sawtooth wave generator 21, and the other whose waveform is inverted by the inverter 20 as shown in FIG. 4 (4) and is input to the sawtooth wave generator 22. Actually, the U and BLK signals in FIGS. 4(2) and 4(5) determine the effective scanning range. These sawtooth generators 21, 22 generate a fourth
Signals with sawtooth waveforms as shown in Fig. (3) and Fig. 4 (6) are obtained, and each of these signals is
3.33, it becomes a driving signal for the optical deflector through amplifiers 24.34, and drives a transducer in the optical deflector 2.12 to deflect and scan the light. In this way, while one is scanning the effective scanning range, the other is in a blanking state, and particle information viewed from each direction can be extracted separately.

以上のようにして、多数の検体粒子に関して蓄えられた
複数方向から見た検体粒子の形態等を表わす情報のデー
タに、画像処理等の処理を施したり、ヒストグラムやサ
イトグラムに表わしたりして、さまざまな粒子解析が可
能であることは一般に良く知られている。この解析結果
はCRT上に表示したり、プリントアウト等の方法によ
って出力される。
As described above, the information data representing the morphology of the sample particles as seen from multiple directions, which has been stored for a large number of sample particles, is subjected to processing such as image processing, and is expressed in a histogram or cytogram. It is generally well known that various particle analyzes are possible. This analysis result is displayed on a CRT or outputted by a method such as printing out.

[第2実施例] 次に本発明の第2の実施例を説明する。第5図はその構
成図、第丸図はレーザビーム照射方向から見たフローセ
ル部の側面図である。それぞれの図において先の実施例
と同一の符号は同一の部材を表わす。
[Second Embodiment] Next, a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram thereof, and the circle diagram is a side view of the flow cell section viewed from the laser beam irradiation direction. In each figure, the same reference numerals as in the previous embodiment represent the same members.

第5図において、第1の光照射手段として、レーザ光源
31から出射されたレーザ光は、メカニカルシャッタや
液晶シャッタ、あるいはチョッパ等の光制限手段32を
通り、複数のシルントリカルレンズから成るレンズユニ
ット33においてスリット形状のビームに成形されて、
フローセルフ内の流通部6の被検部に照射される。この
ビーム形状は第6図の51のように、流れ方向に細く流
れ直交方向に大きい形状である。なおレンズユニット3
3の代りに、スリット形状のアパーチャを用いてビーム
スポットを成形しても良い。また変形例として第7図の
51ような検体粒子サイズよりも大きい楕円型のビーム
スポットの照射も可能であるが、スリット形状のビーム
の方が得られる情報量が多い。
In FIG. 5, a laser beam emitted from a laser light source 31 as a first light irradiation means passes through a light limiting means 32 such as a mechanical shutter, a liquid crystal shutter, or a chopper, and passes through a lens consisting of a plurality of siluntric lenses. It is formed into a slit-shaped beam in the unit 33,
The area to be inspected in the flow section 6 within the flow cell is irradiated. This beam shape is narrow in the flow direction and large in the direction perpendicular to the flow, as shown by 51 in FIG. Furthermore, lens unit 3
3, the beam spot may be formed using a slit-shaped aperture. Further, as a modification, it is possible to irradiate with an elliptical beam spot such as 51 in FIG. 7, which is larger than the sample particle size, but a slit-shaped beam can obtain a larger amount of information.

また第2の光照射手段として、前記第1の光照射手段と
は直交する方向に、レーザ光源34、光制限手段35、
レンズユニット36が、前記第1の光照射手段と同様に
配される。
Further, as a second light irradiation means, a laser light source 34, a light restriction means 35,
A lens unit 36 is arranged in the same manner as the first light irradiation means.

ここで前記第1、第2の光照射手段のレーザ光照射は、
制御回路45によって光制限手段32.35が制御され
、短時間に交互に照射される。
Here, the laser light irradiation by the first and second light irradiation means is as follows:
The light limiting means 32,35 are controlled by the control circuit 45, and the light is irradiated alternately in a short period of time.

よって被検部への検体粒子の通過により、検体粒子が2
方向から交互にスリットスキャンされる。
Therefore, by passing the sample particles to the test area, the sample particles
The slits are scanned alternately from each direction.

こうして交互に検体粒子に照射されて検体粒子を透過及
び散乱した光、あるいは粒子から発する蛍光は、第1の
光照射手段に関しては集光レンズ40、光検出器41で
受光さね、第2の光照射手段に関しては集光レンズ42
、光検出器43で受光される。なお、透過光、散乱光の
いずれを検出するかは、図示はしていないが、先の実施
例のように光検出器41.43の前に絞りを置くか、ス
トッパを置くかでどちらかを選択することができる。こ
れら光検出器41.43の出力はメモリ44において、
別々に時系列的に記憶され、こうしてメモリ44には複
数方向から見た検体粒子の1次元的な光走査結果が、多
数の検体粒子に関して蓄えられることになり、このデー
タを基にさまざまな粒子解析がなされる。
In this way, the light that is alternately irradiated onto the sample particles and transmitted and scattered by the sample particles, or the fluorescence emitted from the particles, is received by the condenser lens 40 and the photodetector 41 for the first light irradiation means, and is received by the light detector 41 for the first light irradiation means. Concerning the light irradiation means, a condensing lens 42
, the light is received by the photodetector 43. Note that whether to detect transmitted light or scattered light is determined by placing an aperture in front of the photodetector 41, 43 as in the previous embodiment or by placing a stopper, although it is not shown in the figure. can be selected. The outputs of these photodetectors 41 and 43 are stored in the memory 44.
They are stored separately in chronological order, and in this way, the memory 44 stores the one-dimensional optical scanning results of the specimen particles viewed from multiple directions for a large number of specimen particles.Based on this data, various particle An analysis is made.

以上説明してきた実施例では、レーザ照射光の光軸前方
に配される光検出手段により前方散乱光又は透過光を検
出したが、他方の光検出手段を側方散乱光の検出に兼用
して、同時に側方散乱光を検出することも可能である。
In the embodiments described above, forward scattered light or transmitted light is detected by the light detection means disposed in front of the optical axis of the laser irradiation light, but the other light detection means is also used to detect side scattered light. , it is also possible to detect side scattered light at the same time.

なお側方散乱光を検出するのに、他方の光検出手段を兼
用せずに専用の検出光学系を設けても良いのはもちろん
のことである。さらに光路中、光検出器の前にダイクロ
イックミラーやバリアフィルタからなる検出系を設けて
検体粒子から発する蛍光を検出することも可能である。
It goes without saying that a dedicated detection optical system may be provided to detect the side scattered light without also serving as the other light detection means. Furthermore, it is also possible to detect fluorescence emitted from sample particles by providing a detection system including a dichroic mirror or a barrier filter in front of the photodetector in the optical path.

これにより測定パラメータを増やすことができ、測定精
度の向上につながる。
This allows the number of measurement parameters to be increased, leading to improved measurement accuracy.

なお上述の実施例では、ブランキング制御することによ
り、2方向からの照射光が同時に被検粒子に照射されな
いようにして、他方の照射光によるノイズの混入を防い
だが、透過光または面方散乱光のみの検出が目的であれ
ば、ブランキング制御せずに、2方向からの照射光を同
時に照射しても測定精度にはさほど影響は無い。なぜな
らば透過光または前方散乱光の強度に対して、側方散乱
光や蛍光の強度はごく微弱だからである。
In the above example, blanking control was performed to prevent the irradiation light from two directions from being irradiated onto the test particle at the same time, thereby preventing noise from being mixed in by the other irradiation light. If the purpose is to detect only light, irradiating light from two directions simultaneously without blanking control will not have much effect on measurement accuracy. This is because the intensity of side scattered light and fluorescence is extremely weak compared to the intensity of transmitted light or forward scattered light.

また上述の実施例では、検体粒子を2方向から光照射し
て、2方向からの情報を得たが、これには限定されず、
3方向以上の複数方向から光照射することにより、より
詳細な解析を行なうことも可能である。
In addition, in the above-mentioned example, the sample particles were irradiated with light from two directions to obtain information from two directions, but the invention is not limited to this.
It is also possible to perform more detailed analysis by irradiating light from three or more directions.

[発明の効果] 以上本発明によれば、各々の検体粒子について複数方向
からの情報を得ることができ、より精度の高い解析が可
能な粒子測定装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a particle measuring device that can obtain information about each sample particle from multiple directions and can perform more accurate analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、 第2図はフローセル部の側面図、 第3図は光偏向器の駆動方法、 第4図は光偏向器の駆動タイミングチャート、第5図は
第2実施例の構成図、 第6図は第2実施例におけるフローセル部の側面図、 第7図は第2実施例の変形例におけるフローセル部の側
面図、 であり、図中の主な記号は、 1.11.31.34・・・・レーザ光源、2.12・
・・・光偏向器、3、!4・・・・ストッパ、5・・・
・フローセル、6・・・・流通部、7・・・・検体粒子
、9.17・・・・絞り13.44・・・・メモリ、1
5.45・・・・制御回路、19・・・・駆動信号発生
器、21.22・・・・鋸歯状波発生器、23.33・
・・・電圧制御型発振器、24.34・・・・増幅器、
32.35・・・・光制限手段。 第2因 住6 千3図 第4団
Figure 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is a side view of the flow cell section, Figure 3 is a method of driving an optical deflector, Figure 4 is a timing chart for driving the optical deflector, and Figure 5 is a diagram of the drive timing chart of the optical deflector. 6 is a side view of the flow cell section in the second embodiment; FIG. 7 is a side view of the flow cell section in a modified example of the second embodiment. Main symbols in the figure 1.11.31.34... Laser light source, 2.12.
...Light deflector, 3! 4... Stopper, 5...
・Flow cell, 6... Distribution section, 7... Sample particles, 9.17... Aperture 13.44... Memory, 1
5.45... Control circuit, 19... Drive signal generator, 21.22... Sawtooth wave generator, 23.33...
...voltage controlled oscillator, 24.34... amplifier,
32.35...Light limiting means. 2nd Inju 6,3rd drawing 4th group

Claims (1)

【特許請求の範囲】 1、被検部に検体粒子を通過させる手段と、前記被検部
において検体粒子の通過方向と交差する方向から照射光
を照射する第1の照射手段と、検体粒子の通過方向と交
差し前記第1の照射手段の照射方向とは異なる方向から
照射光を被検部に照射する第2の照射手段と、前記被検
部からの光を前記第1、第2の照射手段に対してそれぞ
れ測光する測光手段を備えることを特徴とする粒子測定
装置。 2、前記第1、第2の照射手段の一方が照射中は他方は
ブランキングとなるように制御する制御手段を有する請
求項1記載の粒子測定装置。 3、前記照射手段は光偏向器を含む光学系で光ビームを
偏向して、被検部を検体粒子の通過方向と交差する方向
に走査する請求項1記載の粒子測定装置。 4、前記照射手段は検体粒子の通過方向と交差する方向
に扁平の光ビームを照射する請求項1記載の粒子測定装
置。
[Scope of Claims] 1. means for passing sample particles through a test region; first irradiation means for irradiating irradiation light from a direction intersecting the passing direction of test particles in the test region; a second irradiation means that irradiates the test area with irradiation light from a direction that intersects with the passing direction and is different from the irradiation direction of the first irradiation unit; A particle measuring device characterized by comprising photometric means for measuring light with respect to each of the irradiation means. 2. The particle measuring device according to claim 1, further comprising a control means for controlling one of the first and second irradiation means to perform blanking while the other is irradiating. 3. The particle measuring device according to claim 1, wherein the irradiation means deflects the light beam with an optical system including a light deflector to scan the test area in a direction intersecting the passing direction of the sample particles. 4. The particle measuring device according to claim 1, wherein the irradiation means irradiates a flat light beam in a direction intersecting the passing direction of the sample particles.
JP63226002A 1988-09-09 1988-09-09 Particle measuring device Expired - Lifetime JPH0621859B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63226002A JPH0621859B2 (en) 1988-09-09 1988-09-09 Particle measuring device
US07/402,358 US4999513A (en) 1988-09-09 1989-09-05 Particle measuring apparatus
FR8911791A FR2636429B1 (en) 1988-09-09 1989-09-08 PARTICLE MEASURING APPARATUS
DE3930027A DE3930027C2 (en) 1988-09-09 1989-09-08 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226002A JPH0621859B2 (en) 1988-09-09 1988-09-09 Particle measuring device

Publications (2)

Publication Number Publication Date
JPH0274846A true JPH0274846A (en) 1990-03-14
JPH0621859B2 JPH0621859B2 (en) 1994-03-23

Family

ID=16838250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226002A Expired - Lifetime JPH0621859B2 (en) 1988-09-09 1988-09-09 Particle measuring device

Country Status (1)

Country Link
JP (1) JPH0621859B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498145A (en) * 1990-08-16 1992-03-30 Sigma Tec:Kk Counting device for particulates in fluid
JP2013502590A (en) * 2009-08-20 2013-01-24 バイオ−ラド ラボラトリーズ インコーポレイテッド Rapid imaging of cell cross sections
JP2013526714A (en) * 2010-05-18 2013-06-24 パルテック ゲーエムベーハー Configuration for measuring the optical properties of dispersed particles
WO2017187490A1 (en) * 2016-04-26 2017-11-02 株式会社日立ハイテクノロジーズ Analytical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084285A (en) * 1973-11-26 1975-07-08
JPS60237345A (en) * 1984-05-01 1985-11-26 オーソ・ダイアグノステイツク・システムズ・インコーポレイテツド Method and device for analyzing particle
JPS62293143A (en) * 1986-06-12 1987-12-19 Rion Co Ltd Measuring instrument for corpuscle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084285A (en) * 1973-11-26 1975-07-08
JPS60237345A (en) * 1984-05-01 1985-11-26 オーソ・ダイアグノステイツク・システムズ・インコーポレイテツド Method and device for analyzing particle
JPS62293143A (en) * 1986-06-12 1987-12-19 Rion Co Ltd Measuring instrument for corpuscle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498145A (en) * 1990-08-16 1992-03-30 Sigma Tec:Kk Counting device for particulates in fluid
JP2013502590A (en) * 2009-08-20 2013-01-24 バイオ−ラド ラボラトリーズ インコーポレイテッド Rapid imaging of cell cross sections
US8610085B2 (en) 2009-08-20 2013-12-17 Bio-Rad Laboratories, Inc. High-speed cellular cross sectional imaging
JP2013526714A (en) * 2010-05-18 2013-06-24 パルテック ゲーエムベーハー Configuration for measuring the optical properties of dispersed particles
WO2017187490A1 (en) * 2016-04-26 2017-11-02 株式会社日立ハイテクノロジーズ Analytical device

Also Published As

Publication number Publication date
JPH0621859B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3145487B2 (en) Particle analyzer
US4999513A (en) Particle measuring apparatus
US5644388A (en) Imaging flow cytometer nearly simultaneously capturing a plurality of images
JP3090679B2 (en) Method and apparatus for measuring a plurality of optical properties of a biological specimen
JP3290786B2 (en) Particle analyzer
JP3187129B2 (en) Particle analyzer
JP3299817B2 (en) Imaging flow cytometer
JPH04270963A (en) Flow image sight sensor
JPH06186155A (en) Particle analyzer
JPH05346392A (en) Imaging flow site meter
JPH0734012B2 (en) Flow image cytometer
JPH07270307A (en) Scanning type confocal microscope
JPH05273110A (en) Measuring method and device for size information of grain or flaw
JPH06186156A (en) Particle analyzer
JPH08320285A (en) Particle analyzing device
JPH02105041A (en) Particle measuring instrument
JP3102925B2 (en) Particle analyzer
JP2826449B2 (en) Flow type particle image analysis method and flow type particle image analysis device
JP2006317261A (en) Image processing method and device of scanning cytometer
JPH0274846A (en) Particle measuring apparatus
JP2003017536A (en) Pattern inspection method and inspection apparatus
JP2001194303A (en) Device for analyzing diffusion motion of fluorescent molecule
JPH07294414A (en) Grain image analyzing method and device therefor
JPH01270644A (en) Particle analyser
JPH0783817A (en) Flow type method and device for analysis of particle image