JPH02105041A - Particle measuring instrument - Google Patents

Particle measuring instrument

Info

Publication number
JPH02105041A
JPH02105041A JP63259197A JP25919788A JPH02105041A JP H02105041 A JPH02105041 A JP H02105041A JP 63259197 A JP63259197 A JP 63259197A JP 25919788 A JP25919788 A JP 25919788A JP H02105041 A JPH02105041 A JP H02105041A
Authority
JP
Japan
Prior art keywords
detected
particles
light
test
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63259197A
Other languages
Japanese (ja)
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63259197A priority Critical patent/JPH02105041A/en
Publication of JPH02105041A publication Critical patent/JPH02105041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain information of high accuracy relating to particles to be detected by optically scanning the particles to be detected in the part to be detected of the particle measuring instrument and receiving the passed light by array type photodetectors disposed in the position conjugate with the part to be detected. CONSTITUTION:The particles 7 to be detected, such as vital cells or latex particles, are passed to flow by one piece or one lump each in the perpendicular direction of the flow part 6 in a flow cell 5 of the particle measuring instrument by a sheath flow system. The pass of the particles 7 to be detected is optically scanned and the scattered light and transmitted light are released from the particles 7 to be detected. These light rays are condensed by a condenser lens 8. The scattered light is removed by a stop 9 disposed in the position conjugate with an optical deflecting element 2 and only the transmitted light is selected. The transmitted light selected in such a manner is detected by a lens 10 and the array type photodetector 11 positioned behind the stop 9. The respective arrayed photodetecting elements of this detector 11 are conjugated with the optical scanning position in the part to be inspected and only the light rays from the positions to be detected respectively corresponding to the respective photodetecting elements are made incident to these elements. The light rays are selectively outputted and are taken into a memory 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被検部を順次通過する被検粒子に光ビームを照
射し被検粒子に関する情報を検出して粒子測定を行なう
粒子測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle measuring device that performs particle measurement by irradiating a light beam onto test particles that sequentially pass through a test section and detecting information about the test particles. .

[従来の技術] 従来の粒子測定装置、例えばフローサイトメータでは、
光学セル中を1個ずつ高速で流れる細胞等の被検粒子に
光、を照射し、放射される散乱光や蛍光を測光すること
により、被検粒子の粒状性や性質に関する情報が得られ
、多数の細胞についてのこれらの情報から被検粒子を定
量的に解析していた。
[Prior Art] In conventional particle measuring devices, such as flow cytometers,
By irradiating light onto test particles such as cells that flow one by one at high speed through an optical cell and measuring the emitted scattered light and fluorescence, information about the granularity and properties of the test particles can be obtained. The test particles were quantitatively analyzed from this information about a large number of cells.

本願出願人は先に出願した特願昭63−100572に
て、前記フローサイトメータにおいて、照射ビームを被
検粒子の流れと交差する方向に走査し、放射される光を
時系列的に検出記憶することにより、被検粒子各部の情
報が得られ、より詳細な解析が可能な粒子測定装置を提
案した。
In the previously filed Japanese Patent Application No. 63-100572, the applicant of the present invention proposed that the flow cytometer scans the irradiation beam in a direction intersecting the flow of the particles to be detected, and detects and stores the emitted light in chronological order. By doing so, we have proposed a particle measuring device that can obtain information on each part of the particle being tested and perform more detailed analysis.

[発明の目的] 本発明は前記特願昭63−100572の装置の更なる
改良を目的とし、より精度の高い粒子情報が得られる粒
子測定装置の提供を目的とする。
[Object of the Invention] The present invention aims to further improve the apparatus disclosed in Japanese Patent Application No. 63-100572, and aims to provide a particle measuring apparatus capable of obtaining particle information with higher accuracy.

[目的を達成するための手段] 上述した目的を達成する本発明は、被検粒子が通過する
被検部において被検粒子の通過方向と交差する方向に光
ビームを走査する走査手段と、前記被検部での走査位置
と兵役位置に受光素子群が位置するように配されるアレ
イ型光検出器と、前記光ビームの被検部における走査位
置に共役な受光素子の検出出力を選択し順次記憶する手
段を有する。
[Means for Achieving the Object] The present invention that achieves the above-mentioned object includes: a scanning means for scanning a light beam in a direction intersecting the passing direction of the test particles in a test section through which the test particles pass; An array type photodetector is arranged such that a group of light receiving elements is located at a scanning position in the subject area and a military service position, and a detection output of the light receiving element is selected that is conjugate to the scanning position of the light beam in the subject area. It has means for sequentially storing.

[実施例コ 以下、本発明の粒子測定装置の実施例を図面を用いて詳
細に説明する。
[Example 7] Examples of the particle measuring device of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例の構成図、第2図はフローセル
部の側面図である。レーザ光源1から発射されたレーザ
光は、光路中に設けられ、た光偏向素子2によって、被
検粒子の流れと直交する平面内で高速に偏向走査される
。なおレーザ光源1からの直進方向にはストッパ3が設
けられ0次光がカットされる。光偏向素子2で偏向され
たレーザ光は結像レンズ系4にてフローセル5内の流通
部6の被検部にテレセントリックに結像される。テレセ
ントリックに結像することにより、被検部のどのスキャ
ン位置でも同一の方向より照射ビームが入射するので均
一の走査が行なわれる。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. 2 is a side view of a flow cell section. A laser beam emitted from a laser light source 1 is deflected and scanned at high speed in a plane orthogonal to the flow of particles to be detected by an optical deflection element 2 provided in an optical path. Note that a stopper 3 is provided in the straight direction from the laser light source 1 to cut off the zero-order light. The laser beam deflected by the optical deflection element 2 is telecentrically imaged by the imaging lens system 4 onto the test portion of the flow section 6 in the flow cell 5 . By telecentric imaging, the irradiation beam is incident from the same direction at any scanning position of the object, so uniform scanning is performed.

なお、結像レンズ系4によってビームスポット形状は、
第2図の20のように、被検粒子の流れ方向に長径、走
査方向に短径を持つ楕円形状に成形され、1画素当たり
の画素の形状をXY方向等しくすることができる。
Note that the beam spot shape is determined by the imaging lens system 4.
As shown in 20 in FIG. 2, it is formed into an elliptical shape with a major axis in the flow direction of the particles to be inspected and a minor axis in the scanning direction, so that the shape of each pixel can be made equal in the X and Y directions.

フローセル5内の流通部6には、第1図の紙面垂直方向
すなわち第2図での縦方向に、シースフロ一方式によっ
て生体細胞やラテックス粒子等の被検粒子7が1個ある
いは1塊ずつ順々に流される。よって第2図の矢印方向
に光走査される被検部に被検粒子が通過すると、被検粒
子が光走査され、被検粒子からは散乱光及び透過光が放
射される。これらの光は集光レンズ8にて集光され、光
偏向素子2と共役位置に配される絞り9によって散乱光
が排除され透過光のみが選択される。選択された透過光
は、絞り9の後方に位置するレンズ10、アレイ型光検
出器11にて検出される。ここで、該アレイ型光検出器
11は、アレイ状の各受光素子が被検部での光走査位置
とが共役になるように配置され、各受光素子にはそれぞ
れ対応した被検位置からの光のみが入射するようになっ
ている。光偏向器2によるレーザ光の偏向走査と、アレ
イ型光検出器の各受光素子の内、メモリ12に取り込ま
れる受光素子の出力の選択は同期が取られている。すな
わち1走査された時の被検粒子の各位置における光透過
情報は、アレイ型光検出器の中の対応する受光素子の出
力が光ビームの走査位置に応じて順次選択され、受光出
力がメモリ12上に次々と記憶される。従来は時系列的
に一定時間間隔ごとに光検出して被検粒子の各位置の情
報を検出、していたが、本実施例の装置構成によれば、
光走査される被検部の各位置に対応した各受光素子によ
り直接的に被検粒子多位置からのみの光情報を得ること
ができる。なお、アレイ型光検出器11は1次元のアレ
イ型でも2次元のアレイ型であっても良い。
In the flow section 6 in the flow cell 5, test particles 7 such as biological cells or latex particles are sequentially placed one by one or in clusters by a sheath-flow system in a direction perpendicular to the plane of the paper in FIG. 1, that is, in a longitudinal direction in FIG. washed away. Therefore, when the test particle passes through the test section that is optically scanned in the direction of the arrow in FIG. 2, the test particle is optically scanned, and scattered light and transmitted light are emitted from the test particle. These lights are condensed by a condenser lens 8, and scattered light is eliminated by an aperture 9 disposed at a conjugate position with the optical deflection element 2, so that only transmitted light is selected. The selected transmitted light is detected by a lens 10 and an array photodetector 11 located behind the aperture 9. Here, in the array-type photodetector 11, each light receiving element in the array is arranged so that the light scanning position on the test area is conjugate, and each light receiving element receives light from the corresponding test position. Only light is allowed to enter. The deflection scanning of the laser beam by the optical deflector 2 and the selection of the output of the light receiving element to be taken into the memory 12 from among the light receiving elements of the array type photodetector are synchronized. In other words, the light transmission information at each position of the target particle during one scan is determined by sequentially selecting the output of the corresponding light-receiving element in the array type photodetector according to the scanning position of the light beam, and storing the light-receiving output in the memory. 12 are stored one after another. Conventionally, information on each position of the target particle was detected by detecting light at regular time intervals in chronological order, but according to the device configuration of this embodiment,
It is possible to directly obtain optical information only from multiple positions of the target particle by each light receiving element corresponding to each position of the target part to be optically scanned. Note that the array type photodetector 11 may be a one-dimensional array type or a two-dimensional array type.

以上のように被検粒子が被検部を通過するごとに、メモ
リ12上には各々の被検粒子の情報データが次々と蓄え
られる。このデータから被検粒子のサイズや形態、内部
状態等が分かる。これに画像処理を施したり、サイトグ
ラムやヒストグラム表示したりして、さまざまな粒子解
析が可能であり、演算手段13にてこれらの粒子解析の
処理を行なう。この処理結果はCRT上に表示したり、
プリントアウト等の方法によって出力される。
As described above, each time the test particles pass through the test section, the information data of each test particle is stored one after another on the memory 12. From this data, the size, shape, internal state, etc. of the test particles can be determined. Various particle analyzes can be performed by subjecting this to image processing or displaying a cytogram or histogram, and the calculation means 13 performs these particle analysis processes. The processing results can be displayed on a CRT,
It is output by a method such as printing out.

[発明の効果] 以上本発明によれば、被検部の被検粒子を光走査し、被
検部と共役位置に配されるアレイ型光検出器で透過光を
受光することにより、被検粒子に関する精度の高い情報
を得ることができる。
[Effects of the Invention] As described above, according to the present invention, by optically scanning the test particles in the test part and receiving the transmitted light with an array type photodetector arranged at a position conjugate with the test part, the test particle can be detected. Highly accurate information about particles can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、 第2図はフローセル部の側面図、 である。図中の主な符号は、 FIG. 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is a side view of the flow cell section. It is. The main symbols in the diagram are

Claims (1)

【特許請求の範囲】[Claims] 1、被検粒子が通過する被検部において被検粒子の通過
方向と交差する方向に光ビームを走査する走査手段と、
前記被検部での走査位置と共役位置に受光素子群が位置
するように配されるアレイ型光検出器と、前記光ビーム
の被検部における走査位置に共役な受光素子の検出出力
を選択し順次記憶する手段を有することを特長とする粒
子測定装置。
1. A scanning means for scanning a light beam in a direction intersecting the passing direction of the test particles in a test section through which the test particles pass;
Selecting an array type photodetector arranged such that a group of light receiving elements is located at a position conjugate to the scanning position in the test area, and a detection output of the light receiving element conjugate to the scanning position of the light beam in the test area. What is claimed is: 1. A particle measuring device characterized by having means for sequentially storing data.
JP63259197A 1988-10-13 1988-10-13 Particle measuring instrument Pending JPH02105041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259197A JPH02105041A (en) 1988-10-13 1988-10-13 Particle measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259197A JPH02105041A (en) 1988-10-13 1988-10-13 Particle measuring instrument

Publications (1)

Publication Number Publication Date
JPH02105041A true JPH02105041A (en) 1990-04-17

Family

ID=17330728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259197A Pending JPH02105041A (en) 1988-10-13 1988-10-13 Particle measuring instrument

Country Status (1)

Country Link
JP (1) JPH02105041A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426499A (en) * 1992-10-21 1995-06-20 Toa Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein a one dimension image sensor optically tracks a particle
US5448349A (en) * 1992-10-21 1995-09-05 Toe Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein an optical deflector optically tracks a particle
JP2008514958A (en) * 2004-09-28 2008-05-08 ハネウェル・インターナショナル・インコーポレーテッド Cytometer with telecentric optical element
US7804594B2 (en) 2006-12-29 2010-09-28 Abbott Laboratories, Inc. Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8159670B2 (en) 2007-11-05 2012-04-17 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream
JP2018509615A (en) * 2015-02-19 2018-04-05 プレミアム ジェネティクス (ユーケー) リミテッド Scanning infrared measurement system
US11187224B2 (en) 2013-07-16 2021-11-30 Abs Global, Inc. Microfluidic chip
US11193879B2 (en) 2010-11-16 2021-12-07 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11415503B2 (en) 2013-10-30 2022-08-16 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip
US11889830B2 (en) 2019-04-18 2024-02-06 Abs Global, Inc. System and process for continuous addition of cryoprotectant

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426499A (en) * 1992-10-21 1995-06-20 Toa Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein a one dimension image sensor optically tracks a particle
US5448349A (en) * 1992-10-21 1995-09-05 Toe Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein an optical deflector optically tracks a particle
US11422504B2 (en) 2002-07-31 2022-08-23 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11415936B2 (en) 2002-07-31 2022-08-16 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
JP2008514958A (en) * 2004-09-28 2008-05-08 ハネウェル・インターナショナル・インコーポレーテッド Cytometer with telecentric optical element
JP4733136B2 (en) * 2004-09-28 2011-07-27 ハネウェル・インターナショナル・インコーポレーテッド Cytometer with telecentric optical element
US7804594B2 (en) 2006-12-29 2010-09-28 Abbott Laboratories, Inc. Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8045162B2 (en) 2006-12-29 2011-10-25 Abbott Laboratories, Inc. Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8253938B2 (en) 2006-12-29 2012-08-28 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8159670B2 (en) 2007-11-05 2012-04-17 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8400632B2 (en) 2007-11-05 2013-03-19 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US11193879B2 (en) 2010-11-16 2021-12-07 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US11965816B2 (en) 2010-11-16 2024-04-23 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
US11187224B2 (en) 2013-07-16 2021-11-30 Abs Global, Inc. Microfluidic chip
US11512691B2 (en) 2013-07-16 2022-11-29 Abs Global, Inc. Microfluidic chip
US11415503B2 (en) 2013-10-30 2022-08-16 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11639888B2 (en) 2013-10-30 2023-05-02 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
US10677710B2 (en) 2015-02-19 2020-06-09 1087 Systems, Inc. Scanning infrared measurement system
JP2018509615A (en) * 2015-02-19 2018-04-05 プレミアム ジェネティクス (ユーケー) リミテッド Scanning infrared measurement system
US11674882B2 (en) 2015-02-19 2023-06-13 1087 Systems, Inc. Scanning infrared measurement system
US11331670B2 (en) 2018-05-23 2022-05-17 Abs Global, Inc. Systems and methods for particle focusing in microchannels
US11889830B2 (en) 2019-04-18 2024-02-06 Abs Global, Inc. System and process for continuous addition of cryoprotectant
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip

Similar Documents

Publication Publication Date Title
JP3145487B2 (en) Particle analyzer
US5548395A (en) Particle analyzer
US5644388A (en) Imaging flow cytometer nearly simultaneously capturing a plurality of images
EP0500293B1 (en) Particle detection method and apparatus
US5076692A (en) Particle detection on a patterned or bare wafer surface
US5125741A (en) Method and apparatus for inspecting surface conditions
US5457526A (en) Apparatus for analyzing particles in fluid samples
US4920275A (en) Particle measuring device with elliptically-shaped scanning beam
EP1672355B1 (en) Improved method of scanning and light collection for a rare cell detector
JPH06186155A (en) Particle analyzer
KR20010052731A (en) Method and system for imaging an object with a plurality of optical beams
JPH02105041A (en) Particle measuring instrument
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JPH06186156A (en) Particle analyzer
CN112255166A (en) Scanning flow type cell imaging analyzer
JPH07229844A (en) Dust particle inspection system
JPH0579970A (en) Particle analyzer
US10663393B2 (en) Spectrum inspecting apparatus
JP2003017536A (en) Pattern inspection method and inspection apparatus
JP4536337B2 (en) Surface inspection method and surface inspection apparatus
JPS6151569A (en) Cell identifying device
JPH01270644A (en) Particle analyser
US7706590B2 (en) Method and device for interrogating samples using laser scanning cytometry and other techniques
JPS6244650A (en) Particle analyzing device
JP3392550B2 (en) Method for measuring deflection angle of charged particle beam and charged particle beam apparatus