JPH0498145A - Counting device for particulates in fluid - Google Patents
Counting device for particulates in fluidInfo
- Publication number
- JPH0498145A JPH0498145A JP2216421A JP21642190A JPH0498145A JP H0498145 A JPH0498145 A JP H0498145A JP 2216421 A JP2216421 A JP 2216421A JP 21642190 A JP21642190 A JP 21642190A JP H0498145 A JPH0498145 A JP H0498145A
- Authority
- JP
- Japan
- Prior art keywords
- light
- fluid
- particles
- detection cell
- receiving optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 33
- 239000002245 particle Substances 0.000 claims abstract description 53
- 238000001514 detection method Methods 0.000 claims abstract description 45
- 239000010419 fine particle Substances 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims description 24
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 17
- 239000007788 liquid Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 5
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は流体中の微粒子計数装置に関し、詳しくは、液
体や気体等の流体中に含まれる微粒子の個数を光散乱に
より計数する微粒子計数装置に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a particle counting device in a fluid, and more specifically, a particle counting device that counts the number of particles contained in a fluid such as a liquid or gas by light scattering. Regarding.
(従来の技術)
発明者は、先に特願昭62−288474号(特開平1
131433号)としてこの種の流体中の微粒子計数装
置を提案した。この微粒子計数装置は、少なくとも一部
が透明な検出管と、断面が前記検出管の中空部断面形状
とほぼ同一形状であるビームを前記検出管内に同軸に通
過させる光源と、前記検出管の透明部の一点から前記検
出管の軸線に対して角度を持たせて引いた仮想直線上に
検出方向を上記−点に向けて配置した光検出器とを備え
たものである。(Prior Art) The inventor previously filed Japanese Patent Application No. 62-288474 (Japanese Unexamined Patent Publication No.
131433) proposed this type of particle counting device in fluid. This particulate counting device includes a detection tube that is at least partially transparent, a light source that causes a beam whose cross section is substantially the same as the cross-sectional shape of a hollow portion of the detection tube to pass coaxially into the detection tube, and a transparent and a photodetector disposed on an imaginary straight line drawn at an angle to the axis of the detection tube from one point of the detection tube with the detection direction directed toward the - point.
この微粒子計数装置によれば、検出管内に流体を通過さ
せ、前記ビームを検出管の軸線に沿って光源から入射さ
せることにより、流体中の微粒子に当たったビームがい
わゆるGustav Mieの光散乱理論に従った散乱
を受ける。従って、この散乱光を光検出器により検出す
ることで微粒子を計数することができると共に、散乱光
強度から微粒子の粒径を測定することができる。According to this particulate counting device, by passing a fluid into a detection tube and making the beam enter from a light source along the axis of the detection tube, the beam that hits the particulates in the fluid conforms to the so-called Gustav Mie's light scattering theory. subject to the following scattering. Therefore, by detecting this scattered light with a photodetector, the particles can be counted, and the particle size of the particles can be measured from the intensity of the scattered light.
(発明が解決しようとする課題)
上述した構成の微粒子計数装置においては、流体の流路
と光源からのビームが同軸上になっているため、光源を
流体の流路の端部に配置しなくてはならず、必然的に計
数装置全体が流体の流路方向に大型化するという欠点が
ある。(Problem to be Solved by the Invention) In the particle counting device configured as described above, since the fluid flow path and the beam from the light source are coaxial, it is not necessary to arrange the light source at the end of the fluid flow path. However, there is a drawback that the entire counting device inevitably becomes larger in the direction of the fluid flow path.
また、光源は通常単一光源であるため、微粒子に照射さ
れる光強度が一般に弱く、微粒子からの散乱光強度も弱
いため、微粒子の計数が不正確になったり、特に微小な
粒径を正確に測定できない場合があった。更に、従来で
はビームを絞り込むことにより、検出セル内で微粒子が
通過する検出部の断面に比べてビームの断面が小さ過ぎ
る場合があり、これによって微粒子の計数漏れを生じる
恐れがあった。In addition, since the light source is usually a single light source, the light intensity irradiated to the particles is generally weak, and the intensity of the light scattered from the particles is also weak, which may result in inaccurate counting of particles or accurate measurement of particularly small particle sizes. There were cases where measurements could not be taken. Furthermore, in the conventional technique, by narrowing down the beam, the cross section of the beam may be too small compared to the cross section of the detection section through which the particles pass within the detection cell, which may cause failure to count the particles.
加えて、この種の微粒子計数装置において、理想的には
微小粒径の微粒子から比較的大粒径の微粒子まで残らず
計数できることが望まるが、単一の受光光学系のみを持
つ従来の計数装置では、ある粒径の範囲までで受光素子
の出力側に接続されたプリアンプの出力電圧が飽和して
しまい、それ以上の粒径を持つ微粒子の計数が不可能で
あるといった問題もあった。In addition, it is ideal for this type of particle counting device to be able to count all particles, from minute particles to relatively large particles, but conventional counters with only a single light receiving optical system The device also has the problem that the output voltage of the preamplifier connected to the output side of the light receiving element saturates up to a certain particle size range, making it impossible to count particles with a particle size larger than that.
本発明は上記問題点を解決するためになされたもので、
その目的とするところは、小形化が可能であり、しかも
微小粒径から比較的大粒径の微粒子まで残らず正確に計
数できるようにした流体中の微粒子計数装置を提供する
ことにある。The present invention has been made to solve the above problems,
The object of the present invention is to provide a particle counting device in a fluid that can be miniaturized and can accurately count particles ranging from minute particles to relatively large particles.
(課題を解決するための手段)
上記目的を達成するため、本発明は、複数の光源から照
射された複数のビームを検出セル内で重ね合わせ、この
重ね合わせた点に液体や気体等の流体を通過させると共
に、前記複数のビームのうち少なくとも1つのビームを
前記流体の流路とほぼ直交させ、前記検出セルを介して
上記ビームの進行方向前方に、流体中の微粒子による前
方散乱光を集光して電気信号に変換するための第1の受
光光学系を配置し、かつ、前記検出セルの側方に、流体
中の微粒子による側方散乱光を集光して電気信号に変換
するための一以上の受光光学系を配置したものである。(Means for Solving the Problems) In order to achieve the above object, the present invention superimposes a plurality of beams irradiated from a plurality of light sources in a detection cell, and a fluid such as liquid or gas is applied to the superimposed point. At the same time, at least one beam among the plurality of beams is made substantially perpendicular to the flow path of the fluid, and forward scattered light by particles in the fluid is collected in the forward direction of the beam through the detection cell. A first light-receiving optical system for converting light into an electric signal is disposed, and on the side of the detection cell, for collecting side scattered light from fine particles in the fluid and converting it into an electric signal. One or more light receiving optical systems are arranged.
ここで、液体中の微粒子計数・装置の場合には、検出セ
ルの前方外周面に、前方散乱光を第1の受光光学系方向
に集光するためのマイクロレンズを配置すれば、前方散
乱光の集光効率を高めることができる。In the case of a device for counting particles in liquid, if a microlens is placed on the front outer peripheral surface of the detection cell to focus the forward scattered light in the direction of the first light receiving optical system, the forward scattered light can be The light collection efficiency can be increased.
(作用)
本発明によれば、複数の光源から出射された複数のビー
ムが、検出管内で重ね合わされて流体に照射される。こ
れにより、流体中の微粒子から光強度の大きい前方散乱
光が生じ、この散乱光はマイクロレンズ及び第1の受光
光学系の集光用レンズ等を介して受光素子に入射し、比
較的微小粒径の微粒子の計数及び粒径測定が行なわれる
。また、流体中の微粒子から生じた側方散乱光は、検出
セルの側方に設けられた一以上の受光光学系の集光用レ
ンズ等を介して受光素子に入射し、比較的大粒径の微粒
子の計数及び粒径測定が行なわれる。(Function) According to the present invention, a plurality of beams emitted from a plurality of light sources are superimposed within the detection tube and irradiated onto the fluid. As a result, forward scattered light with high light intensity is generated from the fine particles in the fluid, and this scattered light enters the light receiving element via the microlens and the condensing lens of the first light receiving optical system. Particle counts and particle size measurements are performed. In addition, side scattered light generated from fine particles in the fluid enters the light receiving element through one or more condensing lenses of the light receiving optical system installed on the side of the detection cell, and Particle counts and particle size measurements are performed.
(実施例) 以下、図に沿って本発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.
まず、第1図はこの実施例の主要部の断面図、第2図は
第1図の上方から見た主要部の断面図である。これらの
図において、lは光源ホルダ6に取付けられた光源であ
り、この光源lは、隣合う光源lの光軸との交叉角がほ
ぼ45度となるように同一平面上に3個配置されており
、光源lから出射されるビームは後述する検出セル8内
の検出管11内部において一点に重なり合うようになっ
ている。ここで、光源1は、半導体レーザ2と、レンズ
3,4と、はぼ半円柱状のシリンドリカルレンズ5とか
ら構成されており、シリンドリカルレンズ5を経たビー
ムは断面形状が長方形(例えば0.05mmX0.8+
nm)のほぼ帯状になって上記検出管11に入射する。First, FIG. 1 is a sectional view of the main part of this embodiment, and FIG. 2 is a sectional view of the main part seen from above in FIG. In these figures, l is a light source attached to the light source holder 6, and three light sources l are arranged on the same plane so that the intersecting angle with the optical axis of the adjacent light source l is approximately 45 degrees. The beams emitted from the light source 1 overlap at one point inside a detection tube 11 in a detection cell 8, which will be described later. Here, the light source 1 is composed of a semiconductor laser 2, lenses 3 and 4, and a cylindrical lens 5 having a roughly semi-cylindrical shape. .8+
nm) and enters the detection tube 11 in a substantially band-like form.
なお、上記検出管11における流体(この実施例では液
体)の通過孔は断面はぼ円形に形成され、その内径は例
えば0.6柵となっている。The passage hole for the fluid (liquid in this embodiment) in the detection tube 11 has a substantially circular cross section, and its inner diameter is, for example, 0.6 mm.
このため、検出管II内径よりも幅広のビームを検出管
11に照射することにより、流体はすべてビームの断面
を通過することになり、微粒子の計数漏れをなくすこと
ができる。Therefore, by irradiating the detection tube 11 with a beam that is wider than the inner diameter of the detection tube II, all the fluid passes through the cross section of the beam, making it possible to eliminate failure to count particles.
一方、7は、検出セル8、液体の流入流出系及び散乱光
の受光光学系を内部に含むフレームである。すなわち、
このフレーム7にはサンプルとしての液体が流入する液
体流入管9と、液体が流出する液体流出管IOと、両者
9,10の間に同軸上に配置され、かつほぼ円筒状の透
明材料からなる検出セル8とが設けられている。そして
、検出セル8内に配置されて上記流入管9、流出管10
に連通する検出管11は、その中央部が透明に形成され
ていて各光源1からの3本のビームが入射可能となって
いる。なお、検出セル8内には乾燥した窒素ガスが封入
されており、セル内外の温度差によってセル表面に結露
が生じるのを防ぐように配慮されている。On the other hand, 7 is a frame that includes therein a detection cell 8, a liquid inflow/outflow system, and a scattered light receiving optical system. That is,
This frame 7 has a liquid inflow pipe 9 through which liquid as a sample flows in, and a liquid outflow pipe IO through which liquid flows out, which are arranged coaxially between the two 9 and 10, and are made of a substantially cylindrical transparent material. A detection cell 8 is provided. The inflow pipe 9 and the outflow pipe 10 are arranged in the detection cell 8.
The detection tube 11 that communicates with the light source 1 has a transparent central portion and allows three beams from each light source 1 to enter therein. Note that dry nitrogen gas is sealed in the detection cell 8 to prevent dew condensation from forming on the cell surface due to temperature differences inside and outside the cell.
検出セル8の光源1とは反対側の前方外周面には、はぼ
半球状のマイクロレンズ12が取付けられている。この
マイクロレンズ12は、第3図に示すように、マイクロ
レンズ12がない場合にはレンズ13に入射しないよう
な微粒子による前方散乱光(第3図において破線で示す
)をも広範囲にわたって集光する作用をなす。A roughly hemispherical microlens 12 is attached to the front outer peripheral surface of the detection cell 8 on the side opposite to the light source 1 . As shown in FIG. 3, this microlens 12 also focuses forward scattered light (indicated by broken lines in FIG. 3) by fine particles over a wide range, which would not enter the lens 13 if the microlens 12 were not present. act.
第1図及び第2図において、マイクロレンズ12の前方
にはレンズ13.14が配置され、レンズ14の前方に
は受光素子15がそれぞれ同軸上に配置されている。ま
た、受光素子15はプリント基板16に実装されたプリ
アンプ(図示せず)に接続されている。In FIGS. 1 and 2, lenses 13 and 14 are arranged in front of the microlens 12, and light receiving elements 15 are arranged coaxially in front of the lens 14, respectively. Further, the light receiving element 15 is connected to a preamplifier (not shown) mounted on a printed circuit board 16.
ここで、マイクロレンズ12、レンズ13.14及び受
光素子15等は第1の受光光学系を構成している。Here, the microlens 12, lenses 13, 14, light receiving element 15, etc. constitute a first light receiving optical system.
更に、第2図に詳示するように、検出セル8の側力には
、光源lからのビーム照射方向に対し直交する方向に沿
ってレンズ+7.18、受光素子19及びプリント基板
20上のプリアンプ(図示せず)が配づ
置されており、これらのレンズ17. +8、受光素子
19等は液体中の微粒子からの側方散乱光を検出する第
2の受光光学系を構成している。Furthermore, as shown in detail in FIG. 2, the side force of the detection cell 8 includes the force on the lens +7. A preamplifier (not shown) is arranged and these lenses 17. +8, the light-receiving element 19, etc. constitute a second light-receiving optical system that detects side-scattered light from fine particles in the liquid.
このように構成された本実施例にかかる微粒子計数装置
によれば、サンプルとして液体の流路と光源lからのビ
ームが同軸上ではないため、計数装置全体が液体の流路
方向に大型化する心配がない。According to the particle counting device according to this embodiment configured in this way, the flow path of the liquid as a sample and the beam from the light source l are not coaxial, so the entire counting device becomes larger in the direction of the liquid flow path. No worries.
また、検出管11内で3個の光源1からの3本のビーム
が重なり合うため、従来よりも照射光強度が増大する。Furthermore, since the three beams from the three light sources 1 overlap within the detection tube 11, the intensity of the irradiated light is increased compared to the conventional method.
これにより、前方散乱光の強度も増大するため、微小粒
径の微粒子の計数や粒径の測定も正確に行なうことがで
きる。同時に、液体の流量が大きい場合(例えば10(
lul/分)にも検出漏れを生じることなく確実に微粒
子を検出できるため、微粒子計数作業の効率を高めるこ
とが可能である。This also increases the intensity of the forward scattered light, making it possible to accurately count and measure the particle size of microparticles. At the same time, if the liquid flow rate is large (e.g. 10 (
Since particles can be reliably detected without any detection failures even at low speeds (lul/min), it is possible to improve the efficiency of particle counting work.
なお、第4図は3本のビームによる前方散乱光の様子を
示すもので、この実施例では、従来の前方散乱光に相当
するL1以外にり、、L、をもマイクロレンズ12によ
って集光することができるから、検出感度の向上が可能
になる。Note that FIG. 4 shows forward scattered light by three beams, and in this embodiment, in addition to L1, which corresponds to the conventional forward scattered light, , L, are also condensed by the microlens 12. This makes it possible to improve detection sensitivity.
更に、この実施例では第1及び第2の受光光学系を備え
ているので、前方散乱光による受光光量が多い第1の受
光光学系では微小粒径の微粒子を検出し、また、側方散
乱光によって比較的受光光量が少ない第2の受光光学系
では比較的大径の微粒子を検出する等の役割分担が可能
になり、プリアンプの出力飽和等を考慮することなく測
定のダイナミックレンジを拡大することができる。Furthermore, since this embodiment includes first and second light receiving optical systems, the first light receiving optical system, which receives a large amount of forward scattered light, detects fine particles with a small particle size, and The second light-receiving optical system, which receives a relatively small amount of light, can share responsibilities such as detecting relatively large-diameter particles, expanding the dynamic range of measurement without considering preamplifier output saturation, etc. be able to.
広げるができる。You can expand it.
なお、上記実施例では光源1を3個設けた場合を説明し
たが、本発明においては更に多数の光源を配置すること
も可能である。また、微粒子を計数するサンプルとして
の流体は、液体のみならず気体でもよい。In addition, although the case where three light sources 1 were provided was explained in the said Example, it is also possible to arrange|position even more light sources in this invention. Further, the fluid serving as a sample for counting particles may be not only a liquid but also a gas.
更に、上記実施例ではレンズ+7.18、受光素子19
等からなる第2の受光光学系を、第2図に示したように
光源lからのビーム照射方向に対して光軸がほぼ直交す
るように配置しであるが、この直交方向よりも若干斜め
前方に配置してもよい。これによって、第2の受光光学
系により多くの散乱光が受光されることになり、検出感
度の向]二を図ることができる。Furthermore, in the above embodiment, the lens +7.18 and the light receiving element 19
As shown in Fig. 2, the second light-receiving optical system consisting of the It may be placed in the front. As a result, more scattered light is received by the second light-receiving optical system, and detection sensitivity can be improved.
また、第2の受光光学系の数は単一である必要はなく、
複数の受光光学系を検出セル8の周囲にそれぞれ配置し
てもよい。こうすることにより、側方散乱光を一層効率
的に検出して比較的大径の微粒子を高精度に検出するこ
とができる。Further, the number of second light receiving optical systems does not need to be single;
A plurality of light receiving optical systems may be arranged around the detection cell 8, respectively. By doing so, side scattered light can be detected more efficiently and relatively large-diameter particles can be detected with high precision.
(発明の効果)
以上のように本発明によれば、ビームの照射方向と流体
の流路とが同軸りにないため、計数装置が前記流路方向
に大型化するおそれがなく、比較的コンパクトな計数装
置を実現することができる。(Effects of the Invention) As described above, according to the present invention, since the beam irradiation direction and the fluid flow path are not coaxial, there is no risk of the counting device becoming larger in the flow path direction, and it is relatively compact. A counting device can be realized.
また、複数の光源からそれぞれ照射されたビームが一点
に重ね合わされ、その重ね合わされた点において微粒子
に光散乱を生じさせる構成であるから、従来に比べて散
乱光強度が飛躍的に増大し、計数漏れを生じる心配がな
いと共に、微小粒径(例えば0.1μm以下)の微粒子
の計数や粒径測定、及び大流量の流体中の微粒子を短時
間で測定することが可能になる。In addition, since the beams emitted from multiple light sources are superimposed at one point, and light scattering occurs on the particles at the superimposed point, the intensity of scattered light increases dramatically compared to conventional methods, making it difficult to count. There is no need to worry about leakage, and it becomes possible to count and measure the particle diameter of microparticles (for example, 0.1 μm or less) and to measure the microparticles in a fluid with a large flow rate in a short time.
更に、側方散乱光を検出する一以上の受光光学系を設け
たことにより、この受光光学系が受光する光強度はその
レベルが比較的小さいため、例えば粒径が1μm〜15
μmの大粒径の微粒子を計数することができ、他方、第
1の受光光学系では例えば粒径が0.7μm以下の微粒
子の計数専用とすることができる。これにより、従来の
単一の受光光学系では、プリアンプの出力電圧の飽和等
によって測定可能な粒径の範囲が制限されてしまうのと
異なり、測定可能な粒径の範囲を大幅に拡大することが
できる。Furthermore, by providing one or more light-receiving optical systems for detecting side scattered light, the light intensity received by the light-receiving optical system is relatively low.
It is possible to count fine particles having a large particle size of .mu.m, and on the other hand, the first light receiving optical system can be used exclusively for counting fine particles having a particle size of 0.7 .mu.m or less, for example. This significantly expands the measurable particle size range, unlike the conventional single light-receiving optical system, which limits the measurable particle size range due to factors such as saturation of the preamplifier output voltage. I can do it.
第1図ないし第4図は本発明の一実施例を説明するため
のもので、第1図は主要部の断面図、第2図は第1図の
上方から見た主要部の断面図、第3図はマイクロレンズ
の作用説明図、第4図は前方散乱光の説明図である。
1・・・光源 2・・・半導体レーザ5・・
・シリンドリカルレンズ
8・・・検出セル
9・・・液体流入管 10・・・液体流出管11・
・検出管 12・・マイクロレンズ3.4.
+3.14.17.18・・レンズ15、19・・・受
光素子1 to 4 are for explaining one embodiment of the present invention, FIG. 1 is a sectional view of the main part, FIG. 2 is a sectional view of the main part seen from above in FIG. 1, FIG. 3 is an explanatory diagram of the action of the microlens, and FIG. 4 is an explanatory diagram of forward scattered light. 1... Light source 2... Semiconductor laser 5...
・Cylindrical lens 8...Detection cell 9...Liquid inflow tube 10...Liquid outflow tube 11・
・Detection tube 12...Micro lens 3.4.
+3.14.17.18... Lens 15, 19... Light receiving element
Claims (2)
前記微粒子による散乱光を検出して前記微粒子を計数す
る流体中の微粒子計数装置において、複数の光源から照
射された複数のビームを検出セル内で重ね合わせ、この
重ね合わせた点に前記流体を通過させると共に、前記複
数のビームのうち少なくとも1つのビームを前記流体の
流路とほぼ直交させ、前記検出セルを介して上記ビーム
の進行方向前方に、前記検出セル内の流体中の微粒子に
よる前方散乱光を集光して電気信号に変換するための第
1の受光光学系を配置し、かつ、前記検出セルの側方に
、前記検出セル内の流体中の微粒子による側方散乱光を
集光して電気信号に変換するための一以上の受光光学系
を配置したことを特徴とする流体中の微粒子計数装置。(1) Irradiate a fluid containing fine particles with a beam from a light source,
In a particle counting device in a fluid that counts the particles by detecting light scattered by the particles, a plurality of beams irradiated from a plurality of light sources are superimposed in a detection cell, and the beams pass through the fluid to the point of this superimposition. At the same time, at least one beam among the plurality of beams is made substantially perpendicular to the flow path of the fluid, and forward scattering by fine particles in the fluid in the detection cell is caused to occur forward in the traveling direction of the beam through the detection cell. A first light-receiving optical system for condensing light and converting it into an electrical signal is disposed, and on the side of the detection cell, condenses side scattered light due to particulates in the fluid in the detection cell. 1. A device for counting particles in a fluid, characterized in that one or more light-receiving optical systems are arranged for converting light into electrical signals.
光光学系方向に集光するためのマイクロレンズを配置し
た請求項(1)記載の流体中の微粒子計数装置。(2) The apparatus for counting particles in a fluid according to claim (1), further comprising a microlens disposed on the front outer peripheral surface of the detection cell for condensing the forward scattered light in the direction of the first light receiving optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2216421A JPH0498145A (en) | 1990-08-16 | 1990-08-16 | Counting device for particulates in fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2216421A JPH0498145A (en) | 1990-08-16 | 1990-08-16 | Counting device for particulates in fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0498145A true JPH0498145A (en) | 1992-03-30 |
Family
ID=16688303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2216421A Pending JPH0498145A (en) | 1990-08-16 | 1990-08-16 | Counting device for particulates in fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0498145A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06300677A (en) * | 1993-03-29 | 1994-10-28 | Internatl Business Mach Corp <Ibm> | Particle detection device |
JP2000097841A (en) * | 1998-08-22 | 2000-04-07 | Malvern Instruments Ltd | Device and method for measuring particle-size distribution |
JP2008534948A (en) * | 2005-03-31 | 2008-08-28 | セドゥー ディアグノスチックス | Tank for optical device for blood analysis, analyzer equipped with such tank |
CN107589052A (en) * | 2017-11-03 | 2018-01-16 | 大唐彬长发电有限责任公司 | Thermal power plant's condensate corrosion product particle size distribution method of testing and its system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0274845A (en) * | 1988-09-09 | 1990-03-14 | Canon Inc | Particle measuring apparatus |
JPH0274846A (en) * | 1988-09-09 | 1990-03-14 | Canon Inc | Particle measuring apparatus |
-
1990
- 1990-08-16 JP JP2216421A patent/JPH0498145A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0274845A (en) * | 1988-09-09 | 1990-03-14 | Canon Inc | Particle measuring apparatus |
JPH0274846A (en) * | 1988-09-09 | 1990-03-14 | Canon Inc | Particle measuring apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06300677A (en) * | 1993-03-29 | 1994-10-28 | Internatl Business Mach Corp <Ibm> | Particle detection device |
JP2000097841A (en) * | 1998-08-22 | 2000-04-07 | Malvern Instruments Ltd | Device and method for measuring particle-size distribution |
JP2008534948A (en) * | 2005-03-31 | 2008-08-28 | セドゥー ディアグノスチックス | Tank for optical device for blood analysis, analyzer equipped with such tank |
CN107589052A (en) * | 2017-11-03 | 2018-01-16 | 大唐彬长发电有限责任公司 | Thermal power plant's condensate corrosion product particle size distribution method of testing and its system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2641927B2 (en) | Particle measurement device | |
RU2006108798A (en) | OPTICAL FLOW METER FOR MEASURING GAS AND LIQUID FLOW IN PIPELINES | |
JP4777360B2 (en) | Travel time optical speedometer | |
EP0225009A2 (en) | Fibre size monitor | |
JP4050748B2 (en) | Particle measuring device | |
EP0383460B1 (en) | Apparatus for measuring particles in liquid | |
CN209416865U (en) | A kind of oil liquid Particulate Pollution detection device | |
CN109632588A (en) | A kind of oil liquid Particulate Pollution detection device and method | |
WO2021097910A1 (en) | Detection device and method for tiny particles in liquid | |
KR102479361B1 (en) | Curtain flow design for optical chambers | |
JPH0498145A (en) | Counting device for particulates in fluid | |
CN114993897B (en) | Aerosol particle beam width and particle distribution detection device, set and method | |
JPH05172732A (en) | Method and apparatus for detecting particle in liquid | |
JPH05215664A (en) | Method and device for detecting submicron particle | |
JPH0749302A (en) | Method and apparatus of measuring particle size of microparticle in fluid | |
JPS61288139A (en) | Fine particle detecting device | |
JPH0277636A (en) | Particle measuring device | |
CN211206179U (en) | Detection apparatus for tiny granule in liquid | |
JPH02168138A (en) | Measuring apparatus for particulate | |
JPH0754291B2 (en) | Particle size distribution measuring device | |
JPS60161548A (en) | Apparatus for measuring scattered light of flowing fine particulate material | |
JP3966851B2 (en) | Light scattering particle counter | |
JPS6093944A (en) | Light-scattering particle measuring apparatus | |
JPS6225237A (en) | Particles detecting device using light | |
JP2001330551A (en) | Particle measuring instrument |