JPS61288139A - Fine particle detecting device - Google Patents

Fine particle detecting device

Info

Publication number
JPS61288139A
JPS61288139A JP60131297A JP13129785A JPS61288139A JP S61288139 A JPS61288139 A JP S61288139A JP 60131297 A JP60131297 A JP 60131297A JP 13129785 A JP13129785 A JP 13129785A JP S61288139 A JPS61288139 A JP S61288139A
Authority
JP
Japan
Prior art keywords
light
beam light
particle size
liquid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131297A
Other languages
Japanese (ja)
Other versions
JPH0654288B2 (en
Inventor
Yasushi Zaitsu
財津 靖史
Fumio Toyama
外山 文生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60131297A priority Critical patent/JPH0654288B2/en
Publication of JPS61288139A publication Critical patent/JPS61288139A/en
Publication of JPH0654288B2 publication Critical patent/JPH0654288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce a particle size which can be detected without decreasing the capacity of particulate containing liquid which can be inspected within a constant time and a decrease in particle size resolution by providing a beam polarizing part which scans the liquid to be measured linearly and repeatedly with beam light. CONSTITUTION:A detecting device consists of a beam light irradiating mechanism 19 which irradiates the particulate containing liquid 2 to be measured with the beam light 6 and a photodetection mechanism 8 which photodetects scattered light emitted by particulates by the irradiation of the beam light and outputs a signal corresponding to the scattered light. Then, the irradiating mechanism 19 is provided with a beam light deflecting part 18 to scan the liquid to be measured with the beam light repeatedly. Consequently, the uniform intensity distribution area of the beam light at the part of the object liquid irradiated with the beam light is expanded in the scanning direction of the beam light, thereby eliminating the influence of the intensity distribution shape of the beam light upon the particle size resolution of the detecting device.

Description

【発明の詳細な説明】 〔発明+7)属する技術分野〕 本発明は、希薄濃度の微粒子を含む流動流体奢こ光を照
射し、微粒子音こよる前記光の直接散乱光や蛍光散乱光
を検出しで、微粒子の個数1粒径に関する情報や、微粒
子がたとえば細胞である場合)こは該細胞の性状に関す
る情報等を得るよう#c [、た微粒子検出装置、%f
こ一定時間内tC検査しつる含微粒子流体σ〕容積減少
や粒径分解能の低下を招くことなく検出可能粒径を小さ
くすることができる装置構成)こ関する。
[Detailed description of the invention] [Invention +7] Technical field to which the present invention belongs] The present invention irradiates a flowing fluid containing fine particles at a dilute concentration with light, and detects direct scattered light or fluorescent scattered light of the light caused by the sound of the fine particles. Then, information on the number and size of the particles, and information on the properties of the cells (if the particles are cells), etc. can be obtained.
This relates to an apparatus configuration that can reduce the detectable particle size without causing a decrease in volume or a drop in particle size resolution.

〔従来技術とその問題点〕[Prior art and its problems]

半導体や医薬品の製造プロセスでは環境空気σ)清浄度
や超純水、薬品61品質等を検査するため曝こ。
In the manufacturing process of semiconductors and pharmaceuticals, environmental air σ) is exposed to inspect the cleanliness, ultrapure water, quality of chemicals, etc.

また医学、生物学等の研究分骨では細胞σ〕状態を検査
するため+C,塵埃や細胞等の微粒子を検出する微粒子
検出装置が必要で、このような検出装置で検査される微
粒子σ)状態は、通常、粒径が数μmm以下製濃度流体
試料で数個/ wtt、気体試料で1〜lO個728.
3を程度であるが、近来特に0.1μm以下の粒径検出
を可能とする性能が微粒子検出装置tC要求されでいる
In addition, in research fields such as medicine and biology, particle detection equipment is required to detect particles such as dust and cells in order to inspect the state of cells. The particle size is usually several μm or less for concentrated fluid samples and 1 to 10 particles/wtt for gas samples.728.
However, in recent years, there has been a demand for particulate detectors tC that can detect particle sizes of 0.1 μm or less.

第8図は従来の液体用微粒子検出装置の構成図で、図−
ζおいて、1は断面が方形をなし紙面疹こ垂直な方向に
微粒子を含む測定液体2が流れるようにした、透明な側
壁を有する70−セルで、3は、平行光束4を出射する
発光器5と光束4を集束してビーム光6 j(する集束
レンズ7とからなるビ−ム光照射機構である。ビーム光
照射機s3は、フローセル1中の測定液体2を透明な側
壁を介してビーム光6で、該ビーム光6の光軸が図示の
軸B1−Btに一致するようにL、で、照射するように
構成されている。@B+  Byは軸C,−C,と図の
紙面に垂直な内と共tと直交する三本の空間軸を構成す
る1図の紙面内に想定した軸で、0はフローセル1内+
C設定した前記三軸σ)交点である。8は、 611定
液体2がビーム光6で照射されることによって交点0近
傍における液体2中σ〕微粒子から出射される散乱光を
集光する集光レンズ9と、該レンズ9Iこよって集光さ
れた光を光量會ζ応じた電気信号103に変換して出力
する光電変換器10と、レンズ9と変換器10との間に
介在させられ、 変換器9に入射する光の入射角を制限するように円形貫
通孔11aが設けらnた開口部材11と、からなる受光
機構で、該受光機構8はその光軸が軸C,−C,に一致
するように配設されでいる。
Figure 8 is a configuration diagram of a conventional liquid particle detection device.
In ζ, 1 is a 70-cell with a transparent side wall, which has a rectangular cross section and allows the measurement liquid 2 containing fine particles to flow in a direction perpendicular to the paper surface, and 3 is a light emitting cell that emits a parallel light beam 4. This is a beam light irradiation mechanism consisting of a device 5 and a focusing lens 7 that focuses the light beam 4 into a beam 6j. The beam light 6 is irradiated with L so that the optical axis of the beam light 6 coincides with the illustrated axis B1-Bt.@B+ By is the axis C, -C, and the illustrated The three spatial axes that are perpendicular to the plane of the paper and perpendicular to t are the axes assumed in the plane of Figure 1, and 0 is the axis inside the flow cell 1 +
C is the intersection of the three axes σ) set. 8 is a condenser lens 9 that condenses the scattered light emitted from the fine particles σ in the liquid 2 in the vicinity of the intersection 0 when the liquid 2 is irradiated with the beam light 6, and the lens 9I condenses the condensed light. A photoelectric converter 10 that converts the received light into an electrical signal 103 according to the light intensity ζ and outputs it, and a photoelectric converter 10 that is interposed between the lens 9 and the converter 10 and limits the angle of incidence of the light that enters the converter 9. The light receiving mechanism 8 includes an opening member 11 provided with a circular through hole 11a as shown in FIG.

12は70−セル1を透過したビーム光6が迷光となっ
て受光機構8に侵入し、ないように設けたビームブロッ
クで、該ブロック12はビーム光6を吸収するように構
成さnでいる。14は電気信号Loafζ対しC所定の
信号処理を行い、微粒子σ】個数、粒径分布、性状等の
微粒子状態を表示するよう矛こした信号処理部である。
Reference numeral 12 denotes a beam block provided to prevent the beam light 6 transmitted through the 70-cell 1 from entering the light receiving mechanism 8 as stray light, and the block 12 is configured to absorb the beam light 6. . Reference numeral 14 denotes a signal processing unit which performs predetermined signal processing on the electric signal Loafζ and displays the state of the particles such as the number of particles σ, particle size distribution, and properties.

次fこ第8図)こ示した検出装置夢ζおける受光機構8
σ)動作を第9図を用いて説明する。すなわち。
Fig. 8) Light receiving mechanism 8 in the detection device shown in Fig. 8)
σ) The operation will be explained using FIG. Namely.

第9図は第8図曇ζおける要部O)拡大斜視図で、図に
おいてA、−A、は交点OIこおいて軸B1−B。
FIG. 9 is an enlarged perspective view of the main part O) in FIG.

および軸C,−C,と共に直交三軸を構成する軸で、軸
A、−A、はまたフローセルIIこおける長手方向θ〕
軸に一致し、ている。Pは軸A、−A2 +こ平行な、
測定液体2σ〕流動方向を示す矢印である。
and axes C and -C, which form three orthogonal axes; axes A and -A are also the longitudinal direction θ of the flow cell II]
It is aligned with the axis. P is parallel to axis A, -A2 +
Measuring liquid 2σ] This is an arrow indicating the flow direction.

13は交点0近傍會こ形成された受光機構80)立体的
視野領域で、視野領域13は、受光機構8が前述のよう
1cm成ざnているから、交点0を中心とし、軸C,−
C,を軸とする紡跡状となつCいる。
Reference numeral 13 denotes a three-dimensional viewing area (light receiving mechanism 80) formed near the intersection 0. The viewing area 13 is centered on the intersection 0 and has axes C, -, since the light receiving mechanism 8 is 1 cm long as described above.
There is a spindle shape with C as the axis.

領域13は受光機構8σ)視野であるから、該領域13
から出射ぎわた光σ)うち受光機@ 8 tcよってと
らえられた光のみが該機構8で光電変換されることにな
る。第9図■こおいては視野領域13のすべてがビーム
光6内に存在するように要部が構成されでいるので、測
定液体2Iこよって搬送されて微粒子が領域13を通過
するとパルス状に散乱光が発生し、したがってこσ】散
乱光が光電変換器10に入射さnて光電変換された信号
tOaもパルス状となる。故醗こ信号1♂婆形成するパ
ルスの個数と大きさとによって視野領域13を通過する
微粒子の個数と粒径とを検出することができることにな
る。第8図の信号処理部14はこのような信号処理を行
、うように構成されでいる。
Since the area 13 is the field of view of the light receiving mechanism (8σ), the area 13
Of the light emitted from the light σ), only the light captured by the light receiver @ 8 tc is photoelectrically converted by the mechanism 8. FIG. 9■ In this case, the main part is constructed so that all of the viewing area 13 exists within the beam light 6, so when the particles are transported by the measurement liquid 2I and pass through the area 13, they are pulsed. Scattered light is generated, and therefore, the scattered light enters the photoelectric converter 10 and the photoelectrically converted signal tOa also becomes a pulse. The number and size of particles passing through the viewing area 13 can be detected by the number and magnitude of pulses formed by the powder signal 1. The signal processing section 14 in FIG. 8 is configured to perform such signal processing.

第8図)こおいては微粒子検出が上述σ)よう番こして
行われるが、受光機構8の受光量が少ないと正確な微粒
子検出が不可能となる。したがって、散乱光量を多くす
るため奢こビーム光6を細く絞って光強度を強くするこ
とが通常行われており、このため、一般に、ビーム光6
の交点0近傍tCおける直径は数百〜数十μmとなって
いる。第8図0〕集束レンズ7はこういう理由で設けら
れている。
In FIG. 8), particle detection is performed according to the above-mentioned procedure σ), but if the amount of light received by the light receiving mechanism 8 is small, accurate particle detection becomes impossible. Therefore, in order to increase the amount of scattered light, the light beam 6 is narrowly focused to increase the light intensity.
The diameter at tC near the intersection 0 is several hundred to several tens of μm. FIG. 80] The focusing lens 7 is provided for this reason.

第8図トこおいでは上述σ)よう騒こして視野領域13
を通過する微粒子σ)個数と粒径とが検出されるが、領
域13)ζおけるビーム光60強度分布が不均一である
と下記に説明するようシこ検出誤差が発生する。すなわ
ち第10図はこのような検出誤差の発生理由を説明する
説明図で、第10図(2)は第9図−ごおいて領域13
近傍を軸A、−A、と軸C1−C1とで形成される面で
切断した図形に対応した図形である。第10図への15
.16は89図における領域13、ビーム光6のそれぞ
れfこ対応する視野領域、ビーム光で、この場合ビーム
光16が領域15を貫通するようシこなっている。17
a。
In Fig. 8, the visual field area 13 is disturbed as described above.
The number and diameter of particles σ) passing through the area 13) are detected, but if the intensity distribution of the beam light 60 in the region 13) ζ is non-uniform, a particle detection error will occur as explained below. In other words, FIG. 10 is an explanatory diagram explaining the reason for the occurrence of such a detection error, and FIG. 10 (2) shows the area 13 in FIG.
This figure corresponds to a figure whose vicinity is cut along a plane formed by axes A, -A, and axis C1-C1. 15 to Figure 10
.. Reference numeral 16 denotes a viewing area and a beam light corresponding to the area 13 and the beam light 6 in FIG. 17
a.

17bは測定液体2)こよって搬送されて図の紙面上を
領域15を噴切るようにシてP方向瞥こ移動する。同じ
粒径を有する球状の二個σ〕微粒子である。
17b is transported by the measuring liquid 2) and moves in the P direction on the paper surface of the figure so as to cut through the region 15. They are two spherical σ] fine particles with the same particle size.

第1O図囚において微粒子17a、L7bが上述σ)よ
うに移動した場合、ビーム光16における図の紙面上の
強度分布が、第10図■に示したように1点OIこおけ
る光強度を最大値とする吊鐘状醗こなっていると、微粒
子17a、17bが領域15を噴切る経路暑こよっては
ビーム光t61cよる散乱光が発生しない場合が生じ、
あるいは同じ大きさの微粒子17a+  17biζ対
してそれぞれ強度の異る散乱光が発生する場合が生じる
。故しこ前者の場合微粒子の個数−こ対する検出誤差が
発生すること一ζなり、後者の場合微粒子の粒径に対す
る検出誤差が発生すること−こなる。上述の微粒子検出
装置では、測定液体を照射するビーム光の強度を強くし
でできるだけ小さい粒径σ〕微粒子を検出できるように
するために、該ビーム光として通常レーザビームが採用
されでおり、このようなレーザビームでは光強度分布が
第10図■のよう1Cなっているので前述のような検出
誤差が発生する。
When the fine particles 17a and L7b move as described above in Figure 1O, the intensity distribution on the paper surface of the figure in the beam light 16 reaches the maximum light intensity at one point OI, as shown in Figure 10■. If the value is set in a bell-like manner, the paths taken by the fine particles 17a and 17b through the region 15 may become too hot, and the scattered light from the beam light t61c may not be generated.
Alternatively, scattered light having different intensities may be generated for the fine particles 17a+17biζ having the same size. Therefore, in the former case, a detection error occurs depending on the number of particles, and in the latter case, a detection error occurs depending on the particle size of the particles. In the above-mentioned particle detection device, a laser beam is usually used as the beam light in order to increase the intensity of the beam light that irradiates the measurement liquid to detect particles with a particle size as small as possible. In such a laser beam, the light intensity distribution is 1C as shown in FIG.

このため、従来、第10図■に示した光強度分布曲線上
で光強度がほぼ一様になる。第10図^に示した軸A、
−A、近傍のみを測定液体が流れるよう奢こ該液体を細
く絞る方法や、第9図−ζおいで視野領域13をビーム
光6の光強度分布がほぼ一様−こなっている部分内に配
置する方法などが採用さnでいるが、前者rハ方法を採
用した微粒子検出装置では、検出可能な微粒子の粒径を
小ざくするため一ζビーム光を絞って光強度を強くする
と。
For this reason, conventionally, the light intensity is almost uniform on the light intensity distribution curve shown in FIG. Axis A shown in Figure 10^,
- A, a method of squeezing the liquid so that it flows only in the vicinity, or a method of narrowing the liquid so that it flows only in the vicinity. However, in a particle detection device that adopts the former method, the 1ζ beam light is narrowed down to increase the light intensity in order to reduce the particle size of detectable particles.

測定液体部分σ)光強度分布σ〕不均一度が大きくなる
ので微粒子粒径の検出誤差か大きくなり、換言すれば微
粒子粒径+C対する検出装置の分解能が悪くなり、こσ
〕ような粒径分解能の悪化を防止するため蚤こ測定液体
をざら曇こ絞って該液体がビーム光強度分布カ一様部分
にのみ存在するようにすると、所定時間内tζ検査でき
る測定液体σ】ikが少くなるという問題がある。また
後者の方法を採用した微粒子検出装置では、検出可能な
微粒子粒径を小さくするためにビーム光6を絞ると、受
光機構8の視野領域13がビーム光6の強度分布−棟部
分σ〕はぼ全域にわたって配置されている場合壷ζは、
前述と同様な理由で粒径分解能が低下するという問題が
あり、またこのような分解能低下を防止するため暑こ視
野領域13を狭くしようとして開口部材の貫通孔tta
を小さくすると、該貫通孔を通過しつる光量が減少する
ので光電変換器10)こ入射する散乱光量はビーム光6
の光強度を強くした割には増加しないことになり、結局
こσ)ような微粒子検出装置には粒径分解能の低下を生
じることなく検出可能粒径を小ざくするということはで
きないという問題がある。
Measured liquid portion σ) Light intensity distribution σ] As the degree of non-uniformity increases, the error in detecting the particle size increases.In other words, the resolution of the detection device for the particle size +C deteriorates, and this σ
] In order to prevent deterioration of the particle size resolution, the liquid to be measured is roughly squeezed so that the liquid exists only in the part where the beam light intensity distribution is uniform. ] There is a problem that ik decreases. In addition, in a particle detection device that adopts the latter method, when the beam light 6 is narrowed down to reduce the detectable particle size, the viewing area 13 of the light receiving mechanism 8 is If the urn is placed over the entire area, then the urn ζ is
There is a problem that the particle size resolution decreases for the same reason as mentioned above, and in order to prevent such a decrease in resolution, the through hole tta of the aperture member is
As the amount of light passing through the through hole decreases, the amount of scattered light incident on the photoelectric converter 10) becomes smaller than the amount of light beam 6).
As a result, the increase in the light intensity does not increase even if the light intensity of be.

〔発明θ]目的〕[Invention θ] Purpose]

本発明は、上述したような従来q】微粒子検出装置1(
おける問題を解消して、一定時間内疹こ検査しうる含微
粒子流体の容積減少や粒径分解能の低下を招くことなく
検出可能粒径を小さくすることができる微粒子検出装置
を提供することを目的とする。
The present invention is directed to the above-mentioned conventional particulate detection device 1 (
It is an object of the present invention to provide a particulate detection device that can reduce the detectable particle size without causing a decrease in the volume of a particulate-containing fluid that can be inspected for a certain period of time or a decrease in particle size resolution. shall be.

〔発明の要点〕[Key points of the invention]

本発明は、上述の目的を達成するために1含微粒子測定
流体にビーム光を照射するビーム光照射機構と、ビーム
光の照射によって微粒子から出射される散乱光を受光し
て該散乱光)C応じた信号を出力する受光機構とからな
り、受光機構の出力信号にもとづいて微粒子の検出を行
う微粒子検出装置において、ビーム光照射機構に測定流
体をビーム光によって直線++こ繰り返して走査するビ
ーム光偏向部を設けたもので、このように構成すること
訃こよって、ビーム光管こよって照射される測定液体部
分蚤こおける該ビーム光の強度分布一様領域が該ビーム
光の走査方向に実質的に拡大され、かつビーム光の強度
分布形状が微粒子検出装置の粒径分解能に影響を与えな
いよう蚤ζして、もつC一定時間自修こ検査しうる含微
粒子測定流体σ〕容積減少や粒径分解能の低下を招くこ
となく検出可能粒径を小さくすることσ)できる微粒子
検出装置が得られるようにり、たものである。
In order to achieve the above-mentioned objects, the present invention provides a beam light irradiation mechanism that irradiates a particle-containing measurement fluid with a beam light, and a beam light irradiation mechanism that receives the scattered light emitted from the particles by the beam light irradiation and receives the scattered light)C. In a particle detection device that detects particles based on the output signal of the light receiving mechanism, the beam light irradiation mechanism repeatedly scans the fluid to be measured with the beam light in a straight line. This structure is provided with a deflection section, and as a result, the area where the intensity distribution of the beam light is uniform in the measurement liquid portion irradiated by the beam light tube is substantially uniform in the scanning direction of the beam light. The particulate-containing measuring fluid σ] which can be inspected by self-inspection for a certain period of time is It is now possible to obtain a particle detection device that can reduce the detectable particle size σ) without causing a decrease in diameter resolution.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の第1実施例の構成図である。 FIG. 1 is a block diagram of a first embodiment of the present invention.

図の第8図と異る主な点は、集束レンズ7と70−セル
1との間に、測定流体2をビーム光6によって直線状■
ζ繰り返して走査するビーム光偏部18が設けらnてい
ることと、第8図の信号処理部14とは異る信号処理を
行う信号処理部31が設けられていることで、この場合
発光器5はレーザビームを平行光束4として出射するH
e−Neレーザ発光 生器で構成されている。19は発土器5と集束レンズ7
とビーム光偏向部18とからなるビーム光照射機構で1
発光器5が大出力レーザ発生器であ゛る場合やHe−C
dレーザ発生器のような短波長レーザ発生器である場合
修こは、短波長レーザ発生器から出射さn、るレーザビ
ームは強度が強いなどの理由から、集束レンズ7を用い
る必要がないこともある。ビーム光偏向部18は第2図
1C示したよう−こ構成されている。すなわち第2図は
第1図における要部の構成図で、第2図番ごおいて、2
0は、レーザビーム4が反射面上σ)Q点−ζ入射され
た状態で、電磁石21による撮動磁界)こよって傾きが
角度2θO〕範囲内で振動的夛こ繰り返しで変化させら
れる反射鏡である。ビーム光偏向部18はこのように構
成された反射鏡20と電磁石21とからなっているので
、該偏向部18から出射されるビーム光6も、図示した
ように、角度2θの範囲内で振動約に方向か変化する。
The main difference from the diagram shown in FIG.
ζ Since the beam polarization unit 18 that repeatedly scans is provided, and the signal processing unit 31 that performs signal processing different from the signal processing unit 14 in FIG. The device 5 emits the laser beam as a parallel beam 4.
It consists of an e-Ne laser light generator. 19 is the excavator 5 and the focusing lens 7
1 with a beam light irradiation mechanism consisting of
When the light emitter 5 is a high output laser generator or when the He-C
In the case of a short wavelength laser generator such as a laser generator, there is no need to use the focusing lens 7 because the laser beam emitted from the short wavelength laser generator is strong. There is also. The beam deflector 18 is constructed as shown in FIG. 1C. In other words, Figure 2 is a configuration diagram of the main parts in Figure 1, and the number in Figure 2 is 2.
0 is the state in which the laser beam 4 is incident on the reflecting surface at point σ) Q - ζ, and the imaging magnetic field by the electromagnet 21) is a reflecting mirror whose inclination is changed within the range of angle 2θO] by repeated vibrations. It is. Since the beam light deflecting section 18 is composed of the reflecting mirror 20 and the electromagnet 21 configured in this way, the beam light 6 emitted from the deflecting section 18 also oscillates within the range of angle 2θ, as shown in the figure. The direction changes approximately.

したがって第1図においては、上記のようにして方向の
変化するビーム光6)こよって測定液体2が直線状に走
査されることになり、この場合、ビーム光6の点Qを中
心とする回動暑ζよって形成される走査面が第1図の紙
面EC一致するよう+C’JJ部が構成さnでいる。な
お第2図から明らかなように、ビーム光6は軸B。
Therefore, in FIG. 1, the measuring liquid 2 is scanned in a straight line by the light beam 6 whose direction changes as described above, and in this case, the light beam 6 rotates around the point Q. The +C'JJ section is constructed so that the scanning surface formed by the moving heat ζ coincides with the paper surface EC of FIG. As is clear from FIG. 2, the light beam 6 is on the axis B.

−B、の両側に角度θづつふnるよう−こなつ〔いる。There is an angle θ on both sides of -B.

第3図は第1図および第2図1C示し、た微粒子検出装
置σ)動作説明図で、同図囚は第1図の紙面に対応する
切断平面図、同図■は第10図(A)lこ対応する第1
図σ)側断面図である。第3図暑ζおいて、E、Fはビ
ーム光6が最外側−こふnた時の該ビーム光の光軸と軸
C,−C,との交点、Lは点Q。
Figure 3 is an explanatory diagram of the operation of the particle detector σ shown in Figures 1 and 2 (1C); )l corresponding first
Figure σ) is a side sectional view. In FIG. 3, E and F are the intersections of the optical axis of the beam 6 and the axes C, -C when the beam 6 reaches the outermost point, and L is the point Q.

0間の距離、tは点E、F間の距離、dは、ビーム光6
の光軸が点E又はFを通ったときに、aj Al−A、
と軸C,−C,とで形成される面にそれぞれ形成された
ビーム光6Iこよる円形スポット22または23σ〕直
径である。上述したようをこ、こび)場合ビーム光6は
角度2θの範囲で撮動的にふれるから、4IIAI  
 Atと軸C,−C,とで形成される面Eこおいでは、
長さがt、幅がdである方形状帯状部24aと該帯状部
24aの各端部に連なる半円部24bとからなる領域2
4がビーム光6−ζよって周期的醗こ繰り返して照射さ
れることになる。換言すれば領域24はビーム光6によ
る照射領域で、この場合視野領域13は照射領域24を
含むようEC配設されでいる。実際には、光軸が点0を
通るビーム光6Iこよって領域24)こ形成される該ビ
ーム光6の円形スポットの直径はdよりも小さいが、L
=40+a、  θ=2°程度に形成されていてt=2
.8−位tとなるσ)で、帯状部24aはほぼ方形とし
て差し支えない。第3図シζおいては照射領域24およ
び視野領域13が上述のように配設さnでいる”ので、
該照射領域24を通過する微粒子1<II’もとづく散
乱光によって、第1図0)光電変換器10から第4図に
示したような電気信号10aが出力される。
0, t is the distance between points E and F, d is the beam light 6
When the optical axis of passes through point E or F, aj Al-A,
The diameter of the circular spot 22 or 23[sigma] due to the beam light 6I formed on the plane formed by the axes C and -C, respectively. As described above, since the beam light 6 changes dynamically within the range of angle 2θ, 4IIAI
In the plane E formed by At and the axes C, -C,
Region 2 consisting of a rectangular strip 24a having a length t and a width d and semicircular portions 24b continuous to each end of the strip 24a.
4 is periodically and repeatedly irradiated with beam light 6-ζ. In other words, the area 24 is an area irradiated by the beam light 6, and in this case, the viewing area 13 is arranged EC so as to include the irradiation area 24. Actually, the diameter of the circular spot of the beam 6I whose optical axis passes through the point 0, thus forming the region 24) is smaller than d, but L
=40+a, θ=2° and t=2
.. 8), the band-shaped portion 24a may be substantially rectangular. In FIG. 3, the irradiation area 24 and viewing area 13 are arranged as described above, so that
Due to the scattered light caused by the particles 1<II' passing through the irradiation area 24, an electric signal 10a as shown in FIG. 4 is output from the photoelectric converter 10 in FIG.

第4図は第3図0に対応する説明図で、図においでは説
明σ〕便宜上第3図0における視野領域13は省略しで
ある。第4図督こおいて、17は軸A1−A、に平行な
P方向計こ等速度で移動して領域24を噴切る微粒子、
25は軸C1−C,lこ沿ったビームスポット22の光
強度分布特性線、26は特性線25+こ対応するビーム
スポット23の光強度分布特性線である。特性線25と
26とは同じ形状の吊鎖状曲線で、こσ)結果照射領域
24においては点EとFとの間σ)軸C,−C,上σ〕
部分σ)光強度分布か最大音こなる。なおこσ)場合t
>dであるよう駈こ要部が構成されでいる。第4図にお
いで、微粒子170】移動速度Fこ比べて第3図のビー
ム光6σ〕ふれ速度がかなり速く設定されていると、微
粒子17が照射領域24を嘩切ることによって図示した
ような一連σ)パルス列からなる電気信号10aが発生
し、こσ)信号tOaを構成する個々のパルスの包絡線
27は特性線25または26に対応した吊鐘状となる。
FIG. 4 is an explanatory diagram corresponding to FIG. 3 0, and in the figure, the visual field area 13 in FIG. 3 0 is omitted for convenience. In Figure 4, 17 is a fine particle that moves at a constant speed in the P direction parallel to the axis A1-A and blows out the region 24;
25 is a light intensity distribution characteristic line of the beam spot 22 along the axis C1-C,l, and 26 is a light intensity distribution characteristic line of the beam spot 23 corresponding to the characteristic line 25+this. The characteristic lines 25 and 26 are hanging chain curves having the same shape, and as a result, in the irradiation area 24, the distance between points E and F is σ) axis C, -C, upper σ]
Part σ) Light intensity distribution or maximum sound. Naoko σ) case t
The main part of the canter is constructed so that >d. In FIG. 4, if the deflection speed of the beam light 6σ in FIG. 3 is set to be considerably faster than the moving speed F of the particles 170, the particles 17 will move through the irradiation area 24, resulting in a series of movements as shown in the figure. σ) An electrical signal 10a consisting of a pulse train is generated, and the envelope 27 of the individual pulses constituting the σ) signal tOa has a bell-like shape corresponding to the characteristic line 25 or 26.

したがって、このような包絡線形状を有するパルス列σ
)個数を計数することによって領域24を通過する微粒
子17の個数検出を行うことができ、また包絡線27の
最大値を測定することtCよって微粒子17の粒径検出
を行うことができるわけで、第1図σ】信号処理部31
は信号10alこ対しでこσ〕ような信号処理を行うよ
うに構成されている。第1図σ)実施例ではd =0.
1〔咽〕に設定されており、またビーム光6の振動゛周
波数は20 (KHz )に設定さnでいるので。
Therefore, the pulse train σ having such an envelope shape
) By counting the number of particles 17 passing through the region 24, the number of particles 17 can be detected, and by measuring the maximum value of the envelope 27 tC, the particle size of the particles 17 can be detected. FIG. 1 σ] Signal processing section 31
is configured to perform signal processing such as [signal 10al versus deko σ]. Fig. 1 σ) In the example, d = 0.
1 [throat], and the vibration frequency of the beam light 6 is set to 20 (KHz).

微粒子17の移動速度を50 (rm / S )とす
る、微粒子17が領域24を通過する時間が0.115
0=2XlOCs )となり、この結果包絡線27を構
成するパルス力個数は約80個となる。上述した所から
明らかなよう一ζ、包絡線27を構成するパルスの個数
が多い程包絡線27は特性線25または26の形状に近
似するので、微粒子17σ】粒径測定σ〕際の粒径分解
能が向上する。前記パルスσ】個数が少ないと包絡線2
7の最大値近傍が平坦醗こなる確率が高くなるので粒径
分解能が低下する。
When the moving speed of the fine particles 17 is 50 (rm/S), the time for the fine particles 17 to pass through the region 24 is 0.115
0=2XlOCs ), and as a result, the number of pulse forces forming the envelope 27 is approximately 80. As is clear from the above, the larger the number of pulses constituting the envelope 27, the more the envelope 27 approximates the shape of the characteristic line 25 or 26. Resolution is improved. If the number of pulses σ is small, the envelope curve 2
Since the probability that the area near the maximum value of 7 becomes flat increases, the particle size resolution decreases.

第1図の微粒子検出装置は上述σ)ようにして微粒子検
出を行うので、ビーム光6Iこおける第4図に示した強
度分布特性線25または26の形状が微粒子検出装置σ
)粒径分解能に影響を与えることはなく、また第1図の
微粒子検出装置では、第4図から明らかなようlこ、ビ
ーム光6IζよりC照射される測定液体20部分−こお
ける該ビーム光Q)強度分布一様領域が、第10図O)
場合に比べてビーム光6σ〕走査方向に引き伸ばされて
拡大されている。したがってこ0〕ような構成σ)微粒
子検出装置−こおい(は、検出可能な微粒子粒径を小さ
くするためtζビーム光6を絞って該ビーム光の強度分
布一様領域を狭くしても粒径分解能が低下することはな
く、またこQ)ような構成の微粒子検出装置夛こおいて
はビーム光6のふれ幅tを該ビーム光の強度とは無関係
醗こ設定できるσ〕で、測定液体2力流路を第4図の照
射領域24を噴切るように設定した微粒子検出装置の場
合に検出可能粒径を小さ、くするためtζビーム光6を
絞っても、測定流体2の流路を細くする必要はない。す
なわち、第1図の微粒子検出装置は、一定時間内1C検
査しつる測定流体2の容積減少や粒径分解能の低下を招
くことなく検出可能粒径を小さくすることのできる微粒
子検出装置である。
Since the particle detection device shown in FIG. 1 detects particles as described above, the shape of the intensity distribution characteristic line 25 or 26 shown in FIG.
) does not affect the particle size resolution, and in the particle detection device shown in FIG. 1, as is clear from FIG. Q) The uniform intensity distribution area is shown in Figure 10 O)
Compared to the case where the beam light is 6σ], it is stretched and enlarged in the scanning direction. Therefore, even if the tζ beam light 6 is narrowed down to narrow the uniform intensity distribution area of the beam light in order to reduce the detectable particle size, the particles will not be detected. The radial resolution does not decrease, and in the case of a particle detector configured as shown in Q), the deviation width t of the light beam 6 can be set with σ], which can be set independently of the intensity of the beam light. In the case of a particle detection device in which the liquid dual force flow path is set to cut out the irradiation area 24 in FIG. There is no need to narrow the road. That is, the particle detection device shown in FIG. 1 is a particle detection device that can conduct a 1C test within a certain period of time and reduce the detectable particle size without causing a decrease in the volume of the measurement fluid 2 or a decrease in particle size resolution.

第5図は本発明の第2実施例I7】構成図で、本図の第
1図と異る所は集束レンズ7とビーム光偏光部18との
配列順序が逆になっている点である。
FIG. 5 is a configuration diagram of a second embodiment of the present invention (I7), which differs from FIG. 1 in that the arrangement order of the focusing lens 7 and the beam polarizing section 18 is reversed. .

レンズ7と偏光部18とをこのよう舒ζ配列し、ても第
1図の場合と同様にしで微粒子検出を行うことができる
ことは明らかであるが、特に第5図の場合、レンズ7が
70−セル1近傍に配置されるので該レンズ71c焦点
距離の短いものを使用することができ、したがってレン
ズ7の開口数を大きくすることができるのでビーム光6
を細く集束することができ、この結果第5図力微粒子検
出装置昏ζは検出可能粒径を小さくできる利点がある。
Although it is clear that even if the lens 7 and the polarizing section 18 are arranged in a zigzag arrangement like this, fine particles can be detected in the same manner as in the case of FIG. 1. However, especially in the case of FIG. - Since the lens 71c is disposed near the cell 1, a lens 71c with a short focal length can be used, and the numerical aperture of the lens 7 can be increased, so the beam light 6
As a result, the particle detection device ζ has the advantage of being able to reduce the detectable particle size.

第6図は本発明の第3実施例の構成図で、本図の第1図
と異る所はフローセルIIζおけるビーム光6の前方散
乱光を受光するように受光機構8を配置した点である。
FIG. 6 is a block diagram of a third embodiment of the present invention, which differs from FIG. 1 in that a light receiving mechanism 8 is arranged to receive the forward scattered light of the beam light 6 in the flow cell IIζ. be.

第6図の装置1(おいても第1図の装置蚤こおけると同
様にして微粒子検出が行えることが明らかであるが、特
1ζ第6図の場合は、前記前方散乱光の強度が前述σ〕
各実施例におけるような側方散乱光の強度よりも強いの
で、微粒子検出が容易であるという利点がある。
It is clear that fine particles can be detected in the same way as the device 1 in FIG. σ〕
Since the intensity is stronger than the side scattered light as in each embodiment, there is an advantage that fine particles can be easily detected.

向 第7図は第2図fこ示し、たビーム光偏物部18Iご代
わるビーム光偏向部28の構成説明図で、図において、
29aは駆動電源30+こよって駆動される超音波振動
子、29bは振動子29aから出射された超音波を伝播
させる機能を一部の機能として有する光音響媒体で、媒
体29bは、ここに入射された光ビームσ〕進行方向を
該媒体を伝播する超音波の状態蚤こ応じて偏向させる機
能も有している。29Gは媒体29bを伝播しで来た超
音波を吸収する吸音材である。29は上述の振動子29
aと媒体29bと吸音材29Cとからなる光音響向 偏置素子で、ビーム光偏向部28は偏向素子29と電源
30とで構成されている。ビーム光偏向部28において
も、図示のように、入射されるレーザビーム4を駆動電
源30+こよって角度2θの間に高速で振動するビーム
光6とすることができるσ)で、このような偏向部28
を、上述した微粒子検出装置の各実施側番こおいで、ビ
ーム光偏向部18−こ代えて用いることができる。
FIG. 7 is an explanatory diagram of the configuration of the beam light deflection section 28 which replaces the beam light polarization section 18I shown in FIG. 2F.
29a is an ultrasonic transducer driven by the driving power source 30+; 29b is a photoacoustic medium having as part of its function the function of propagating the ultrasonic waves emitted from the transducer 29a; It also has the function of deflecting the traveling direction of the light beam σ] according to the state of the ultrasonic wave propagating through the medium. 29G is a sound absorbing material that absorbs the ultrasonic waves propagating through the medium 29b. 29 is the above-mentioned vibrator 29
The beam light deflection unit 28 is composed of a deflection element 29 and a power source 30. Also in the beam light deflection unit 28, as shown in the figure, the incident laser beam 4 can be turned into a beam light 6 that vibrates at high speed within an angle of 2θ by the drive power source 30+, so that such a deflection is performed. Part 28
can be used in place of the beam light deflection section 18 in each implementation side of the above-mentioned particle detection device.

上述σ)各実施例−こおいでは開口部材11の貫通孔t
taを円形としたが、この貫通孔はスリットや他の形状
1ζ形成ざわていでもよいものであり、また受講機構8
の光軸は、ビーム光6の光軸に対しで上述の各実施例F
Cおける交角とは異る角度で交わるよう)こなつCいて
もよいものである。また本発明1ζおいでは、含微粒子
測定液体2Iこ投射されるビーム光6は円形断面のビー
ム光に限られるものではなく、70−セルlの断面形状
や三軸A1A! e B I  B !l CI  C
zの空間的方向もまた上述の実施例に限定されるもので
はない。ざらIこまた上述の実施例においては微粒子検
出を液体1ζ対して行うものとし、また受光機構8は投
射ビーム光6の直接散乱光を受光するものとしたが、本
発明は、測定液体を気体としてもよく、また受光機構8
は蛍光散乱を受光するようチζ構成しでも差し支えない
ものである。なお本発明による検出装置は、第4図に示
した電気信号lOaにおけるパルスの個数を計数するこ
とによって含微粒子測定流体の流速測定を行うこともで
きる装置である。
Above σ) In each embodiment, the through hole t of the opening member 11
Although ta is made circular, this through hole may be formed with a slit or other shape 1ζ.
The optical axis of each of the above-mentioned embodiments F is relative to the optical axis of the beam light 6.
It is also possible to cross C so that they intersect at a different angle from the angle of intersection at C. In addition, in the present invention 1ζ, the light beam 6 projected onto the particulate-containing measuring liquid 2I is not limited to a beam light having a circular cross section, but may be a cross-sectional shape of a cell 70 or a triaxial A1A! eBIB! l CI C
The spatial direction of z is also not limited to the embodiments described above. Furthermore, in the above-described embodiment, the particle detection was performed on the liquid 1ζ, and the light receiving mechanism 8 was designed to receive the directly scattered light of the projected beam light 6, but in the present invention, the measurement liquid is gaseous. Also, the light receiving mechanism 8
It is also possible to configure a chip ζ so as to receive fluorescence scattering. The detection device according to the present invention is also capable of measuring the flow velocity of the particulate-containing measurement fluid by counting the number of pulses in the electrical signal lOa shown in FIG.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明においては、含微粒子測定流体
にビーム光を照射するビーム光照射機構と、ビーム光の
照射によって微粒子から出射される散乱光を受光して該
散乱光矛こ応じた信号を出力する受光機構とからなり、
受光機構の出力信号チこもとづいて微粒子の検出を行う
微粒子検出装置■こおいで、ビーム光照射機構ic測定
流体をビーム光矛こよって直線状に繰り返しで走査する
ビーム光偏向部を設けたσ)で、このよう普こ構成する
ことチこよって、ビーム光しこよって照射される測定流
体部分における該ビーム光の強度分布一様領域が該ビー
ム光0)走査方向昏ζ実質的に拡大され、かつビーム光
の強度分布形状が微粒子検出装置の粒径分解能に影響を
与えないようシこなる結果、一定時間内に検査しうる含
微粒子測定流体の容積減少や粒径分解能の低下を招くこ
となく検出可能粒径を小さくすることのできる微粒子検
出装置が得られる効果がある。
As described above, the present invention includes a beam light irradiation mechanism that irradiates a particulate-containing measurement fluid with a beam light, and a signal that receives scattered light emitted from particulates by the irradiation of the beam light and responds to the scattered light. It consists of a light receiving mechanism that outputs
A particle detection device that detects particles based on the output signal of the light receiving mechanism ■ A beam light irradiation mechanism IC equipped with a beam light deflection section that repeatedly scans the measurement fluid in a straight line with the beam light By virtue of this general configuration, the uniform intensity distribution region of the beam light in the measuring fluid portion irradiated by the beam light is substantially expanded, In addition, the shape of the intensity distribution of the beam light is designed so that it does not affect the particle size resolution of the particle detection device, so there is no reduction in the volume of the particle-containing measurement fluid that can be inspected within a certain period of time, and there is no reduction in particle size resolution. This has the effect of providing a particle detection device that can reduce the detectable particle size.

がある。There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の構成図、第2図は第1図
における要部の構成図、第3図は第1図および第2図に
示した微粒子検出装置σ)動作説明図で、同図(8)は
平面図、同−図0は側面図である。 第4図は第3図OIこ対応する説明図、第5図および第
6図はそnぞn本発明の第1および第2実施9図は第8
図における要部の拡大斜視図、第10図は検出誤差説明
図で、同図(3)はビーム光配置図。 同図0はビーム光σ)強度分布図である。 2・・−・・・測定液体、3.19・・・・・・ビーム
光照射機構、6.16・・・・・・ビーム光% 8・曲
・受光機構、17・・・・・・ 微粒子、18.28・
−・・・・ビーム光偏向部。 第  1  図
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a block diagram of the main parts in Fig. 1, and Fig. 3 is an explanation of the operation of the particle detection device shown in Figs. 1 and 2. In the figures, FIG. 8 is a plan view, and FIG. 0 is a side view. FIG. 4 is an explanatory diagram corresponding to FIG. 3, and FIGS. 5 and 6 are the same. FIG.
FIG. 10 is an enlarged perspective view of the main part in the figure, and FIG. 10 is a diagram for explaining detection errors, and FIG. 10 (3) is a beam light arrangement diagram. 0 is a beam light σ) intensity distribution diagram. 2...Measurement liquid, 3.19...Beam light irradiation mechanism, 6.16...Beam light % 8.Light receiving mechanism, 17... Fine particles, 18.28・
-...Beam light deflection section. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 微粒子を含む測定流体にビーム光を照射するビーム光照
射機構と、前記ビーム光の照射によって前記微粒子から
出射される散乱光を受光して該散乱光に応じた信号を出
力する受光機構とからなり、前記受光機構の出力信号に
もとづき前記微粒子の検出を行う微粒子検出装置におい
て、前記ビーム光照射機構に、前記測定流体を前記ビー
ム光によって直線状に繰り返して走査するビーム光偏向
部を設けたことを特徴とする微粒子検出装置。
It consists of a beam light irradiation mechanism that irradiates a measurement fluid containing fine particles with a beam light, and a light receiving mechanism that receives scattered light emitted from the fine particles by the irradiation of the beam light and outputs a signal corresponding to the scattered light. , in the particle detection device that detects the particles based on the output signal of the light receiving mechanism, the beam light irradiation mechanism is provided with a beam light deflection unit that repeatedly scans the measurement fluid in a straight line with the beam light. A particle detection device featuring:
JP60131297A 1985-06-17 1985-06-17 Particle detector Expired - Lifetime JPH0654288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131297A JPH0654288B2 (en) 1985-06-17 1985-06-17 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131297A JPH0654288B2 (en) 1985-06-17 1985-06-17 Particle detector

Publications (2)

Publication Number Publication Date
JPS61288139A true JPS61288139A (en) 1986-12-18
JPH0654288B2 JPH0654288B2 (en) 1994-07-20

Family

ID=15054672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131297A Expired - Lifetime JPH0654288B2 (en) 1985-06-17 1985-06-17 Particle detector

Country Status (1)

Country Link
JP (1) JPH0654288B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415637A (en) * 1987-04-27 1989-01-19 Kei Puriikushiyatsu Furitsutsu Apparatus and method for analyzing particle
JPH01239434A (en) * 1988-03-22 1989-09-25 Hitachi Ltd Optical detecting device
JPH0455740A (en) * 1990-06-26 1992-02-24 Fuji Electric Co Ltd Corpuscle detecting apparatus
US5986694A (en) * 1996-09-03 1999-11-16 Fuji Electric Co., Ltd. Image processing apparatus for moving camera
KR100503020B1 (en) * 1997-03-10 2005-11-08 후지 덴키 가부시끼가이샤 Method and apparatus for measuring turbidity
JP2006153745A (en) * 2004-11-30 2006-06-15 Tokyo Electron Ltd Particle-detecting method and particle-detecting program
JP2008232969A (en) * 2007-03-23 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Suspended particulate matter measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415637A (en) * 1987-04-27 1989-01-19 Kei Puriikushiyatsu Furitsutsu Apparatus and method for analyzing particle
JPH01239434A (en) * 1988-03-22 1989-09-25 Hitachi Ltd Optical detecting device
JPH0455740A (en) * 1990-06-26 1992-02-24 Fuji Electric Co Ltd Corpuscle detecting apparatus
US5986694A (en) * 1996-09-03 1999-11-16 Fuji Electric Co., Ltd. Image processing apparatus for moving camera
KR100503020B1 (en) * 1997-03-10 2005-11-08 후지 덴키 가부시끼가이샤 Method and apparatus for measuring turbidity
JP2006153745A (en) * 2004-11-30 2006-06-15 Tokyo Electron Ltd Particle-detecting method and particle-detecting program
JP2008232969A (en) * 2007-03-23 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Suspended particulate matter measuring device

Also Published As

Publication number Publication date
JPH0654288B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP2771206B2 (en) Portable particle analyzer
US4942305A (en) Integrating sphere aerosol particle detector
JP3248910B2 (en) Analysis of particle properties
US10768086B2 (en) Method for determining the average particle size of particles which are suspended in a liquid and flowing medium, by means of dynamic light scattering, and a device therefore
US9671325B2 (en) Particle measuring device
CN106442565A (en) Surface defect detection apparatus with high-speed laser line scanning
CN101504352A (en) Inverse-Fourier transform particle on-line measurement apparatus for thick sample pool
JP3343086B2 (en) Surface plasmon sensor
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
EP0383460B1 (en) Apparatus for measuring particles in liquid
JPS61288139A (en) Fine particle detecting device
JP2000230901A (en) Optical unit
US4827144A (en) Particle detecting device with particle scanning
JPH05340866A (en) Dust particle detector
JP2001272355A (en) Foreign matter inspecting apparatus
JP2000002648A (en) Method and apparatus for measurement of breakdown threshold value of fine particles as well as measuring apparatus for fine particles in liquid by using them
JPH03239950A (en) Laser breakdown analyzing apparatus
JPH0565020B2 (en)
JPH01232235A (en) Flow cell for fine-particle measuring instrument
JP3966851B2 (en) Light scattering particle counter
JP2002333409A (en) X-ray stress measuring device
JP2001074645A (en) Method and device for measuring small amount of fine particle
JP2003315243A (en) Apparatus for measuring distribution of particle sizes
JP3025051B2 (en) Scattered light measurement cell
JPH04323540A (en) Particle size distribution measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term