JP3966851B2 - Light scattering particle counter - Google Patents

Light scattering particle counter Download PDF

Info

Publication number
JP3966851B2
JP3966851B2 JP2003400941A JP2003400941A JP3966851B2 JP 3966851 B2 JP3966851 B2 JP 3966851B2 JP 2003400941 A JP2003400941 A JP 2003400941A JP 2003400941 A JP2003400941 A JP 2003400941A JP 3966851 B2 JP3966851 B2 JP 3966851B2
Authority
JP
Japan
Prior art keywords
light
laser beam
sample fluid
particles
particle counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003400941A
Other languages
Japanese (ja)
Other versions
JP2005070027A (en
Inventor
秀幸 近藤
弘登 中島
芳水 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2003400941A priority Critical patent/JP3966851B2/en
Publication of JP2005070027A publication Critical patent/JP2005070027A/en
Application granted granted Critical
Publication of JP3966851B2 publication Critical patent/JP3966851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、光散乱特性を利用して気体中の粒子の数を測定する光散乱式粒子計数装置に関する。更に詳述すると、本発明は試料流体に照射するレーザ光のビーム形状の改良に関する。   The present invention relates to a light scattering particle counter that measures the number of particles in a gas using light scattering characteristics. More specifically, the present invention relates to an improvement in the beam shape of laser light applied to a sample fluid.

この種の光散乱式粒子計数装置100としては、図6に示すようにレーザ光101を射出する光源102と、レーザ光101を試料流体104に集光させる投光レンズ103と、試料流体104を流す流路手段105と、試料流体104中の粒子(ダスト)が発生する散乱光106を集光する受光レンズ107と、集光した散乱光106を光電変換する受光素子108とを備えたものが知られている。そして、受光素子108から得られた電気出力のパルスの大きさと浮遊粒子径とが相関関係を有するので、電気出力のパルスの大きさから粒径を求めることができる。また、粒子が通過したときにパルスが発生するので、パルスの回数から粒子数を求めることができる。   As shown in FIG. 6, this type of light scattering particle counter 100 includes a light source 102 that emits laser light 101, a light projecting lens 103 that focuses the laser light 101 onto a sample fluid 104, and a sample fluid 104. An apparatus including a flow channel means 105, a light receiving lens 107 that collects scattered light 106 generated by particles (dust) in the sample fluid 104, and a light receiving element 108 that photoelectrically converts the collected scattered light 106. Are known. Since the magnitude of the electric output pulse obtained from the light receiving element 108 and the suspended particle diameter have a correlation, the particle diameter can be obtained from the magnitude of the electric output pulse. Further, since a pulse is generated when particles pass, the number of particles can be obtained from the number of pulses.

散乱光106を高精度に検出するためにはレーザ光101のエネルギ密度が高い方が有利であるため、投光レンズ103はレーザ光101を小さな点状に集光するよう設けられている。そして、試料流体104は点状の検出エリア109を通過する。試料流体104の流通は下流側から吸引ポンプを使用して行われる。   In order to detect the scattered light 106 with high accuracy, it is advantageous that the energy density of the laser light 101 is high. Therefore, the light projecting lens 103 is provided so as to condense the laser light 101 into small dots. Then, the sample fluid 104 passes through the dotted detection area 109. The sample fluid 104 is circulated from the downstream side using a suction pump.

一方、本装置100をクリーンルームの汚濁度をモニタし汚濁が予想される場合にアラームを発生する装置として使用する場合は、短時間に多くの試料流体104をモニタして確度の高い汚濁度の予測を実現し早い時期にアラームを発報することが望まれる。   On the other hand, when the apparatus 100 is used as an apparatus for generating an alarm when the pollution degree of a clean room is monitored and contamination is expected, a large degree of accuracy can be predicted by monitoring many sample fluids 104 in a short time. It is desirable to issue an alarm early in the process.

特開平9−178645号JP-A-9-178645

しかしながら、上述した光散乱式粒子計数装置100では、レーザ光101は点状に集光されるので、試料流体104は非常に狭い検出エリア109を通過しなければならない。このため、多くの試料流体104を短時間でモニタするには気体を高速で流通させる必要がある。よって、大容量の吸引ポンプを使用しなければならず装置100の大型化や高コスト化を招いてしまう。また、検出回路の高速化が必要になるので回路が複雑化してしまう。   However, in the above-described light scattering particle counter 100, the laser light 101 is collected in a dot shape, so the sample fluid 104 must pass through a very narrow detection area 109. For this reason, in order to monitor many sample fluids 104 in a short time, it is necessary to distribute gas at high speed. Therefore, a large-capacity suction pump must be used, leading to an increase in size and cost of the apparatus 100. In addition, since it is necessary to increase the speed of the detection circuit, the circuit becomes complicated.

そこで、本発明は、試料流体を高速で流通させることなく粒子を検出できる光散乱式粒子計数装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a light scattering type particle counter capable of detecting particles without circulating a sample fluid at high speed.

かかる目的を達成するため、請求項1記載の発明は、レーザ光を測定領域に照射し、この測定領域に存在する粒子が発生する散乱光に基づいて粒子を計数する光散乱式粒子計数装置において、前記粒子を含む試料流体をある太さで一定の方向に流す流路手段を有し、前記レーザ光は、帯状のレーザビームに形成されているとともに、前記帯状のレーザビームの幅広な方向において前記試料流体の全幅に亘って横切るようにし、更に、前記試料流体の流れが前記レーザ光の幅広面に対して45度をなすようにしている。 In order to achieve such an object, the invention according to claim 1 is a light scattering type particle counting device that irradiates a measurement region with laser light and counts particles based on scattered light generated by particles existing in the measurement region. And a flow path means for flowing the sample fluid containing the particles in a certain direction with a certain thickness, and the laser beam is formed in a belt-like laser beam and in a wide direction of the belt-like laser beam. The entire width of the sample fluid is traversed, and the flow of the sample fluid is 45 degrees with respect to the wide surface of the laser beam .

したがって、レーザ光が帯状であるので、従来のように点状に集光されるレーザ光に比べて検出エリアを広くすることができる。このため、単位時間当たりにより多くの試料流体を通過させることができるので、吸引ポンプの小型化や検出回路の簡易化を図ることができる。また、粒子を含む試料流体を一定の方向に流す流路手段を有し、前記帯状のレーザビームの幅広な方向において前記試料流体の全幅に亘って横切るようにし、更に、前記試料流体の流れが前記レーザ光の幅広面に対して45度をなすようにしている。したがって、レーザ光は試料流体の全幅に亘っているとともに、その試料流体に対して45度の角度で入射されるから、レーザ光と試料流体との交わる部分である測定領域を大きくすることができ、粒子の計数を確実に行うことができる。 Therefore, since the laser beam is strip-shaped, the detection area can be widened as compared with the laser beam condensed like a dot as in the prior art. For this reason, since more sample fluid can be passed per unit time, the suction pump can be downsized and the detection circuit can be simplified. In addition, it has flow path means for flowing the sample fluid containing particles in a certain direction so as to traverse the entire width of the sample fluid in the wide direction of the belt-like laser beam, and further the flow of the sample fluid An angle of 45 degrees is formed with respect to the wide surface of the laser beam. Accordingly, since the laser beam covers the entire width of the sample fluid and is incident on the sample fluid at an angle of 45 degrees, the measurement region that is a portion where the laser beam and the sample fluid intersect can be enlarged. The particles can be counted reliably.

また、請求項2記載の発明は、請求項1記載の光散乱式粒子計数装置において、前記測定領域に照射されるレーザ光の光軸と直交する方向に、前記測定領域に存在する粒子が発生する散乱光を受光する受光素子を配置している。したがって、前記帯状のレーザビームの形成するビーム平面に対して直交する方向が試料流体の流れる方向と一致しないので、散乱光を受光する受光素子の配置を、試料流体を一定の方向に流す流路手段の配置と重ならないようにすることができ、粒子の計数を確実に行うことができる。 According to a second aspect of the present invention, in the light scattering type particle counter according to the first aspect, particles existing in the measurement region are generated in a direction perpendicular to the optical axis of the laser beam irradiated on the measurement region. A light receiving element for receiving scattered light is disposed. Therefore, since the direction orthogonal to the beam plane formed by the belt-shaped laser beam does not coincide with the direction in which the sample fluid flows, the arrangement of the light receiving elements that receive the scattered light is arranged to flow the sample fluid in a certain direction. The arrangement of the means can be prevented from overlapping, and the particles can be counted reliably.

以上説明したように、請求項1記載の光散乱式粒子計数装置によれば、レーザ光が帯状であるので、従来のように点状に集光されるレーザ光に比べて検出エリアを広くすることができる。このため、単位時間当たりにより多くの試料流体を通過させることができるので、吸引ポンプの小型化や検出回路の簡易化を図ることができる。そして、吸引ポンプの大型化や検出回路の複雑化を招くことなく、より確度の高い汚濁度の予測やより早い時期でのアラームの発報を行うことができるようになる。よって、クリーンルームが汚濁する前に警告することができる。また、レーザ光は試料流体の全幅に亘っているとともに、その試料流体に対して45度の角度で入射されるから、レーザ光と試料流体との交わる部分である測定領域を大きくすることができ、粒子の計数を確実に行うことができる。 As described above, according to the light scattering type particle counting apparatus of the first aspect, since the laser beam is in a band shape, the detection area is widened as compared with the conventional laser beam focused in a dot shape. be able to. For this reason, since more sample fluid can be passed per unit time, the suction pump can be downsized and the detection circuit can be simplified. Further, it is possible to predict the pollution degree with higher accuracy and to issue an alarm at an earlier time without increasing the size of the suction pump and the complexity of the detection circuit. Therefore, a warning can be given before the clean room is polluted. In addition, since the laser beam covers the entire width of the sample fluid and is incident on the sample fluid at an angle of 45 degrees, the measurement region that is the portion where the laser beam and the sample fluid intersect can be enlarged. The particles can be counted reliably.

また、請求項2記載の光散乱式粒子計数装置によれば、前記測定領域に照射されるレーザ光の光軸と直交する方向に前記測定領域に存在する粒子が発生する散乱光を受光する受光素子を配置しているので、散乱光を受光する受光素子の配置を、試料流体を一定の方向に流す流路手段の配置と重ならないようにすることができ、受光素子及び流路手段の配置が容易であるとともに、粒子の計数を確実に行うことができる。 Further, according to the light scattering type particle counter according to claim 2, light reception for receiving scattered light generated by particles existing in the measurement region in a direction perpendicular to the optical axis of the laser light irradiated on the measurement region. Since the elements are arranged, the arrangement of the light receiving elements that receive the scattered light can be prevented from overlapping with the arrangement of the channel means for flowing the sample fluid in a fixed direction. The arrangement of the light receiving elements and the channel means Is easy and particle counting can be performed reliably.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1および図2に、本発明の光散乱式粒子計数装置1の実施形態の一例を示す。この光散乱式粒子計数装置1は、レーザ光2を測定領域3に照射し、この測定領域3に存在する粒子(ダスト)4が発生する散乱光5に基づいて粒子4を計数するものである。そして、レーザ光2は、帯状のレーザビームに形成されてなるようにしている。また、粒子4を含む試料流体6を一定の方向に流す流路手段7を有している。レーザ光2は流路手段7により流通される試料流体6の太さより幅広であると共に、レーザ光2の進行方向に対し45度の角度で、かつレーザ光2の幅広な方向において試料流体6の全幅に亘って横切るようにしている。 1 and 2 show an example of an embodiment of the light scattering particle counter 1 of the present invention. This light scattering type particle counter 1 irradiates a measurement region 3 with laser light 2 and counts particles 4 based on scattered light 5 generated by particles (dust) 4 existing in the measurement region 3. . The laser beam 2 is formed into a belt-like laser beam. Moreover, it has the flow path means 7 which flows the sample fluid 6 containing the particle | grains 4 in a fixed direction. The laser light 2 is wider than the thickness of the sample fluid 6 circulated by the flow path means 7 , and is at an angle of 45 degrees with respect to the traveling direction of the laser light 2 and in the wide direction of the laser light 2. It crosses over the entire width.

この光散乱式粒子計数装置1は、レーザ光2を射出する光源8と、レーザ光2を試料流体6に集光させる投光レンズ9と、流路手段7と、試料流体6中の粒子4が発生する散乱光5を集光する受光レンズ10と、集光した散乱光5を光電変換する受光素子11とを備えている。   The light scattering type particle counter 1 includes a light source 8 that emits laser light 2, a light projecting lens 9 that focuses the laser light 2 on a sample fluid 6, a flow path means 7, and particles 4 in the sample fluid 6. The light receiving lens 10 which condenses the scattered light 5 which generate | occur | produces, and the light receiving element 11 which photoelectrically converts the condensed scattered light 5 are provided.

光源8はレーザダイオードとしている。投光レンズ9は、コリメータレンズ12と、シリンドリカルレンズ13とを備えている。コリメータレンズ12ではレーザ光2を平行光にする。シリンドリカルレンズ13は2枚組で、楕円形状のレーザ光2を更に扁平な帯状の光線にする。このレーザ光2は例えば幅(図2(A)の紙面に垂直な方向の幅)4mm、厚さ(図2(A)における上下方向の厚さ)50μm程度とする。シリンドリカルレンズ13によってレーザ光2のエネルギ密度が高められる。   The light source 8 is a laser diode. The light projecting lens 9 includes a collimator lens 12 and a cylindrical lens 13. The collimator lens 12 changes the laser light 2 into parallel light. The cylindrical lens 13 is a set of two lenses, and the elliptical laser beam 2 is further converted into a flat strip-shaped light beam. For example, the laser beam 2 has a width (width in the direction perpendicular to the paper surface of FIG. 2A) of 4 mm and a thickness (thickness in the vertical direction in FIG. 2A) of about 50 μm. The energy density of the laser beam 2 is increased by the cylindrical lens 13.

投光レンズ9の下流側にはビームポケット14が配置されている。ビームポケット14は投光されたレーザ光2をトラップするものである。これにより、レーザ光2の装置1内部での反射による迷光を減少し、受光素子11に入射するバックグラウンドノイズを減少させることができる。よって、SN比を高めて、信号の増幅度を高めることができる。   A beam pocket 14 is disposed on the downstream side of the light projecting lens 9. The beam pocket 14 traps the projected laser beam 2. Thereby, stray light due to reflection of the laser beam 2 inside the device 1 can be reduced, and background noise incident on the light receiving element 11 can be reduced. Therefore, it is possible to increase the signal-to-noise ratio and increase the signal amplification.

流路手段7は、投光レンズ9の下流側に配置された気密部15と、この気密部15に資料流体6を供給する供給管16と、気密部15を負圧にする吸引ポンプ17とを備えている。また、レーザ光2と試料流体6との交わる部分が測定領域3となる。   The flow path means 7 includes an airtight portion 15 disposed on the downstream side of the light projecting lens 9, a supply pipe 16 that supplies the material fluid 6 to the airtight portion 15, a suction pump 17 that makes the airtight portion 15 a negative pressure, It has. Further, a portion where the laser beam 2 and the sample fluid 6 intersect becomes a measurement region 3.

受光レンズ10は測定領域3に向き合っていると共に、光軸をレーザ光2の光軸と直交させている。既に説明したように、受光レンズ10は、散乱光5を受光素子11に集光させるものであるから、受光素子11もレーザ光2の光軸と直交した状態となっている。受光素子11としては、プリアンプ付きSiPINフォトダイオードを使用している。これにより、感度とSN比とを高めることができる。 The light receiving lens 10 faces the measurement region 3 and has its optical axis orthogonal to the optical axis of the laser light 2. As already described, since the light receiving lens 10 condenses the scattered light 5 on the light receiving element 11, the light receiving element 11 is also in a state orthogonal to the optical axis of the laser light 2. As the light receiving element 11, a SiPIN photodiode with a preamplifier is used. Thereby, a sensitivity and an S / N ratio can be improved.

上述した光散乱式粒子計数装置1の作用を以下に説明する。   The operation of the above-described light scattering particle counter 1 will be described below.

光源8から発せられたレーザ光2は投光レンズ9を透過して帯状にされる。この帯状のレーザ光2は気密部15に投光される。一方、吸引ポンプ17の作動により気密部15では試料流体6が流通されている。そして、レーザ光2が試料流体6を通過する。ここで、投光されたレーザ光2は、流路手段7により流通される試料流体6の太さより幅広であると共に、進行方向に対し直角かつレーザ光2の幅広な方向において試料流体6の全幅に亘って横切っている。すなわち、レーザ光2は、図2(A)の紙面に垂直な方向におけるその幅が試料流体6の最外層の流れよりも幅広に形成されており、紙面に垂直な方向において試料流体6の最外層の流れ部分を横切っている。   The laser light 2 emitted from the light source 8 passes through the light projection lens 9 and is formed into a belt shape. This belt-shaped laser beam 2 is projected to the airtight portion 15. On the other hand, the sample fluid 6 is circulated in the airtight portion 15 by the operation of the suction pump 17. Then, the laser beam 2 passes through the sample fluid 6. Here, the projected laser beam 2 is wider than the thickness of the sample fluid 6 circulated by the flow path means 7, and is full width of the sample fluid 6 in the direction perpendicular to the traveling direction and in the wider direction of the laser beam 2. Across. That is, the laser beam 2 is formed so that its width in the direction perpendicular to the paper surface of FIG. 2A is wider than the flow of the outermost layer of the sample fluid 6, and the laser beam 2 is the outermost layer of the sample fluid 6 in the direction perpendicular to the paper surface. Crosses the flow part of the outer layer.

試料流体6にダストが含まれていると、測定領域3から散乱光5が発せられる。この散乱光5は受光レンズ10を介して受光素子11に入射される。そして、受光素子11から得られた電気出力のパルスの大きさと粒子4の粒子径とが相関関係を有するので、電気出力のパルスの大きさから粒径を求めることができる。また、粒子4が通過したときにパルスが発生するので、パルスの回数から粒子数を求めることができる。   If the sample fluid 6 contains dust, scattered light 5 is emitted from the measurement region 3. The scattered light 5 enters the light receiving element 11 through the light receiving lens 10. Since the magnitude of the pulse of the electric output obtained from the light receiving element 11 and the particle diameter of the particle 4 have a correlation, the particle diameter can be obtained from the magnitude of the pulse of the electric output. Further, since a pulse is generated when the particle 4 passes, the number of particles can be obtained from the number of pulses.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では投光レンズ9を出たレーザ光2はそのまま試料流体6を通過しているが、これには限られず図3に示すように投光レンズ9の先に反射ミラー18を設けてレーザ光2は反射してから試料流体6を通過するようにしても良い。これによれば光路を曲折できるので光散乱式粒子計数装置1の小型化を図ることができる。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in this embodiment, the laser light 2 exiting the light projecting lens 9 passes through the sample fluid 6 as it is. However, the present invention is not limited to this, and as shown in FIG. The laser beam 2 may be provided so as to pass through the sample fluid 6 after being reflected. According to this, since the optical path can be bent, the light scattering particle counter 1 can be miniaturized.

また、本実施形態では試料流体6の流れがレーザ光2の幅広面に対して45度をなすようにしているが、本発明とは異なる参考例として、図4に示すように90度をなすようにしても良い。図4に示す光散乱式粒子計数装置1では、光源(図示せず)から発せられたレーザ光2は2枚のシリンドリカルレンズ13を透過して紙面に垂直な方向に圧縮されて帯状になるようにしている。そして、紙面に垂直な方向に試料流体6が流れるように供給管16および吸引ポンプが設けられている。 In the present embodiment, the flow of the sample fluid 6 is 45 degrees with respect to the wide surface of the laser beam 2. However, as a reference example different from the present invention , the flow is 90 degrees as shown in FIG. You may do it. In the light scattering type particle counter 1 shown in FIG. 4, the laser light 2 emitted from a light source (not shown) passes through two cylindrical lenses 13 and is compressed in a direction perpendicular to the paper surface so as to form a belt shape. I have to. A supply pipe 16 and a suction pump are provided so that the sample fluid 6 flows in a direction perpendicular to the paper surface.

さらに、上述した各実施形態では楕円形状のレーザ光2をシリンドリカルレンズ13を使用して更に扁平な形状にしているが、これには限られず楕円形状のレーザ光2をそのまま試料流体6に照射するようにしても良い。この場合もレーザ光2は幅広の帯状であるので、試料流体6を幅広く照射することができる。   Further, in each of the above-described embodiments, the elliptical laser beam 2 is further flattened using the cylindrical lens 13, but the present invention is not limited to this, and the sample fluid 6 is directly irradiated with the elliptical laser beam 2. You may do it. Also in this case, since the laser beam 2 has a wide band shape, the sample fluid 6 can be irradiated widely.

また、上述した各実施形態では供給管16と吸引ポンプ17との間を流れる試料流体6にレーザ光2を直接照射しているが、これには限られずレーザ光2を透過する透明体から成る管路に試料流体6を流してその外部からレーザ光2を照射するようにしても良い。   In each of the above-described embodiments, the sample fluid 6 flowing between the supply pipe 16 and the suction pump 17 is directly irradiated with the laser beam 2. However, the present invention is not limited to this, and is made of a transparent body that transmits the laser beam 2. The sample fluid 6 may be flowed through the pipe and the laser beam 2 may be irradiated from the outside.

さらに、上述した各実施形態では、光源8から発せられたレーザ光2は2枚のシリンドリカルレンズ13を透過して、図示の上下方向(図2(A)、図3(A))あるいは、紙面に垂直な方向(図4)に圧縮されて帯状になるようにしているが、これには限られず、図5に示す光散乱式粒子計測装置1のように、投光レンズ9をコリメータレンズ12と1枚だけのシリンドリカルレンズ13とから構成し、レーザ光2が試料流体6を通過するようにしても良い。これによればシリンドリカルレンズ13を通過したレーザ光2は完全な平行光ではないが、測定領域3が狭いので、平行光としてみることができ、上述した各実施形態と同様に粒子の量を求めることができる。また、図5に示す光散乱式粒子計測装置1には、受光素子11や受光レンズ10と反対側に反射ミラー20を配置している。これにより、受光素子11とは反対側に散乱した散乱光5を反射ミラー20で反射させ受光素子11に集光させることができ、より効率良く粒子数を求めることができる。   Further, in each of the above-described embodiments, the laser light 2 emitted from the light source 8 passes through the two cylindrical lenses 13 and is shown in the vertical direction (FIG. 2A, FIG. 3A) or on the paper surface. However, the present invention is not limited to this, and the light projecting lens 9 is made to be a collimator lens 12 as in the light scattering type particle measuring apparatus 1 shown in FIG. And only one cylindrical lens 13, and the laser beam 2 may pass through the sample fluid 6. According to this, the laser light 2 that has passed through the cylindrical lens 13 is not completely parallel light, but can be viewed as parallel light because the measurement region 3 is narrow, and the amount of particles is obtained in the same manner as in the above-described embodiments. be able to. Further, in the light scattering type particle measuring apparatus 1 shown in FIG. 5, a reflection mirror 20 is disposed on the side opposite to the light receiving element 11 and the light receiving lens 10. Thereby, the scattered light 5 scattered on the side opposite to the light receiving element 11 can be reflected by the reflection mirror 20 and condensed on the light receiving element 11, and the number of particles can be obtained more efficiently.

本発明の光散乱式粒子計数装置の原理を示す概略の斜視図である。1 is a schematic perspective view showing the principle of a light scattering particle counter according to the present invention. (A)、(B)はそれぞれ光散乱式粒子計数装置を示す概略平面図および概略側面図である。(A), (B) is the schematic plan view and schematic side view which respectively show a light-scattering type particle counter. (A)、(B)はそれぞれ光散乱式粒子計数装置の他の例を示す概略平面図および概略側面図である。(A), (B) is the schematic plan view and schematic side view which show the other example of a light-scattering type particle counter, respectively. 光散乱式粒子計数装置の参考例を示す平面図である。It is a top view which shows the reference example of a light-scattering type particle counter. (A)、(B)はそれぞれ光散乱式粒子計数装置の他の例を示す概略構成図および概略側面図である。(A), (B) is the schematic block diagram and schematic side view which show the other example of a light-scattering type particle counter, respectively. 従来の光散乱式粒子計数装置の主要部を示す概略図である。It is the schematic which shows the principal part of the conventional light-scattering type | mold particle counter.

符号の説明Explanation of symbols

1 光散乱式粒子計数装置
2 レーザ光
3 測定領域
4 粒子
5 散乱光
6 試料流体
7 流路手段
DESCRIPTION OF SYMBOLS 1 Light-scattering type particle counter 2 Laser beam 3 Measurement area 4 Particle 5 Scattered light 6 Sample fluid 7 Channel means

Claims (2)

レーザ光を測定領域に照射し、この測定領域に存在する粒子が発生する散乱光に基づいて粒子を計数する光散乱式粒子計数装置において、
前記粒子を含む試料流体をある太さで一定の方向に流す流路手段を有し、前記レーザ光は、帯状のレーザビームに形成されているとともに、前記帯状のレーザビームの幅広な方向において前記試料流体の全幅に亘って横切るようにし、更に、前記試料流体の流れは前記レーザ光の幅広面に対して45度をなすようにしたことを特徴とする光散乱式粒子計数装置。
In a light scattering type particle counter that irradiates a laser beam to a measurement region and counts particles based on scattered light generated by particles present in the measurement region.
A flow path means for flowing the sample fluid containing the particles in a certain direction with a certain thickness, and the laser beam is formed in a belt-like laser beam, and in the wide direction of the belt-like laser beam, A light scattering type particle counting apparatus characterized in that the sample fluid traverses over the entire width of the sample fluid, and the flow of the sample fluid is 45 degrees with respect to the wide surface of the laser beam .
前記測定領域に照射されるレーザ光の光軸と直交する方向に、前記測定領域に存在する粒子が発生する散乱光を受光する受光素子を配置することを特徴とする請求項1記載の光散乱式粒子計数装置。 The light scattering according to claim 1 , wherein a light receiving element that receives scattered light generated by particles existing in the measurement region is disposed in a direction orthogonal to an optical axis of laser light applied to the measurement region. Particle counter.
JP2003400941A 2003-08-06 2003-12-01 Light scattering particle counter Expired - Fee Related JP3966851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400941A JP3966851B2 (en) 2003-08-06 2003-12-01 Light scattering particle counter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003287784 2003-08-06
JP2003400941A JP3966851B2 (en) 2003-08-06 2003-12-01 Light scattering particle counter

Publications (2)

Publication Number Publication Date
JP2005070027A JP2005070027A (en) 2005-03-17
JP3966851B2 true JP3966851B2 (en) 2007-08-29

Family

ID=34425212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400941A Expired - Fee Related JP3966851B2 (en) 2003-08-06 2003-12-01 Light scattering particle counter

Country Status (1)

Country Link
JP (1) JP3966851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147476A (en) * 2005-11-29 2007-06-14 Nidec Sankyo Corp Light scattering type particle counter
JP2007199012A (en) * 2006-01-30 2007-08-09 Nidec Sankyo Corp Apparatus for counting light scattered particle
CN115290518B (en) * 2022-10-10 2022-12-30 张家港谱析传感科技有限公司 Take particle size spectrometer of self calibration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213795A (en) * 1993-01-19 1994-08-05 Mitsubishi Electric Corp Floating particle measuring equipment
JP3822840B2 (en) * 2002-05-10 2006-09-20 株式会社堀場製作所 Particle size distribution measuring device

Also Published As

Publication number Publication date
JP2005070027A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP7255049B2 (en) Automatic output control liquid particle counter with flow and bubble detection system
JP5381741B2 (en) Optical measuring apparatus and optical measuring method
US20120257192A1 (en) Microbial detection apparatus and method
US10895530B2 (en) Sensor combining dust sensor and gas sensor
RU2006108798A (en) OPTICAL FLOW METER FOR MEASURING GAS AND LIQUID FLOW IN PIPELINES
KR101574435B1 (en) Detection apparatus for micro dust and organism
US20090153857A1 (en) Particle detector
JP2010091548A (en) Apparatus counting fibers in air with high accuracy
CN112334755A (en) Particle detection device
JP3966851B2 (en) Light scattering particle counter
WO2004029589A1 (en) Flow cell, and particle measurement device using the same
JP6466795B2 (en) Oil mist detection device
JP2010151811A (en) Particle counter
JPH1123460A (en) Smoke sensor
CN110823786A (en) Device and method for detecting tiny particles in liquid
JP3818867B2 (en) Light scattering particle detector
JP4763159B2 (en) Flow cytometer
JPH06213795A (en) Floating particle measuring equipment
KR102479361B1 (en) Curtain flow design for optical chambers
JPH0196532A (en) Fine particle detector by light scattering system
JPS61288139A (en) Fine particle detecting device
US20220373477A1 (en) Apparatus for detecting fine dust and microorganisms
JP2000206033A (en) Apparatus for measuring cigarette-smoke particle
JP2007147476A (en) Light scattering type particle counter
JP3552389B2 (en) Suspended dust measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees